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Abstract

The paper extends the presently available techniques for evaluating the load flow problem probabilistically. It
presents two possible formulations of the problem that permit the probability-density curves of the angles,
voltages, injected reactive powers and active and reactive power flows to be computed. Owing to the complexity
of the problem, the load-flow equations were linearised. The errors introduced by this technique together with

the results of a typical analysis are discussed.

List of Symbol’s

By, = imaginary part of element ik of admittance matrix

Bi(sny = imaginary part of shunt admittance at node i
Y, = half of susceptance of line i —k
. = real part of element ik of admittance matrix

n = number of nodes
n, = number of PQ nodes
n, = number of PV nodes including slack
P; = injected active power at node /
P, = active power flow in line i — &
P, = balance of power at slack node
Q; = injected reactive power at node i
Oy, = reactive power flow in line i — &
Oismy = injected reactive power by shunt element at node 7
t;, = transformer tap ratio
V; = voltage magnitude at node i
X;, = reactance of line i —k
8; = angle at node i referred to slack node
8;, = difference in angles between nodes i and k
1 = expected value
o = standard deviation

Subscripts and superscripts

£ = generation quantity

i,j,k = node numbers
[ = load quantity
sh = shunt element
~ = represents inverted matrix and its elements
1 Introduction

Recently a number of papers have been published'™® that
have modelied the load-flow problem probabilistically instead of by the
conventional deterministic method. The main reason for this is that
the input data of any power-system load-flow study is known to vary
statistically and the attempt has been to model these statistical vari-
ations in the input data. Some authors*-® have considered these vari-
ations to be normally distributed and hence the output information
to b_e normally distributed also. These authors have produced an
€quivalent a.c. probabilistic load flow albeit by a linearisation process.
Hf)wever, it has been-shown?® that the assumption of normally dis-
trlbute_d variables can be unrealistic and give very misleading results.
l}:(t)r this reason t.he other papers' ™ have restricted their initial formu-
. ion to an equivalent d.c. load flow but in the process to model the
eYSte'm variables by realistic probability-density curves. Using math-
tlrlnétxcal convolution techniques, the power flows can be defined by

€I probability-density curves without assuming them to be nor-
mally distributed.
teng:a(t]he present paper, the previous formulation'™ has been ex-
volts 0 th_at ana.c. loa_d flow can be modelled such that angles,
o ges, actlx{e and reactive power flows, reactive power losses and
Njected reactive power can be evaluated.
2 Formulation of the load-flow problem
the inie tIn a dc—'terministic load-flow study, the known quantities are
dack ]t}f ed active powers (R) at all busbars (PQ and PV) except the
» e injected reactive powers (Q;) at all load (PQ) busbars and
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the voltage magnitude (V) at all generator (PV) busbars.
In general, the load-flow problem can be formulated as

Bo=g:...00, V... V) 6]
Q=m0 .. .6, Vi... ) @
wherei=1,...,n.

From these quantities and equations the system can be solved
quickly, efficiently and precisely using one of a number of determin-
istic load-flow techniques.

The problem with these techniques is that, although very precise,
they are as inaccurate as the input data. Any variation of this input
data can cause very significant changes in the load-flow solution. To
overcome this difficulty, the problem can be modelled probabil-
istically.'™®

The known quantities in a probabilistic study are the same as
given above. However, the quantities B, and (; are now defined by
probability-density curves although the voltages ¥; at PV busbars are
still known exactly. A number of difficulties are encountered in
solving this problem probabilistically since the quantities are no
longer single values but are, instead, density functions. Briefly these
difficulties are due to

(2) 6 and V are not available in terms of P; and @;

(b) the functions g and h are non-linear

(c) the random variables P, , 6 and ¥ are not necessarily indepen-
dent.

To overcome these difficulties, the problem has been linearised
and the random variables P and Q have been assumed to be indepen-
dent. Convolution techniques can then be used to deduce the density
functions of the unknown quantities. Presently, two linearisation
formulations have been investigated. These are based on the pre-
viously published’™® techniques and form the basis of this paper.

