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Abstract

The paper describes how the previously p
extended to ensure precise computation o

ublished formulations for an a.c. probabilistic load-flow analysis can be
f expected values, and how these may be used to obtain more precise

values of standard deviations and probability-density curves than was possible thereto. Both of the present for-
mulations linearise the problem around the precise expected value, and one of them accounts for the coupling
effect between active and reactive powers. It is shown that this coupling effect may have a significant impact on
some of the voltages and reactive powers, but Jittle effect on angles and active powers. A typical system is
analysed and discussed to illustrate the increased depth of information that can be gained from these improved

techniques.
List of symbols

Bj;, = imaginary part of element ik of admittance matrix
- X
R}, + X4,
B,-(s,;) = imaginary part of shunt admittance at node {

B}, = half of susceptance of line ik
= rea part of element ik of admittance matrix
_ R
R3 + X%
n = number of nodes
n, = number of PQ nodes
n, = number of PV nodes including slack busbar
P, = injected active power at node i
P;, = active power flow in line i~k
P, = injected active power at slack node
Q; = injected reactive power at node I
O = reactive power flow in line i—k
= injected reactive power by shunt element at node {
Ry, = resistance of line i—k '
ty = transformer tap ratio
V; = voltage magnitude at node 7
X, = reactance of line i-k
9; = angle at node i referred to slack node
6 = difference in angles between nodes 7 and £
u = expected value
¢ = standard deviation

Subscripts and superscripts
g generation quantity
i, j, k, n node numbers
{ load quantity
o expected value
s slack node
sh shunt element
~ represents inverted matrix and its elements

1 Introduction

Several papers'™ have been published recently that have
shown how the load-flow problem can be modelled and solved prob-
abilistically instead of deterministically. Some authors*™ have pro-
duced an a.c. model using 2 linearisation process and assuming normal
distributions for all the input nodal quantities, while others'™ have
produced a d.c. model that permits the nodal quantities to be speci-
fied by any reasonable and practical probability-density function. The
latter model is more realistic from a system viewpoint, but only the
angles and the active-power flows can be computed.

More recently a technique was published® that extended the
previous d.c. model!™3 that allowed the angles, voltages, active-power
flows, reactive-power flows and injected reactive powers to be com-
puted using input nodal quantities that could still be specified by
various practical distributions. It was shown® that small errors oc-
curred in the computed expected values which could be compensated
for by shifting the computed probability-density curve so that its
expected value coincided with the value deduced from a conventional
deterministic analysis.

Since then, further studies have been made that have produced a
different technique for modelling the same problem. This new tech-
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nique uses the expected value obtained from a deterministic solu-
tion as the basis for computing the probability-density curves. This
paper describes the new technique and compares results obtained
from this analysis with those obtained by the previously published
techniques.® -

2 Basic concept of new technique

The difficulties concerning the solution of the load-flow
equations probabilistically were discussed in the previous paper.®
To overcome these difficulties it is necessary to linearise the
load-flow equations. In the present technique, a linearisation process
is made around the solution point of a conventional deterministic
load-flow study; i.e. the expected value of a probabilistic analysis.

To illustrate the basic concept of this technique consider two
random variables X and Y which, at some stage of computation, are
multiplied to give a third random variable; i.e.

Z = XY 1))
If the expected values Xo and Y, of X and Y are known, then

X = Xo+AX @

Y = Y, +AY 3)

where AX and AY are random changes of X and Y about X, and Y.

Therefore ’
Z = (Xo+ AX)(Yo + AY)

~ XoYo+ XoAY + YoAX  neglecting AXAY

= XV + YoX — Xo Yo @

Therefore, if the random variations are small, the variable Z can be
linearised once the expected values of X, and ¥, have been deduced.
This technique can be applied to the angles and voltages of a power
system since their random variations are generally small.

