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 abstract
Abstract

This paper presents a new method for obtaining a
probabﬂistic load flow solution wusing a discrete
frequency domain convolution technique. It is shown
that this method has greater accuracy while providing
a breakthrough in computational speed. A detailed
example compares the numerical results with a Monte
carlo simulation. The effects of nonlinearity in the
network equations are discussed.

INTRODUCTION

The Probabilistic Problem

The most widely used evaluation technique in power
system analysis is the load flow algorithm used to
assess the steady-state behavior and response of the
system. These algorithms are deterministic in that
they consider a fixed set of input parameters for each
computer run, A complimentary method which has
peceived considerable interest recently is
probabilistic load flow or stochastic power flow,
‘These techniques recognize the probabilistic nature of
the generation and load with one solution.
Essentially, a probabilistic Tload flow transforms
these input random variables, defined in terms of
probability density functions, into output random
variables also defined in terms of density functions.
It is not the purpose of this paper to discuss or
}describe the concepts and basic numerical techniques
‘associated with probabilistic load flow as these have
esn detailed and documented previously [1-9].
Instead, however, the paper will address itself to
various aspects concerning precision and computational
efficiency. The same objectives of computational

efficiency and accuracy apply to probabilistic load
flow ~as they do to conventional power flow
techniques.
Numerical- and Analytical Considerations

One of the central problems associated with
Steady-state network analysis 1is the nonlinearity of
the power flow equations. In the case of

de@erministic power flows the problem 1is approached

USing  iterative  techniques. The  probabilistic

®proach offered here is based on a linearization of
€se equations at a particular operating state.

diSJmOther _point that has received considerable
h ussion is the application of the Central Limit
uﬁ?gem- If applicable, the output density functions
be be assumed to be normal in distributiop. 1t has
a]S‘nshown [1-3], however, that the assumption is not
0 s valid. Furthermore, even if the input

ameters  are normally distributed, the output
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parameters will not be due to the nonlinearity of the
power flow equations. The normality assumption is, at
best, a rough approximation to the exact answer, and
very often cannot be depended upon. It is the intent
of this paper to offer a practical technique for
computing a more exact and realistic solution for the
probabilistic load flow problem.

The input parameters for most systems are not
normally distributed and other more arbitrary
distributions are necessary to describe generation and
load uncertainty. Load forecast uncertainties which
have small variance may be reasonably represented by
the normal distribution {although truncated). It is’
therefore necessary to evaluate the actual output:
density function in order to see if the Central Limit
Theorem is applicable.

In order to evaluate the output density function,
the load flow equations [1-5] are linearized around an:
expected value region. After 1linearization, a
convolution process is used to transform the input
information (load and generation distributions) into
the output information {voltages and line flows}.
This convolution process has been made [9] in the past
by a “"semi-conventional" technigue based on Laplace
Transformation. This method, although achieving the
desired output information, is time consuming in order
to achieve a reasonble level of precision. - A
completely different technique has been applied for
this convolution process which is based on the Fast
Fourier Transform (FFT). This new method has been
tried with a wide range of systems and data and has
been found to be guite reliable and gives greater
precision with considerably less  computational
effort. The application of FFT and its performance in
probabilistic load flow is described in this paper. )

equations are linearized
around the expected value region, input data with a
high level of uncertainty will be transformed less
in probabilistic
load flow, particularly in the tail regions as these
are furthest from the point of 1linearization. To
study this limitation, Monte Carlo simulation programs
based on both the exact and the 1linear models have
been developed. The results are discussed in a later

sectien of this paper.

Since the load flow

PROBABILISTIC LOAD FLOW SOLUTION

The standard load flow equations may be expressed

as:
v o= f(X) (h
Z = g(X) (2)
where, in the case of probabilistic load flow:
Y = input random vector (real and reactive
injections)
X = state random vector (voltage and angle)
Z = output random vector (power flows)
f and g = load flow functions
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Let the vectors Y, X, and Z be the expected values
of Y, X, and Z, respectively. Suppose that a

deterministic load flow is calculated using Y as
input. The solution will be given by the vectors X

and Z such that:

Y= f(X) (3)
X) (4)

Y

A A
It can be shown that X and Z are only
approximations for X and Z due to the nonlinear load
flow functions; the difference being related to the
higher moments of the input gquantities and the system.