3 Probabilistic formulations

- 3.1 Load-flow equations

Although weil known, it is useful for explaining the prob-
abilistic formulation and assumptions made, to first consider the
more detailed form of the load-flow equations. These are

n

BE=V kz_:ka(Gik cosby, + By, sinfy,) 3)
n

O = VE’;I Vi (G, sin8y, — By, cosfy) @)

(where i=1,...,n)

By = ~13.Gp Vi + ViVi(Gi cosbyy, + By, sinfi) %)

O = twBuV? —Bip Vi + ViVi(Gy, sinbix — By, cosby,) (6)

Qi(sh) = V;-ZB,'(sh) . (7)

3.2 Angles and active powers

In both of the present formulations, the angles and active
power flows were deduced in the same way and with the same
assumptions as published previously.'™ Briefly these assumptions

are
Vi=V, = lpu

Gz = 0 because line resistance assumed zero



Using these assumptions, it can be shown that (see Appendix 8.1)

n-1
6= CouBe (1= 1,....n—1) ®
=l
[ R )
Be = 1 > (G =GB ®
e =1

and
P, (10)

1

™=

P, =

1
In both formulations, as in previous publications, eqns. 8-10 were
used to obtain the angles, active power flows and balance of power at
the slack (reference) busbar.

3.3 Voltages and reactive powers

As discussed in Section 2, it is necessary to linearise the
load-flow problem in order to compute the density functions of the
voltage and reactive powers. One assumption in the present formu-
lations was that the active and reactive powers could be considered as
decoupled. In addition, linearisations similar to those assumed for the
d.c. probabilistic load flow were made. Two such methods of linear-
isations were made which are best named as formulation 1 and formu-

lation 2.

@) Formulation 1

To deduce the voltages and injected reactive powers at gener-
ation nodes, eqn. 4 was linearised by assuming the voltage V; =1 p.u.
Eqn. 4 therefore becomes

0 = 3 Auti an
where
A = Gy, sinb;y, — By, costy,
Ay = — By
where
Ry’ fx}ikz and B = RikZXi: Xa?

As shown in Appendix 8, the voltages at all load busbars and the in-
jected reactive powers at all generation nodes can then be deduced

fromeqn. 11.
To deduce the reactive power flows and the reactive power con-

tributed by the shunt element, eqns. 6 and 7 were linearised by as-
suming

Vi = Viand V¥, =V,

G'k =

Eqn. 6 then becomes
On = o Vi+ AV
where (12)
% = 1B — Bj
and eqn. 7 becomes
Qicsh) = VBicany (13)
As shown in Appendix 8, the reactive powers can be deduced from
eqns. 12 and 13.
®) Formulation 2

In this formulation, approximations were made from the
knowledge that the voltages in a power system are close to unity. It
was therefore assumed that

V., = 148V

Vi, = 1+8V;

where 8 ¥; and §V;, are small deviations in ¥; and ¥}, from unity.

Therefore
ViV = (1 +8V) (1 +68V%)
7 1+ 8V; + 8V, neglecting V.5V,

Vi+ ¥V —1 (14)

1l

R

VE =2V— 1 (15)

Using eqns. 14 and 15, eqns. 4, 6 and 7 can be linearised from
which, as shown in Appendix 8.3, the voltages and reactive powers
can be deduced.

Both of the above formulations transform the nonlinear equations
into equations consisting of the sum or difference of independent
random variables. Consequently, mathematical convolution tech-
niques can be applied in a straightforward® manner to obtain the
density functions of the unknown quantities.

4 Analysis of a typical system

4.1 Test system

The techniques described in the previous sections have been
applied to a wide range of systems from a small 6 busbar test system
to the 57 busbar IEEE test system. Brief details of these systems are
shown in Table 1 which includes the size of the systems, the type of
input distributions used and the executions times for formulation 1
using a CDC 7600. The executions times for formulation 2 were
almost identical. It is evident from Table 1 that the execution time
increases as the system size is increased and as the number of discon-
tinuous (binomial and discrete) distributious is increased. This trend
is that expected, since the number of convolutions required with
these distributions is greater® than that required for normal distri-
butions.