Applying the concept of eqns. 1-4 to the voltages gives

ViVi = VoV + Vo Vi~ VioVko )]
VE = 2ViVi— Vi (©)
Also using Maclaurin’s-series:
03
sinfy, = 6 — 6_lk
™
0%
cosfy = 1— Py

Applying the concept of eqns. 1—4 to eqn. 7 gives

COSG,-;z = a, +bik6ik (8)
sin9,~k = Ci +dlk6,k
where
92
ay = 1+2° bp = —0go
03 0%
Cip = %J dy, = 1—_;‘_0

The voltages and angles have thus been linearised around the
solution point of their expected values. Using this technique, two new




formulations of the a.c. probabilistic load-flow problem can be
devised. These will be called formulations 3 and 4 to differentiate
them from formulations 1 and 2 discussed in the previous paper.®
Briefly, formulation 3 assumes the active and reactive powers to be
decoupled while formulation 4 does not make this assumption.

3 New formulations of probabilistic load-flow
equations
3.1 Basic load-flow equations

The basic load-flow ‘equations used in all types of analysis are

n
Pi = Vl Z Vk(G,k COSGik +Bik sin 01}3) (9)
k=1
n
Qi = Vi Y. Vi(Gy, sin8y, — By, cos 8, (10)
k=1
Py = —13,Gg Vi+ ViVi(Gy cosBy, + By, sin0y,) (11)
Op = tgpBpVi— By VP + V.V (Gy, sin by, — By, cos6y,)
(12)
Qisny = VizBi(sh) (13)

In the present formulations, eqns. 5, 6 and 8 are used to linearise the
load-flow equations eqns 9—13 as shown in the following Sections.

3.2 Formulation 3

In this formulation, the active and reactive powers are con-
sidered decoupled. Consequently, it is assumed that the voltages have
no effect on the angles and active powers, and angles have no effect
on the voltages and reactive powers. ’

From this assumption, the values of ¥; and ¥, in eqns. 9 and 11
can be made equal to V¢ and Vy,.
Substituting eqns. 8 into eqn. 9 gives

n
B = TVio kzl Vieo (e 0i — finOr + €3) (14)
~ where

en, = a3Gy tcpbBy
and
. fiw = bpGy +dpBy
From eqn. 14, it can be shown (see Appendix 8.1) that

n-1 . n=1 .
S8 = YePi— Y YR, (G =1...n—1) (15)
i=t j=1
n-t R n-1 -
P =gn 3 (Y5 —Yie)Pi—gn 2. (Y —Ye)R; +hy (16)
j=1 j=1
and
n-1 n-1
b = TiP;— 3, TiR; + R, an

~
I

=1
Whe{e 8k P, R;, R, Yy and T are defined in Appendix 8.1.
Similarly, the value of 83, in eqns. 10 and 12 can be made equal to
B0 (=6 — ,0).
Substituting eqn. 5 in eqn. 10 gives

g = E‘ AaVioVi + VioVie = VioVio) (18)
1

A

- where
Ay = Gy, sin 00 — By, cos B0

n
Y ARV — W, (19)

k=1

o Q=
Where
I3
Ay = Ay Vio

n
Ay = A;Vie+ 3, ApVio
k=1

= Vio 2, AwVio
k=1

F
j

reaUS-ing eqn. 19, the voltages at all load busbars and the injected
A Ctive powers at all generation nodes can be deduced as shown in
PPendix 8.1
Substituting eqns. 5 and 6 into eqn. 12 gives

O = Vit BalVe+ v (20)
where

@ = 2Vio(tueBin — Bix) + A Vio

B = AwVio

Yo = —Vio(tuBix — Bi) —AnVioVko
Substituting eqn. 6 into eqn. 13 gives

Qishy = 2VioBicamy Vi — VioBicen (2 -

As shown in Appendix 8.1, the reactive powers can be deduced from
eqns. 20 and 21.

3.3 Formulation 4

The main difference between formulation 4 and that des-
cribed above is that, in the present case, the active and reactive
powers are not assumed to be decoupled. Clearly, therefore, the as-
sumptions made in Section 3.2 are no longer applicable, and more
generalised forms of eqns. 14—21 must be derived. Only the general
description of the concepts will be described since the detailed
derivation remains similar to that of formulation 3.

