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ABSTRACT
We study the problem of how to recognize a new human ac-
tivity when we have never seen any training example of that
activity before. Recognizing human activities is an essen-
tial element for user-centric and context-aware applications.
Previous studies showed promising results using various ma-
chine learning algorithms. However, most existing methods
can only recognize the activities that were previously seen
in the training data. A previously unseen activity class can-
not be recognized if there were no training samples in the
dataset. Even if all of the activities can be enumerated in
advance, labeled samples are often time consuming and ex-
pensive to get, as they require huge effort from human an-
notators or experts.

In this paper, we present NuActiv, an activity recogni-
tion system that can recognize a human activity even when
there are no training data for that activity class. Firstly, we
designed a new representation of activities using semantic
attributes, where each attribute is a human readable term
that describes a basic element or an inherent characteristic
of an activity. Secondly, based on this representation, a two-
layer zero-shot learning algorithm is developed for activity
recognition. Finally, to reinforce recognition accuracy using
minimal user feedback, we developed an active learning al-
gorithm for activity recognition. Our approach is evaluated
on two datasets, including a 10-exercise-activity dataset we
collected, and a public dataset of 34 daily life activities. Ex-
perimental results show that using semantic attribute-based
learning, NuActiv can generalize knowledge to recognize un-
seen new activities. Our approach achieved up to 79% ac-
curacy in unseen activity recognition.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation; C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded
systems
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1. INTRODUCTION
The understanding of context and human activities is a

core component that supports and enables various kinds of
context-aware, user-centric mobile applications [10, 11, 14,
29]. Examples of application areas include user behavior
modeling for marketing and advertising, health care and
home monitoring, context-based personal assistants, context-
enabled games, and social networks [14].

There has been extensive research on activity recognition
using various sensors and various machine learning algo-
rithms [2,18,21,25,40]. To recognize the context of a mobile
phone user, most existing approaches require two steps: (1)
collect and label a set of training data for every activity
class that the system aims to detect, and (2) classify the
current sensor readings into one of the pre-defined classes.
However, labeled examples are often time consuming and
expensive to obtain, as they require a lot of effort from
test subjects, human annotators, or domain experts. There-
fore, it has been reported that a fully supervised learning
method, where labeled examples from different context are
provided to the system, may not be practical for many ap-
plications [24,36,37]. More importantly, existing approaches
to activity recognition cannot recognize a previously unseen
new activity if there were no training samples of that ac-
tivity in the dataset. According to the activity lexicon in
the American Time Use Survey by U.S. Bureau of Labor
Statistics [38], there are at least 462 different activities that
people do in their daily lives. Considering the diversity of
people and cultures that were not covered by the study, the
actual number of activities is likely even larger. However,
the fundamental problems in the existing activity recogni-
tion methods prevent the systems from recognizing any pre-
viously unseen activity and from extending to tens or hun-
dreds of different human activity classes.

In light of existing problems, there are two major research
questions we aimed to answer:

Q1. How to recognize a previously unseen new activity
class when we have no training data from users?



Current!
Limitation!

None!

Activity!
Classifier!✔ Activity!

Classifier!✔ ✗! Activity!
Classifier!

?!

Dumbbell Side Raises!Bench Dips! Squat & Upright Row!
Trained Class 2! Unseen New Class!Trained Class 1!

Activity!
Class Label!
(High-level)!

Sensor Data 
Features!
(Low-level)!

Training!
Data!

Testing!
Data!

(a) Existing supervised-learning approaches.

Upper arm down!Upper arm back! Arm curl ! Upper arm side!
Semantic 
Attributes!
(Mid-level)!

None!

Human 
Knowledge!

Trained 
Attribute 
Detector!

Activity!
Class Label!
(High-level)!

Sensor Data 
Features!
(Low-level)!

Trained Class 2! Unseen New Class!

Training!
Data!

Testing!
Data!

Trained Class 1!
Dumbbell Side Raises!Bench Dips! Squat & Upright Row!

(b) Proposed semantic attribute-based learning.

Figure 1: Illustration of the comparison between existing supervised learning approach to activity recognition
and the proposed semantic attribute-based learning approach.

Q2. If we have the opportunity to ask users for labeled
training data, how to reinforce the recognition accu-
racy using minimal help from users?

In this paper, we present the NuActiv system to recognize
human activity even when there are no training data for a
particular activity class. NuActiv can generalize previously
learned knowledge and extend its capability to recognize new
activity classes. The design of NuActiv is inspired by the
following observations:

• Many human activities and context types share the same
underlying semantic attributes: For example, the at-
tribute “Sitting” can be observed in the activities of
both “having lunch in the cafeteria” and “working at a
desk”. Therefore, the statistical model of an attribute
can be transferred from one activity to the another.

• The limit of supervised learning can be overcome by in-
corporating human knowledge: Rather than collecting
sensor data and labels for every context, using name-
able attributes allows humans to describe a context
type even without the process of sensor data collec-
tion. For example, one can easily associate the activ-
ity “office working” with the motion-related attributes
such as “Sitting,”“HandsOnTable,” and sound-related
attributes such as “PrinterSound,” “KeyboardSound,”
and “Conversations.”

Based on these observations, we developed the NuActiv
system to tackle the two research questions. The research
question Q1 is often referred to as the zero-shot learning
problem, where the goal is to learn a classifier that can rec-
ognize new classes that have never appeared in the training
dataset [30]. While having been shown successful in the re-
cent computer vision literature [13], zero-shot learning has
been less studied in the area of human activity recognition.