To illustrate the application and results, this paper considers in
more detail the analysis of the 14-busbar, 20-line IEEE test system.
Similar results were obtained for all the other cases though the details
of the results differed depending on the type and number of input
distributions. The data specified by the IEEE for this system is deter-
ministic as shown in Table 2. However, the specified data for this
system does not include an active power for the slack busbar. There-
fore, this was assumed to consist of 10 units each rated at 25MW with
a forced outage rate of 0-08. Consequently from the binomial distri-
bution, the expected value

4= 10x (1 —008)x 25
= 230MW

To compare the probabilistic evaluations with those that can be com-
puted conventionally, the 14-busbar system using the nodal data
shown in Table 2 and the line data shown in Table 3 was analysed
using a conventional deterministic a.c. load-flow program.

Since the data specified for the IEEE test system is deterministic,
the probabilistic nature of the input quantities had to be devised.
This data is shown in Table 4. In all cases, the deterministic values
were assumed to be expected values. All the busbar loads (indicated
by the negative values in Table 4), with the exception of that at
busbar 9, were assumed to be normally distributed and a standard
deviation was therefore associated with the expected values. For the
load at busbar 9, a discrete load characteristic was assumed such that
the expected value was equal to the deterministic value shown in
Table 1. The only other source of generations (busbar 2), indicated by
a positive quantity in Table 3, was represented by 2 units each having
a rating of 22MW with a forced outage rate of 0-09; this giving an
expected value equal to the deterministic value shown in Table 1.

4.2 Results

Using the techniques discussed in the previous sections, it
was found that the expected value of the balance of power at the
slack busbar 1 was 219-0 MW with a standard deviation of 1627 MW.
This compares with a value of 232:39 MW using conventional tech-
niques. Also, the expected values and standard deviations of the
busbar angles, voltages and injected reactive powers using formu-
lations 1 and 2 are shown in Table 5 and some of the active power
flows and reactive power flows are shown in Table 6. In some cases
the expected values are compared with those obtained using a conven-
tional deterministic method.

From Tables 5 and 6 it can be seen that the expected values of
angles, voltages, active and reactive power flows and-injected: reactive
powers are similar in magnitude to the values obtained from the
deterministic analysis. The errors that exist are clearly expected how-
ever because of the linearisation process used in the probabilistic
model of the problem. These errors can be considered tolerable how
ever being in mind the significantly increased information that can be
gained from a probabilistic analysis. Also the error can be minimised
as will be discussed later.
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Number of Input distributions
PV . Active Reactive Execution time
System Busbars Busbars Lines Shunts power power on CDC 7600
S
Lest 6 2 7 3 binomials-1 binomials-1 1-60
normals-6 normals-3
IEEE 14 5 20 1 binomials-1 normals-8 1-86
normals-11
IEEE 14 5 20 1 binomials-1 discrete-1 3-96
discrete-1 normals-7
normals-10
Test 22 4 23 4 normals-2 1 normals-18 0-42
Test 27 6 28 0 normals-26 normals-21 0-53
IEEE 30 6 41 2 normals-29 normals-24 0-70
Test 38 4 40 0 normals-37 normals-34 076
IEEE 57 . 7 80 3 normals-56 normals-50 163
Table 2 distributions, yet the computed results differ significantly from nor-