In the present case, linearised forms of V; V), sin 8, and V;V,
cos f, must be derived. Using the concept defined by eqns. 1-4,
these linearised forms are

ViVisinby, = ap + b0y +chVi+dnVe @2)
Vin COSGik = ﬂ,’-;; + b,'-}'aﬁ,-k + C;}’a V,' + d,’);Vk

where
a = 2V;oVrobio (3050 —1) a" = VioVieo(30%0— 1)
b = VioVio(1 —3050) 1" = —VioVroliro
¢ = VigO@mo—$0%0) ¢ = Vio(l —30%0)

= Vio(eiko_%ez;ko) d' = Vio(1 —146%0)

In Appendix 8.2 it is shown how eqn. 22 can be used to reform the
load-flow equations eqns. 9 and 10 so that they may be solved using
probabilistic techniques.

|

Ry
|

34 General comments

As discussed in the previous paper® it is necessary to linearise
the nonlinear load-flow equations to apply probabilistic and con-
volution techniques.® A considerable number of different formu-
lations have been devised and tested on a wide range of systems and
data. From these formulations, those presented in this paper and the
previous paper® appear to be the most promising. In the following
Section, results obtained for the IEEE 14-busbar 20-line system using
formulations 3 and 4 are presented and discussed. These results are
compared with those published previously® using two different types
of formulations.

Fig. 1
Line diagram of IEEE 14-busbar system



4 Analysis of typical system
41 Results

The IEEE 14-busbar test system is shown in Fig. 1 and the
system data used are shown in Tables 1 and 2. Using this system and
data the expected values, standard deviations and probability-density
curves of angles, voltages, active and reactive power flows, active and
reactive line losses and injected reactive powers were computed. A
selection of typical computed values are shown in Tables 3 and 4.
With the present formulations the injected active power at the slack
busbar (busbar 1) was found to have an expected value of 232-4 MW
and a standard deviation of 17-94 MW (formulation 3) and 17-96 MW
(formulation 4). This expected value could be determined from any
deterministic load-flow analysis but, clearly, the standard deviation

could not.

Table 1
LINLE DATA IFOR IEEE 14-BUSBAR SYSTEM
Busbar Resistance Reactance Susceptance Transformer
Sending Receiving tap
p.u. p.u. p.u. %
1 2 0-01938 0-05917 0-02640 -
1 5 0-05403 0-22304 0-02640 -
2 3 0-04699  0-19797 0-02190 —
2 4 0-05811 0-17632 0-01870 —
2 S 0-05695 0-17388 0-01700 -
3 4 006701 0-17103 0-01730 -
4 5 0-01335 0-04211 0-00640 —
4 7 - 0-20912 - —2-2
4 9 — 0-55618 = —3-1
5 6 - 0-25202 — —68
6 11 0-09498 0-19890 — -
6 12 0-12291 0-25581 - —
6 13 006615  0-13027 — -
7 8 - 0-17615 - —
7 9 - 0-11001 - -
9 10 0-0318t1 0-08450 - -
9 14 0-12711 0-27038 - -
10 11 0-08205  0-19207 - ) -
12 13 0-22092  0-19988 - -
13 14 017093  0-34802 - -
9 9 - —5-26000 - -

Table 2
NODAL DATA USED

4.2 Discussion of results

4,21 Expected values and standard deviations

The expected values of all angles and voltages were com-
puted using a conventional deterministic load-flow program from
which all the other output quantities were computed using formu-
lations 3 and 4. Consequently, all these expected values are very
precise. Little discussion is therefore required concerning these values

except to compare them with those obtained with formulations® 1 and 2.

As discussed in the previous paper,® the expected values obtained
using formulations 1 and 2 are slightly in error due to the approxi-
mations made. Therefore, for greater precision, the techniques of foi-
mulations 3 and 4 are preferable. If a high degree of precision is not
required, however, the reduced computational time associated with
formulations 1 and 2 may justify their preferred use. This aspect will
be discussed in more detail in Section 4.2.3. In the previous paper it
was suggested, however, that the density curves obtained by formu-
lations 1 and 2 could be shifted so that their expected values coin-
cided with that given by a deterministic solution. This shifting
technique is computationally very efficient and does not create any
additional errors in the standard deviation or shape of the probability-
density curve for a decoupled assumption. This is confirmed by the
present results as discussed below. .