Linearizing equations (1) and (2)
points (X, ¥) and (X, Z), gives:

around the

A
XY X+ A DY (5)
7Y7 +8 Ay (6)
where:
T
(X1 X = X) (Jacobian Matrix)
B = a_gl A
(0X| X = X) A
AY = ¥ - ¥
Equations (5) and (6) show that each random

element of the vectors X and Z can be computed from a
"weighted® sum of the random elements of vector AY.
The weighting coefficients are defined [1,2,5,9] as
sensitivity coefficients. This sum of independent (or
in some cases linearly dependent) random variables can
be made | 9] using mathematical convolution techniques.

The assumption of either statistical independence
or linear dependence is fundamental to this approach.
This phenomenon is freguently observed in generation
availability and demand forecast error. If the input
information is to include time variation in demand,
the mean value and all perfectly predictable parts
should be filtered before constructing distributions.
The remaining purely stochastic part will most likely
demonstrate independence or linear dependence.

The convolution implied by equations (5) and (6)
can be written as

£ = £(Y) % £(Y3) * ... % F(Y)) (7)

where f represents density function,

YQ represents (Yk-Y )aik’

* represents convolution,

a5 represents an element of A.

There are many ways in which equation (7) can be
evaluated. One 1is to use numerical methods based on
Laplace transforms which is referred to as the
conventional method. Another method, which 1is one
subject of this paper, is to transform the equations
into the fregquency-domain using Fast Fourier Transform
(FFT) techniques.

The random
discrete

_ vector AY consists of normg
distributions which represent the
variations or uncertainty of the loads and Syst

generation. A1l normally distributed functions ca N
easily grouped in one unigue normal equivalent S? be
only the expected value and variance are requhfdnﬁ

dan

define this  function. Therefore, equation (7
contains  discrete  functions and  this pq )
equivalent. rmal

Conventional Method

After computing the normal equivalent th
conventional method [9] computes the equ;valenﬁ
discrete and finally convolves these two equivale
funqtions. The greatest problem is to compute tgt'
equivalent discrete function since a functioe
represented by r impulses convolved with anoum:
represented by s impulses will have (rxs) impulses

This process becomes impractical when there are pay
functions. One approach is to initially determine thi
bouqdaries of the convolved function and divide this
period into a fixed number of points. When
convolved impulse falls between two of these fixed
points, it 1is shared between them using a straight
Tine approximation of the distance of the convolveq
impulse from the two fixed points.

New FFT Technique

The proposed FFT algorithm takes advantage of some
of the properties of exponential functions to give
fast and precise representation of a function in the
frequency domain. The process of convolving two
functions using the FFT algorithm is shown in Appendix
1. Using this algorithm simplifies the complicated
convolution problem. A variety of tests have been
made using several systems in order to compare the
precison and execution time of the previous
conventional method and the FFT method. The results
included in this paper are representative and typical
of the comparisons that have been achieved. The two
most important performance measures are execution time
and precision and the following results and discussion
center on these two aspects.

P

NUMERICAL COMPARISON

execution time and
accuracy of the FFT with that of the
conventional method. Two power systems are used for
this comparison: a 14 bus system with 12 normal and
|2 discrete distributions, and a 32 bus system with 56
normal and seven discrete distributions.

compares the
method

fhis section

Figure 1 displays the difference in execution time
requirements for the 12 bus system. The number of
points, n, is the number of points used to represent
the density functions in the discrete convolution, as
explained in Appendix I. ‘

the conventioﬂal
but with
by the

At a small number of points,
method is slightly faster than the FFT method
a larger number of points, the time required FFT
conventional method is very much greater than the in
method. It should be noted that in the regiom -
which the conventional method is faster, it 15 Wch
necessarily more accurate. The number of points WhJeS
dictate the intersection of the two performance Cu;eﬁ
depends on the number of discrete functions, i and
type, the level of discretization, the computers
the efficiency of programming.