DETERMINISTIC DATA FOR IEEE 14-BUSBAR SYSTEM-

Busbar Voltage Active powers load reactive
Number | Type p.u. Generation Load powers MVAR:
1 slack 1-0600 MW MW
2 PV 1-0450 40-04 21-74 12-70
3 PV 1-0100 9420 19-00
4 PQ 47-80 —3-90
5 PQ 7-60 1-60
6 PV 1-:0700 11-20 7-50
7 PQ
8 PV 1-0900
9 PQ 29-50 16:60
10 PQ 9-00 5-80
11 PQ 3-50 1-80
12 PQ 6-10 1-60
13 PQ 13-50 5-80
14 PQ 14-90 5-00
Table 3
LINE DATA FOR IEEE 14-BUSBAR SYSTEM
Busbar Resistance | Reactance | Susceptance | Transformer
Sending | Receiving p.u p-u. pu. tap
1 2 0-01938 0-05917 0-02640 %
1 5 0-05403 0-22304 0-02640
3 3 0-04699 0-19797 0-02190
2 4 0-05811 0-17632 0-01870
2 5 0-05695 0-17388 0-01700
3 4 0-06701 0-17103 0-01730
4 k) 0-01335 0-04211 0-00640
4 7 - 0-20912 - ~2-2
4 9 - 0-55618 — —31
S 6 - 0-25202 - —6-8
6 11 0-09498 0-19890 ~
6 12 0-12291 0-25581 -
6 13 0-06615 0-13027 -
7 8 — 0-17615 -
7 9 - 0-11001 —
9 10 0-03181 0-08450 -
9 14 0-12711 0-27038 —
10 11 0-08205 0-19207 -
12 13 0-22092 0-19988 —
13 14 0-17093 0-34802 -
9 9 — —5-26000 -

It is also seen from these two Tables that neither formulation 1 nor
formulation 2 can be considered the better formulation, since more
Precise results are given in some instances by formulation 1 and in
others by formulation 2.

Although expected values and standard deviations are quoted in
Tables 5 and 6, this does not mean that the probability-density curves
themselves are normally distributed. To illustrate this point, typical
fie_nsuy curves for active power flow, voltage, reactive_power flow and
iNjected reactive power obtained using formulation 1 are shown in
Figs. 1 -4 1t is clearly evident from these Figures that the computed
Quantities are not normally distributed. The amount by which the
dtinsity curves deviate from a normal distribution depends on the
System and the specified input nodal quantities; as the number of

Inomial and discrete powers are increased for a given system size, the
tomputed density curves deviate more from a normal distribution, In
the present example, most input quantities were defined by normal
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mal.

Probability density curves of almost identical shape to those shown
in Figs. 1 - 4 were obtained using formulation 2 except that, because
the expected values obtained from the two formulations were slightly
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Probability density curve for active power flow in line 5 - 6
Table 4
PROBABILISTIC DATA USED
1 Normal distributions
Busbar Active power Reactive power
Voltage
Number | Type i o u o
p.u. MW % MVAR %
2 PV 1-045 —21-74 900 |-—-12-70 92
3 PV 1-010 —94.20 | 10-00 |—19-00 10'5
4 PQ — —47-80 | 11-00 390 97
S PQ - —7-60 5-00 —1-60 5-0
6 13% 1-070 —11.20 6-00 —17-50 6-3
7 PQ - 0-00 0-00 0-00 0-0
8 PV 1-090 0-00 | "0-00 0-00 0-0
10 PQ -~ —9-00 | 10-00 —5-80 10-0
11 PQ - —3-50 9-50 —1-80 9-5
12 PQ - —6-10 7-60 —1-60 86
13 PQ — —13.50 | 10-50 -5-80 9-5
14 PQ - —14.90 8-60 —5-00 86
2 Binomial distributions
Busbar
it rati F d out Number of
Number | Type V%I.tﬁge Umm ing orciatgu age ur:;nietrso
1 Slack | 1-060 250 0-08 10
2 PV 1-045 220 0-09 2
3 Any discrete distribution
Busbar
Voltage Active power Reactive power
Number { Type
p.u. Mw prob. | MVAR prob.
9 PQ - —13-4 0-10 —7-5 010
—19-6 0-15 | —11-0 0-15
—30-2 030 | —170 0-30
—34-8 025 | —196 025
—37-3 0-20 | —21-0 0-20
533