Comparing the standard deviations of all output quantities ob-
tained from formulations 1 and 2 with those obtained from formu-
lation 3 shows an extremely close agreement. All three methods
assumed that the active powers and reactive powers were decoupled
although the linearisation techniques were considerably different.
Therefore, provided the decoupling assumption is reasonably valid any
of these three methods will give realistically precise values of standard
deviation. As discussed above, this further justifies the previously
published® viewpoint that the probability-density curves obtained
from formulations 1 and 2 could be shifted so that their expected
values are precise.

When the standard deviations of the various output quantities
obtained from formulations 1, 2 and 3 are compared with those ob-
tained from formulation 4, somewhat different observations are
apparent. In the case of angles and active power flows, an extremely
close agreement exists between all four sets of results (see Tables 3
and 4). In the case of voltages, reactive power flows and injected
reactive powers, considerable differences can arise. In some instances
the values, e.g. the voltages at busbars 7, and 9—14, and the reactive
power flows in lines 6—12 and 10—11, are very similar. In others the

| Normal distributions

Busbar Active power Reactive power
Number Type Voltage u o u o
p.u. MW % MVAr %
2 PV 1-045 —21-74 9-00 —12:70 9-2
3 PV 1-010 —94-20 10-00 —19-00 105
4 PQ - —47-80 11-00 3-90 9-7
5 PQ - —7-60 5-00 —1-60 5-0
6 PV 1-070 —11-20 6-00 —7-50 63
7 PQ — 0-00 0-00 0-00 0-0
"8 PV 1-090 0-00 0-00 0-00 0-0
10 PQ — —9-00 10-00 —5-80 10-0
11 PQ — —3-50 9-50 —1-80 9-5
12 PQ — —6°10 7-60 —1-60 8-6
13 PQ — —13-50 10-50 —5-80 9-5
14 PQ — —14-90 8-60 —5-00 8-6
2 Binomial distributions
Busbar . . . Forced outage  Number of
Number Type Voltage Unit rating rate units
p.u. MW
1 SLACK 1-060 250 0-08 10
2 PV 1045 22:0 0-09 2
3 Any discrete distribution
Busbar . .
Number Type Voltége Active power Reactive power
p.u. MW ,probability MVAr probability
9 PQ - —13-4 0-10 —7-5 0-10
—196 015 —11-0 0-15
—30-2 0-30 —17-0 0-30
—34-8 0-25 —196 0-25
—37-3 0-20 —21-0 0-20
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ANGLES, VOLTAGES AND INJECTED REACTIVE POWERS

Angles, deg. Voltages, p.u.
Busbar Jii 0 using formulation u 0 using formulation

3 4 1&2° 3 4 28
4 —10-31 0-71 0-69 0-66 1-0171 0-0009 0-0020 0-0009
s —8-76 0-59 0-58 0-56 1-0187 0-0005 0-0016 0-0005
7 —13-36 0-99 098 0-96 1-0613 0-0025 0-0029 0-0027
9 —14-94 1-17 1-15 1-16 1-0557 0-0050 0-0052 0-0052
10 —15-09 1-11 1-10 1-10 1-0508 0-0042 0-0044 0-0044
11 —14-79 0-98 0-97 0-97 1-0568 0-0022 0-0023 0-0023
12 —15-07 0-87 0-88 0-88 1-0552 0-0005 0-0007  _0-0005
13 —15-15 091 091 0-90 1-0503 0-0010 0-0012 0-0010
14 —16-03 1-08 1-06 1-06 1-0354 0-0033 0-0037 0-0034

Injected reactive powers, MVAr
) 0 using formulation

K 3 4 26

1 0-0 - — - —13-31 0-24 3-10 0-23

2 —4-98 0-44 0-44 0-41 36-11 0-76 5-59 0-75

3 —12-73 0-99 1-00 0-92 7-29 0-43 4-12 0-44

6 —14-22 0-84 0-85 0-84 5-68 1-90 2-19 1-84

8 —13-36 0-99 0-98 0-96 1778 1-55 1-77 1-52

Table 4

TYPICAL ACTIVE AND REACTIVE POWER FLOWS
Active power flows, MW Reactive power flows, MVAr