3
3
=
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Figure 1 Performance: time vs. n
The results shown in Figure 2  indicate
simuitaneously the relationship between maximum

relative error of the standard deviation, the average
execution time for each curve and the number of points
representing each curve for the two convo lution
methods. The relative error was evaluated from the
.standard of points representing each curve for the two
convo lution methods. The relative error was evaluated
from the standard deviation derived numerically from
equation (5) and that computed from the actual density
function; this comparison being one of the best ways
of measuring the precision of the convolution
process. The error found in the expected value using
the FFT method has been found to be consistently much
better than that given by the conventional method and
frequently found to be virtually zero.
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The results shown in Figure 2 indicate that
although there is a region in which the conventional
method is faster than the FFT method for a given
number of points, the FFT method gives results to a
given precision in a shorter execution time and
requires fewer points than the conventional method.
Furthermore, there s a point in both of the
performance  curves that gives minimum  error.
Increasing the number of points beyond this minimum
error point increases the error due to the large
number of calculations required. It is evident from
Figure 2 that the minimum error for the FFT method is

much less than that in the conventional method; this
point being consistently true for all studies
performed. i

It is clearly evident from the above discussion
that the two methods cannot be compared directly by
considering only execution time and number of points;
the precison must also be inc luded.: When these three
performance measures are considered simultaneously,
the FFT method 1is shown to be consistently far
superior to the conventional method.

CONSIDERATION OF CENTRAL LIMIT THEOREM

The Central Limit Theorem has been used as a basis
for assuming that the output quantities will be
normally distributed irrespective of the marginal
distribution of the dinput quantities. In principle,
as the problem involves a sum of random variables, it
may be thought that the theorem could be applicable
because of the great number of

for large systems

independent random variables involved. This is not
true however, because this sum s weighted by
sensitivity coefficients, therefore the output

quantities are influenced by the input gquantities in
different ways. This fact is very important and will
be shown in the following example.

Consider the 14 bus system as described in
Appendix 2. It can be seen that only the active
injected power of bus 14 is represented by a discrete
function and all others are represented by normal
functions. It can be seen from an analysis of the
system that the sensitivity coefficients for the
active power flow in line 9-14 are dominated by the

L 1.0 actual
>
had
w
f =y
L .58
CLT
T T T 3 ” T
7 8 9 0 11 12
Flow 9-14 (Md)

Figure 3 Density Curves: Flow 9-14
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unique discrete function. This means that, although
the 1input data contains only one discrete function,
this will be the dominant factor defining the shape of

the density curve of the active flow in line 9-14.
This s illustrated in Figure 3 which shows two
density functions for this random variable; one

assuming normality and the other using the
probabilistic load flow formulation. The two shapes
are completely different and the effective range of

" the normal curve 1is much Tlarger than the actual
range. In constrast to the active power flow in line
9-14, the shape of most of the other output variables
followed the normal distribution.

This simple example shows that irrespective of the
system size, the theorem cannot be assumed because
this ignores the sensitivity coefficients.
Furthermore, it will be shown 1in the next section
that, even when &1l inputs have a normal distribution,
the output shapes will not follow a normal because of
the nonlinearity of the load flow equations.

MONTE CARLO SIMULATION

The probabilistic Tload flow solution described
previously may be interpreted as a very large number
of deterministic linear solutions combined
probabilisticaily by convolution. The effects of
nonlinearity on this combination is now considered.

Since the load flow equations are linearized
around the expected value of the input guantities, any
movement away from this region produces an error.
Consequently, the error is a function of the region of
uncertainty of the input guantities which can be
measured by the variance. The effects of the bouqu
of the region is determined by the nonlinear behavior
of the system power flows and voltages.

One practical way of comparing the Tinear model
and the exact one is through a Monte Carlo simuiation
which consists of running and probabilistically
processing several cases of individual load flows
where the data are generated by psuedo-random
numbers. A linearized Monte Carlo solution and an
exact model Monte Carlo solution are computed fqr
comparison. Using the strong law of large numbers,'1t
can be shown that the exact probabilistic solution

RE will converge in probability to the Monte Carlo
within the

solution using the exact model Rg

accuracy of the random number generator. Also the
Tinear solution using the probabilistic load flow
approach R| will converge in probability 1o the
Monte Carlc solution using the Tlinear model Ry.