Table 5
ANGLES, VOLTAGES AND INJECTED REACTIVE POWERS

Angles Voltages
Formulation 1 Formulation 2’
Busbar Determ. M 0 Determ.
M o I o]
deg deg deg p.u. p.u. p-u. p.u. p.u.
4 —10-31 —10-58 0-66 1-0171 1:0156 0-0009 1-:0154 0-0009
5 —8-76 —9-09 0-56 1-0187 1-0169 0-0005 1-0166 0-0005
7 —13-36 —1391 0-96 1-0613 1-0593 0-0026 1-0603 0-0027
9 —14-93 —15-69 1-16 10557 1-0526 0-0051 1-0542 0-0052
10 —15-09 —-15-97 1-10 1-0508 1-0469 0-0043 1-0480 G-0044
11 —14-79 —15-62 0-97 1-0568 1-0540 0-0023 1-0545 0-0023
12 —15-07 —15-97 0-88 1-0552 1-0526 0-0005 10523 0:0005
13 —15-15 —16-14 0-90 1-0503 1-0460 0-0010 1-0458 0-0010
14 —16:03 —17-19 1-06 1-0354 1-0287 0-0034 1:0292 0-0034
Injected reactive power
Determ. Formulation } Formulatiqn 2
u o u o
MVAr MVAr MVAr MVAr MVAr
1 0-0 0-0 0-0 —13:31 —12-17 0-23 —15-10 023
2 —4-98 —5-01 041 36-10 3524 075 35-93 075
3 —12:73 —12-95 0-92 7-29 8-43 0-44 8-78 044
6 —14:22 —14-85 0-84 568 7-63 1-81 5-06 1-84
8 —13-36 —1391 096 17-78 17-41 1-47 16-85 1-52
Table 6
ACTIVE AND REACTIVE POWER FLOWS
Active power flows Reactive power flows
Line Determ. u o Determ. Formulation 1 Formulation 2
: u [ u [
MW MW MW MVAr MVAr MVAr MVAr MVAr
1-2 15478 147-84 1216 —18:93 —18-05 * —20-40 *
1-5 74-08 71-16 4-35 562 5-88 0-23 5:29 0-23
23 72-11 70-01 5-20 475 4-39 * 3-84 *
2-4 55-30 5515 3-20 — 040 —0-09 0-46 — 067 046
2-5 41-07 40-97 2-33 2-61 274 029 2:39 0-28
4-3 23-44 24-19 4-62 — 538 —5:92 0-44 —6-13 0-44
4-5 —61-34 —61-75 4-55 16-11 1563 0-75 16-25 0-78
6—12 7-75 761 0-41 2-51 2-47 0:16 2-37 016
6—13 1775 17-25 1-18 724 7-51 0-64 716 0-64
7-9 28-06 28-36 353 576 6-57 2-28 6:06 2-34
10-11 —3-80 —3-23 1-43 — 1:66 —1-89 0-91 —1-55 094

* The standard deviations in these cases are zero since the voltage at both ends of the line was specified
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Probability density curve for voltage at busbar 4 reactive power flow MVAr
Fig. 3

different, the corresponding curves were shifted slightly relative to
each other. This similarity in shape is confirmed by the results shown
in Table 5 and 6. Comparing the standard deviations given by the two
formulations shows that, in practically all cases, the results are vir-
tually identical; in a few cases a very small difference exists.

Both of these aspects are interesting features since they indicate
that the computed density curves and standard deviations are reason-
ably precise although small errors exist in the computed expected
values. Because of this, the errors in expected values may be overcome
by shifting the computed density curve, without changing its shape,
until the expected value of it coincides with the value obtained from a
conventional deterministic analysis. This newly positioned curve
would then represent a reasonably precise distribution for the quantity
being computed. Furthermore, the computational efficiency could be
improved in such an exercise by using the expected values obtained

Probability density curve for reactive power flow in line 7 - 4

from either formulation as the starting values for the conventional
iterative analysis.