line 0 using formulation 0 using formulation

3 4 1&20 H 3 4 26

1—-5 7547 485 479 4-35 562 024 051 023

5—1 —7270 450 440 3-12 023 133 024
losses 277 035 035 874 0-01 145 000

3—4 —23.25 444 446 462 456 043 2:07 0-44
4—3 2363 459 46l —538 043 175 044
losses 0-37 015 015 —0-82 001 038 000
4—5"—61-09 462 449 455 1611 075 144 0-78
5—4 6161 470 457 —1515 075 126 078
losses 052 008 008 097 000 024 000
6—12 779 040 042 041 2:51 017 020 016
12—6 —772 039 041 —2:36 017 019 016
losses 0-07 001 001 0-15 000 001 000
10—11 -3-80 137 1-45 143 —1-66 093 1-01 0-94
1 — 10 381 1-38 145 1-69 094 1-01 094
iosses 0-01 001 o001 003 001 002 000
5—6 44-11 2:51 266 259 1208 025 056 025
6—5 —44-11 2:51 266 —767 024 099 023
losses 0-00 00 0-0 441 0-01 049 002
7—9 2806 365 357 353 576 2-34 2-34 2.28
9—7 —2806 365 3-57 —496 232 228 229
losses 0-00 000 000 0-80 ¢G-02 021 000

density function x 102

0
33

39
active power flow, MW

42 45 48 51

Fig. 2
Active power flow in line 5—6

@ Formulation 3
b Formulation 4

values, e.g. the voltages at busbars 4, 5, reactive power flows in lines
1-5,3—4,4-5, are very different. These results indicate that the
effect of coupling causes little effect on angles and active powers but
can cause considerable impact on voltages and reactive powers. It is
evident therefore that, for greatest precision in the values of voltages
and reactive powers, formulation 4 is the only alternative. As will be
seen in Section 4.2.3, however, this increased precision is at the
expense of increased computational time and it may be decided that a
reasonable balance between efficiency and precision justifies the use
of one of the other formulations.

4.2.2  Probability-density curves

Typical probability-density curves for voltage, active power
flow, reactive power flow and injected reactive power are shown in
Figs. 2—5. From these Figures, similar conclusions to those discussed
above can be made.

It is evident from Fig. 2 that great similarity exists between the
density curves of active power flow obtained from formulations 3 and
4. Similar curves were previously obtained using formulations 1 and 2.
This clearly indicates that, even when coupled, voltages had little
impact on the active power flows.

In contrast, it is seen from Figs. 3—5 that the curves for voltage
and reactive powers were considerably different; those obtained from
formulation 3 being very similar to those obtained® from formulations
1 and 2. It was found, however, that in several instances similar curves
were obtained from all four formulations. This again confirms the dis-
cussion made in Section 4.2.1. From Figs. 3—5 it is evident that the
curves obtained from formulation 4 are smoother and more con-
tinuous than those obtained from formulation 3. This reflects the
number of independent random variables involved in the convolution.
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In formulation 3 the angles were not considered as random variables
in computing voltages and reactive powers, and therefore the number
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Reactive power flow in line 7—9
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of variables are less than in formulation 4. When these additional
variables have a significant impact then clearly the convoluted density
curve will become smoother since, in the limit, the convoluted curve
should approach a normal distribution curve. It is evident from Fig.
4b, however, that, even with an increased number of variables, the
density curve is still not normally distributed.

Probability-density curves are the basis for deducing the proba-
bility or chances of the behaviour or performance of a system. These
probabilities are derived by integrating the appropriate density curve
to give the cumulative probability or probability-distribution function.
In general, if f{x) is the probability-density function then the probability
of a system variable occurring between two limits X and X, is

XZ
prob (X, <x <X,) = J fO)dx
XI

With suitable values of X, and X, this concept can be applied to
any of the system variables to give the probability of, for example,
generation deficiency, line overload, busbar voltages outside of
specified limits, violation of Q-limits, etc.