This can be expressed as follows:

il
-

lim Pr { Rg - Rg <e} =

Noo
tim Pr { R - Ry <€} =1
o0
where N is the number of trials used to evaluate Re
real number. It

and R and € 1is any positive
shouldlBe noted that R is some measurable result, such

as mean, variance, higher moments, etc.

In practical terms, it is impossible to evaluate
the difference between R} and Rp because of the
computation time and the finite 1length of the
psuedo-random series. It is therefore necessary to
establish the largest possible number N that 1is
realistic and practical to use.

The system studied is a 14 bus system shown in
Appendix 2. Several tests were performed, four o
which are provided here. The number of simu]atjon
trials is bUUU unless otherwise specified. It is alsg
notea that the same sequence of random numbers iS-used

for both the linear and exact simulations.

The example comparison cases for the Monte Car)g
simulation are as follows:

1. Case l: For a particular line flow density, study
the effects of increasing the number of Monte
Carlo trials. Only the linear model is used. The

solution should converge to the linear FfFy
solution. .

2. Case 2: For a particular line flow, compare the
Tinear and nonlinear Monte Carlo results with 500¢
trials. :

3. Case 3: Repeat case 2 for a different Tine floy
that has a multi-modal distribution.

4, Case 4: For a particular line flow, study the
effects of increasing the input (load ang
generation) variance Tlevels. The Tlinear ang

nonlinear Monte Carlo results are compared using
5000 trials.

Case 1 - Linear Monte Carlo (Figure 4)

Three density curves are shown 1in Figure 4; one
for the linearized probabilistic 1load flow and the
other two for simulations using the linear model with :
2000 and 10000 trials, respectively. It can be seen
that the probabilistic 1load flow curve follows a
smooth normal distribution as expected from a
knowledge of the input data and relevant sensitivity
coefficients. lhe two simulation curves, however, are
distorted, although they follow the same trend as the

probabilistic load flow curve. The amount of
distortion decreases with an 1increasing number of
simutation triais. I'hese distortions are not a

tunction of the system but are due to the restricted
number of trials and will diminish as the number of
trials approaches infinity. In this particular case,
a sample size of even 20000 trials proved insufficient
to reproduce precisely the probabilistic load flow
curve. In terms of computational effort, the time
required to deduce each curve on a CDC7600 computer
was 0.36 sec for the probabilistic load flow, 1.5]
sec., 3.25 sec., 6.14 sec., and 11.93 sec. for 2000,
5000, 10000, and 20000 simulation trials,
respectively. These times indicate that simulation is
inappropriate for use in probabilistic load flow

analysis whereas convolution methods are more -
efficient. A
Y
.03 LG

—.—-— 2000 trials
10000 trials
limit

150 140 150 160 170 180

Flow 1-2 (MW)
Fiagqure 4 Monte Carlo Densitv Curvec: Flow 1 2




case 2 - Linear vs. Nonlinear Monte Larlo (Figure 5)

The density curves for the active power f]ow in
1ine 1-2 for both the exact {nonlinear) and the linear
gimulation models are shown in Figure 5. lhe

. distortions exhibited by these curves are due to the
limited number of trials (5000 in this case) as

discussed previously and both would tend to a smooth
the number of

curve as ]
important feature of these curves 1is the very g]ose
relationship between the linear model and nonlinear
This shows that for this system the

trials 1is increased. Ihe

{exact) mode l.

.05

r

150 160 170 180
Flow 1-2 (MW)
Fig. 5 Comparison of Linear & Nonlinear (5000 trials)
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linear model is a very satisfactory approximation for
solving the probabilistic load flow problem. This is
a very important conclusion when it is observed that
- the time taken to produce 12 curves on a CDC7600
. computer was 103 sec. for 5000 trials using the exact
Yonte Carlo model and only 8.4 sec. using the linear
Monte Carlo model. The same curves were obtained
using a convolution based probabilistic load flow in
oily 0.75 sec.