5 Conclusions

This paper has shown how the expected values, standard
deviations and probability density curves of angles, voltages, active
power flows, reactive power flows and injected reactive powers cal
computed using linearised versions of the a.c. load-flow equations-
This permits the previously published techniques to be extended suti
that the model more truly reflects the needs of a power-system
load-flow study. The small errors that occur can be compensated for

oe



by sumply stutting the computed density curve until its expected value
coincides with the value obtained from a conventional deterministic

analysis.
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Fig. 4
Probability density curve for injected reactive power at busbar 3

From these density curves, it is a simple exercise to deduce confi-
dence limits and the probability of any quantity being greater than or
less than a certain predetermined value. The importance of this in
power-system studies cannot be overstressed and forms a vital part in
the analysis of data that is known to vary in practice or is in error due
to forecasting problems.
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8 Appendixes

8.1 Angles and active powers

From the assumptions given in Section 3.2, eqn. 3 becomes

rol
k= kgl)? X O,
or in matrix form
P =Ce
where
— no1
~qk - )?1 and G =k=1sei)Tﬂe

In which the slack busbar row and column are deleted.
Inverting gives

or et
0 =% CaB (=1...n—1) e
k=1
Similarly | from eqn. S
0;,—86
from which after substituting eqn. 16 gives
] =t -
B =~ Y (G —Gy)B a7
X F1

in which if node 7 is slack, Cy=0

8.2 Formulation 1

Writing eqn. 11 in matrix form gives

Q0 = AV
partitioning into the load and generation quantities gives
Q) = %:l_L_ " (18)
ol = N1 %
where Q, has n, eler'nents and O, has n, elements. From eqn. 18
. Q=MV+LYV,
ie. v = MQ,+MH
where
H=—-LYV,
writing explicitly gives
n, oo
Vay = L M0y +,Zl MH, G=1...m) (19)
also from eqn. 18
Q. =NV+JV,
substituting for V] gives
O =DQ+E
where
D =NMadE = DH+JV,
wiriting explicitly gives
ny
Cie) =j=Zl DOy +E (=1,...,m) (20)
from eqns. 12 and 19
n, ) R n,
O = ,; (oM + A0y + 1=Z?
(it + A ;) By
if i and k are load busbars @1

y R ny .
Op = ];1 AieMyiGiary +,Z‘: ApMyiH; + 0, V;
if i is a generation busbar
ny R nl .
O = X auMyQiqy + Zl Myt + Ay Vs,
J=1 =
if k is a generation busbar
Similar equations can be derived for Q; and the reactive power
losses, @i, + Q.
Finally, from eqns. 13 and 19
nooL oo,
Quamy = Bitaw 2. MyQiqy + Bicany Zl MyH; (22)
j=1 J=
if i is a load busbar

8.3 Formulation 2

Substituting eqn. 14 into eqn. 4 gives

@=;m+%—mm

where Ay, is defined in Section 3.3

Thus
n .
Qi =) AV — W 23)
k=1
where
Al[k = Aik fork #i
Ay = A+ W,
n
W= ) Ay
k=1
In matrix form:
Q =AV—Ww




which when partitioned into load and generation quantities gives

AN @4)
O N T Ve We
Using the same technique as described for formulation 1 gives
o oo
Viy = 2. %QJ(1>+; MgH;  i= 1. m (25)
j=1 =
Ougy =Y, DGy +HE/ i=1,...,m (26)
=1
where
H =w-LY,
Dr — NIMI

E =DH+JV,—W,

Similarly, substituting eqns. 14 and 15 into 6 gives

Qi = BuVi+AuVe + i : @270
where

B = 204 + Ay,

Yie = Ty — Ay,

Substituting eqn. 25 into eqn. 27 gives a similar set of equations for
O, Or; and line losses as that given by eqn. 21 in formulation |
above.

Finally, substituting eqn. 15 into eqn. 7 gives

Qisry = 2Bisny Vi — Biemy (28)

from which an equation similar in form to eqn. 22 can be deduced.