To illustrate the application of this concept, consider the prob-
ability of the active and reactive power flows in a line to be above a

specified limit X3, then
3 e
[ e [ e

—o0 +X,

-X

prob (—X;=2x = + X,)

1—f+X’ £00) dx

-X,

Applying this to the active and reactive power flows in line 5—6
gives the probabilities for exceeding various limits shown in Table 5.
The probability of the active power flow exceeding 47 MW is also
shown by the shaded area in Fig. 2a. In the case of formulation 2,
Table 5 shows the probabilities obtained before and after the ex-
pected values given by this formulation have been shifted to coincide
with those of formulations 3 and 4. .

It can be seen from Table 5 that, in the case of the active-power
flow, all formulations give reasonably the same results provided the
expected value given by formulation 2 is shifted; without this
shifting, imprecision between the results is observed as would be ex-
pected. In the case of reactive power flows, the results of formulation
2 after shifting and formulation 3 are very similar, but both are signifi-
cantly different from those of formulation 4. Again, both of these
trends confirms the previous discussion concerning the precision of
the various formulations.

Table 5
PROBABILITY OF POWER FLOWS EXCEEDING STATED
LIMITS IN LINE 5-6

probability of exceeding limit
Limit using formulation
3 4 2% 2t
(a) Active power
watts
45 0-4300 0-4669 0-4583 0-2160
46 0-2568 0-2811 02482 0-0706
47 0-1169 0-1252 0-1087 0-0178
48 0-0286 0-0375 0-0325 0-0024
49 0-0054 0-0100 0-0060 -
50 0-0001 0-0009 0-0001 —
(b) Reactive power
watts
12-00 0:5331 0-5447 0-5306 -
12-25 0-2488 0-3777 0-2480 -
12-50 0:1037 0-2271 0-0942 -
12:75 0-0003 0-1362 0-0000 -
13-00 - 0-0706 — -
14-00 — 0-0003 - -

* after shifting exbected value
t before shifting expected value

4.2.3 Computational aspects

As discussed in the previous Sections, the most precise for-
mulation is formulation 4, since, with this method, the coupling effect
between active and reactive powers is taken into account. However,
it is the most time-consuming formulation to execute. To indicate
these differences the time taken to compute all output parameters
for the system discussed in this paper on a CDC 7600 computer was
3-9 s for formulation 1, 3:9 s for formulation 2, 5-6 s for formulation
2 and 6-4 5 for formulation 4




It is evident from these times that formulations 1 and 2 are clearly
the least time consuming and, as expected by the complexity of the
technique, formulation 4 is the longest. As discussed in Section 4.2.1
it is therefore necessary to decide whether greatest precision is
required (i.e. formulation 4}, a shorter thime is preferable with less
precision in some of the computed values (i.e. formulation 3) or an
even shorter time with the same imprecision as formulation 3 but
without the deduction of active power line losses is acceptable (i.e.
formulations 1 or 2). Unfortunately, there appears to be no reason-
able method that can be used to predetermine whether formulation 4
is necessary for a given system and data. Therefore the authors rec-
ommend that formulation 4 is always used if all output parameters are
required, unless precision and computational time are of greatest
concern. If, however, only active powers are required then it does not
seem necessary from present experience to use formulation 4.

5 Conclusions

This paper has described how the previously published formu-
lations for an a.c. probabilistic load-flow analysis can be extended to
ensure precise computation of expected values, and how this may be
used to obtain more precise values of standard deviations and probabi-
lity-density curves. It has also shown how the known coupling effect
between active and reactive powers can be included.

From the detailed analysis the paper has indicated that the coupling
aspect has no effect on the values of angles and active powers, but may
have a significant impact on the values of voltages and reactive powers.

For the greatest precision in the computed values of voltage and
reactive powers it can be concluded that formulation 4 is the preferred
technique. However, if computing time is restricted it may be necess-
ary to use one of the other less precise formulations. The shortest
computing times occur with formulations 1 and 2. However, neither of
these formulations permit computation of active power-line losses,
and therefore the compromise would be formulation 3. In such cases
it should be noted that imprecision may exist in some values of voltage
and reactive power, although many of the computed results will be of
sufficient accuracy for the purposes for which this type of analysis is
intended.
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8 Appendixes
8.1 Formulation 3
(@) Angles and active powers