- Lase 3 - Effect of Multi-Modal Densities (Figure b)

The density curve shown in Figure 6 represents the
ative power flow in line 9-14 using the exact model.
An almost identical density curve was obtained using
the linear model, again confirming a good performance
by this 1inear model.

This case is the same as the study discussed in
the previous section and a comparison between Figures

and 6 confirms that the Central Limit Theorem is not
@plicable here. Because of the shape of this
‘r’:rh;ular density curve, the distortion caused by the

Stricted number of trials could not be detected.

La
€ 4 - Effect of input variance (Figure 7)

for The density curves shown in Figure 7 were obtained
], theeds-ame line and same number of trials as in Case
each iﬁ’ference being that the standard deviation of

: '"UItipHnDUt. density curve was increased by a
: EXtrecn?t]on factor of 15. This is considered to be
Me case because it represents a very wide
?Zsuncertainty or random variation in the input

PALS]

Density

.25

8 9 10 11 12
Flow 9-14 (M)
Figure 6 Monte Carlo Density (Exact)

It is seen from Figure 7 that, although the two
curves for the exact and linear model are very similar

over most of the range, the tails exhibit some
differences. The density function for the Tlinear
model follows the trend of a normal distribution
because the normally distributed input is linearly

transformed into the output. The function for the
exact model is skewed siightly due to the nonlinearity
of the TJload flow equations. This supports the
statements made previousiy and suggests that the error
associated with the linear model will increase when
the input standard deviations increase. On the other

hand, since this case was the worst found after many
studies, the results also suggest that the error is
not 1likely to be significant for most sets of
realistic data.
| .003 oV
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Figure 7 Comparison of Linear and Nonlinear
(5000 trials) High Variance Case
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10. Cooley, J.W., Lewis, P.A.W., Welch, P.D., “The

CONCLUSIONS :
T Fast Fourier Transform and its Applications®, IEEE
The basic probabilistic fcad flow solution used in g;ani}_;@ Education, Vol. 12, No. 1, March 1965,
this paper was that proposed previously and is based ’ ’
on linearizing the 1load flow functions around the . : nys :
expected value and using convolution to evaluate the e Stockman,. ,,T'G". H1gh-5peed Convolution g4
relevant density functions of the output variables. ggggglgtwn », 1966 Joint Computer Confere"CE,
This paper has extended these techniques by replacing APIP> Proc., Vol. 28, pp. 229-233.
conventional convolution by Fast Fourier Transforms. . . .
It has been shown that the FFT method is a very 12. Ei;gg?rg(’e—Haﬁ']D-’Eng]Ter:veoodFCa]s'itfstoltlJrSer(]ngansmrm’

significant improvement on the conventional method and
gives fast, very precise results.
IThe problems associated with the Central Limit APPENDIX 1
Theorem to justify a normal distribution for the 3 ; i
output densities have been discussed and clarified. Convolution Using Fast Fourder Transforns
Ihis appendix explains how to apply the FFT

The accuracy of the probabilistic load flow .
sc_)Iutior_] has been tested using  Monte Carlo tet]:hn]ques to the PLF problem. Four steps are shown
simulations. [Ihis has shown that the performance of befow:
the linear wmodel is very good within a certain range . - -
of uncertainty of random variation of the input data. biscretizing the Equivalent Norma)
It has also been shown that the convolution technique ; i i7 i
used in the probabilistic load flow method to combine The basic concept fOf d1sc;etk1_z1ng ;he rormat s
realistically an infinite range of solutions is a very explained below with reference o Figure S.
owerful tool. ;
P 0 The equivalent normal is truncated at a
predetermined number of standard deviations .
ACKNOWLEDGEMENTS to give the interval Ty. Generally the
) ] L . + d deviations. :
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Figure 9 Example Convolution

The interval Tij is then divided 1into Njj
points and each discgete function 1is represented 13
this interval. Each function to be convolved is
shifted to the beginning of this interval for
convenience in order to facilitate the addressing of
the relative positions of the impulses. It should be
noted that this shift only changes the position ot the
final function and not its shape. The final position
can be evaluated in advance and repositioned after
convolution.

If an impulse exists between two pre-determined
points, it is shared between them using the weighted-
.average. This 1is illustrated in Figure 10. The
representative impulses are now equally spaced which
is fundamental for most FFT methods.

It should also be noted that the most common FFT

algorithms require the number of points Nij to
satisfy the relation Njj = 21, where M 5 an
integer,
f p
(@) r actual
k k+1 k+2
| ! |

()
P approximation
p(1-d)
1 |
k k+1 K+2 a
Figure 10 Impulse Sharing Process
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Dynamic Optimal Ordering Approach

Let N functions be convolved, each having periods

T, To, cee Ty eee Ty wes N These
periods represent the individual discrete functions
and the equivalent discretized normal function.
Assume that the functions have already been weighted
by the appropriate sensitivity coefficients. fhe
final period T will therefore be given by:
N
T=% Tj
=1
Consider that 2M points are reguired to

represent the final function. The convolution process
proceeds by convolving two functions at a time in a
step-by-step tashion using the FFT method.
Mathematicalily the functions can be convolved in any
order. Consider  therefore the convolution of
functions fy and fj having periods Tj and Tj.
This convolution will'%ave a final period given by:
T1-J-=T1-+IJ-

and the number of points Mij required to represent

this interval given that M points are required to

represent the final function can be deduced as
follows:
T..
= . ‘
Mis = log, (2" )
=3 )+ 1 9)
ij integer (M]J) (

The number of points required to represent the
convolution of fj and fj is given py equation (9)
a value which decreases” as the periods T; and _Tj
decreases. The efficiency increases and the execution
time decreases as the number of points used in the FFT
algorithm decreases. It is therefore much more
efficient to convolve the functions in ascending order
of period | and to use a dynamic process so that
the number of points used to represent each step of
the convolution process increases in accordance with

equation (9).

Convo lution Using FFT

7 discrete functions fi(k) and fj(k)
with N impulses each. One of these functions may be
the discretized normal equivalent evaluated
conventionally. Using an FFT algorithm [10-12], these
functions can be transformed into the frequency
domain. ‘Let these transforms be designated 54(n)
and Sj(n). In the frequency domain, the convolution
process is simply one of term-by-term
multiplications. The two transforms are therefqre
multiplied term-by-term to give the final function
${n) in the frequency domain. Finally an inverse -
FFT algorithm is used to retransform ${n} into f(kL
thus completing the convolution ~ process. lhis
technique is illustrated in Figure 11.

consider
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11 FFT convolution process

APPENDIX 2

14 Bus System

The 1line
studies are identical
L3].

and transformer
to that published

data

used in

Nodal Probabilistic Data

(i) Normal Distributions

Bus Voltage Active Power Reactive Power

No. lype  (p.u.)  w(p.u.) o(%)  ulp.u.) ol(%)

I Stack 1.060 2.3000  9.33

2 Gen. 1.045 0.4004 9.00

2 Gen. -0.21/4 9,00

3 Gen. 1.010 -0.9420 10.00

4  Load -0.4780 11.00 0.03%0 9.70

5 Load -0.0760 5.00 -0.0160 5.00
6 Gen. 1.070 -0.1120  1.00

7 Load 0.0 0.0

8 Gen. 1.090 0.0 0.0

9 Load -0.2950 1,00 -0.1660 5.00
10 Load -0.0900 10.00 -0.0580 10.00
11 Load -0.0350 9.50 -0.0180  9.50
12  Load -0.0610 1.00 -0.0160  8.60
13 Load -0.135  1.00  -0.0580  9.50
14 Load 0.0 0.0 -0.0500 8.60
o expressed as a percentage of expected value, u.

Discrete Distribution

(1)

Bus Active Power
No. Type Power (p.u.) Probability
14 Load -0. 1800 U. 200
-0. 1500 U.450
-0.1300 U. 350

these
in Reference