Fromeqn. 14

n

Fi= L Yl +R; (23)
where b

Ri = Viokz Vkoeik

=1
Yie = Vo Violit
Yi' = Vio Z Vkofz:k
) k=10

In matrix form and deleting the slack-node row and column gives

P=Yo+R

8 =Y!P—YIR = YP—YR (24)

or writing explicitly

n—-

| S n-1 _
0 =3 YiP— Y YR G=1,...,a—1) (25)
j=1 i=1

From eqns. 8 and 11:

Py = g —gulp + Iy (26)
where

& = VioVeofin

hie = —taGi Vid + Vio Violin
Substituting eqn. 25 into eqn. 26 gives

n-1 . ~ n-1 . -
P =gn ) (Yy—Ye)B~ga Y (Yy— YRy +hy  (27)

J=1 . j=1
If 7 is a slack node, then Yj; = 0.
Similar equations for B,; and active power losses (Py, + B,;) can be
derived.

From eqn. 23, and since 8, = 0,

B =Y Lo+R, (28)
i=1#£s
which in matrix form is:
P, = K8 +R, 29)
Substituting eqn. 24 into eqn. 29 gives
P, = KYP—KVR +R,
where = TP—TR +R,
T = KY

or in explicit form
n-1

- Z Y}RJ' +R;
i=1

) Voltages and reactive powers

n-1
P = Zl T (30)
-

Writing eqn. 19 in partitioned matrix form gives
g [_ MLIIW
0, W,

A
where @, has n; elements and O has n, elements.
From eqn. 31:

€2))

Ql = Ml/l +LVg—W,

ie. . -
v MQ, + MH

(32)

where
H =w-—-LV,

writing eqn. 32 explicitly gives

n n,
Vi =jleM,.jQ_j(,) +,-ZIM"'H" (i=1...n) (33)
Also from eqn. 31

0 = NV, +JV,— W,
Substituting for ¥; (eqn. 32) gives

0, = DQ,+E (34)
where

D = NM

E =DH+JV,—W,
writing eqn. 34 explicitly gives

and

Quer = 2 DyQiy +E; (i=1...n) (35)
Jj=1

From eqns. 20 and 33



O =Y (@M + Bi M) Qs 1y

j=1
ny
+_Z (cur My + Bin Mpp)H; + i
J=1

if both i and k are load busbars

n, n,

O = 2 BueMejQay + 2 BiMyiHy + cinVio * Vi
i=1 i=1

if [ is a generator busbar
n

ny
On = Y aMyQiqay + Y e MiiH; + Bie Vio + Tin
=1 : ji=1

if k is a generator busbar

Similar equations for Qy; and the reactive power losses can be
deduced. Finally, from eqns. 21 and 33

ny
Qi(sh) = 2VioBi(sh) ZMiij(l)
=
n’l
+ 2V Biony Y. MisH; — Vi Bicon)
i=1
8.2 Formulation 4
From eqns. 9 and 22:
. n
P; =k§_:1 Fieb: —Finbr +&Vi + Hip Vi +ein

where

! " 1
€ir @i, Gip + @i Bin
I3 " !
fir = biGi +buBir
" '
&ir = ¢iGir T Cir.Bin

h;’k = dEIkGik +d;‘kBik

(36)

€0

(38)

Eqgn. 38 can be rewritten as

n

r= 3

R=1%1i
n

n
+ Y hp Ve (it 2
k=1#1 k=1

(~fwbe) + 2 fabi
k=1#i

n
si)Vi +kZ €k (39)
=1

An equation of similar form for Q; can be deduced. The equationg
for P; eqn. 39 and Q; can be written in matrix form as

p| (miL|e] |R
ANEEER “@
)
where both Pand Q have n elements. Eqn. 40 can be rearranged as ;!
S; M"‘IL" X, 174 :
o= Pl @
where
S =|P X, = el
al T
Sg =] Q¢ X, =| Ve

and P and @ include all nodes except the slack node, i.e. n-1 elements
0, and V; include all load nodes (i.e. n; elements), @, and V, include’
all generator nodes (i.e. n, elements) and P, and @, are for the slack
node (i.e. one element).

Eqn. 41 can then be used to deduce the relevant equations for
angles, voltages, active and reactive power flows, injected powers and
line losses. o