There are several challenges when applying zero-shot learn-
ing to activity recognition. Firstly, while there exist some
well-established attributes in the field of computer vision
(such as shapes and colors), it has not been shown what
kinds of representations or attributes are useful for recog-
nizing human activities from sensor data. Secondly, most
previous work on zero-shot learning focused on static image
data, which is quite different from sequential sensor data in
activity recognition.

To address these challenges, we designed a new represen-
tation of human activities by decomposing high-level activ-
ities into combinations of semantic attributes, where each
attribute is a human readable term that describes a basic ele-
ment or an intrinsic characteristic of an activity. The seman-
tic attributes are detected based on the low-level features,
which capture the temporal dynamics in the sequential sen-
sor data. Using this representation, a two-layer attribute-
based learning algorithm is developed for activity recogni-
tion. Figure 1 illustrates the difference between existing
supervised-learning-based approach and our proposed se-
mantic attribute-based learning approach, using exercise ac-
tivities as examples.

For the research question Q2, to reinforce the activity
recognition accuracy by leveraging user feedback, we ex-
tend the previous work in active learning [35] by design-
ing an outlier-aware active learning algorithm and a hybrid
stream/pool-based sampling scheme, which is suitable for
the scenario of activity recognition using mobile or wearable
devices. We integrated active learning in the framework of
zero-shot learning for activity recognition, so that the sys-
tem is able to not only recognize unseen activities but also
actively request labels from users when possible.

The main contributions of the work include:

• The design and implementation of NuActiv, a new sys-
tem to recognize human activity even when there are
no training data for a particular activity class.

• The design and development of the semantic attributes
as a representation for human activities, and the zero-
shot learning algorithm to learn high-level human ac-
tivities by decomposing them into combinations of se-
mantic attributes.

• The design and development of the outlier-aware active
learning algorithm to efficiently reinforce the recogni-
tion accuracy using minimal user feedback.

• The evaluation of the activity recognition system on
two real-world human activity datasets, one in the
daily life activity domain and the other in the exer-
cise activity domain.

The paper is organized as follows. The system design and
the algorithms are presented in Sections 2 and 3. We present
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Figure 2: The architecture of the NuActiv activity recognition system.

the dataset collection, evaluation methodology, experimen-
tal results, and discussions in Section 4 and 5. In Section
6, we discuss and compare related work. The conclusion is
presented in Section 7.

2. NUACTIV SYSTEM OVERVIEW

2.1 Scenarios and Design Considerations
NuActiv is designed for general human activity recogni-

tion in the field of mobile, wearable, and pervasive comput-
ing. The learning and recognition framework is independent
of sensor data types or device types, so the source of sensor
data does not limit to mobile phones but can also be wear-
able devices. Wearable mobile devices are becoming increas-
ingly available in the commercial market [1]. Phones and de-
vices can be worn as wrist watches (e.g. MotoACTV [27]),
glasses (e.g. Google Glass [8]), and more. Advances in nano-
technology are further driving this trend by introducing flex-
ible materials. These new wearable devices enable a wide
range of context sensing, inference, and pervasive comput-
ing applications [14]. With these considerations in mind, in
this work we choose phones and wristwatches with inertial
sensors as examples to demonstrate two scenarios of activity
domain: daily life activities and exercise activities.

The first scenario is daily life activity monitoring [9, 18].
Suppose we have the training data for two activities“Reading-
AtHome”and“Driving”. What if we want to detect if the user
is “ReadingOnTrain”? Instead of hiring subjects to collect
and label new sensor data, our goal is to directly recog-
nize the new activity class “ReadingOnTrain” by reusing the
model we already trained for“ReadingAtHome”and“Driving”.

The second scenario is exercise activity detection. De-
tecting physical exercises and sports activities is useful for
health and fitness monitoring applications [7, 28]. Through
experiments on real-world sensor data, we will show that our
semantic attribute-based learning applies well to this activ-
ity domain because many exercise activities are built up by
the same underlying attributes, as illustrated in Figure 1.

Daily life activities are of bigger interest because they
comprise the most part of people’s lives. On the other hand,
daily life activities are also arguably of much larger variation
because different people do the same things differently. Even
the same person can do one activity differently at different
times. In this research, we started by testing our system
and algorithms for the exercise activity scenario because the
activities are well-defined, repeatable, and of lower variation
among different people. After observing the effectiveness of

our approach on exercise activities, we further generalized
the approach to daily life activities.

2.2 System Architecture of NuActiv
The system architecture of NuActiv is shown in Figure 2.

NuActiv consists of three main components:
(1) Feature Extraction: This component preprocesses

the raw sensor data from various sensor inputs, and extract
low-level signal features from the processed sensor data. (Sec-
tion 3.1).

(2) Semantic Attribute-Based Activity Recogni-
tion: This component can be further divided into two part.
The first part is Attribute Detection, which transform low-
level features into a vector of human-readable semantic at-
tributes. The second part is Attribute-Based Activity Clas-
sification, which classifies the detected attribute vector as
one of the activity classes given the activity-attribute ma-
trix, even if no training data exist for some of the target
activity classes. (Section 3.2).

(3) Active Learning: Given the output recognized ac-
tivity class, the active learning component estimates the un-
certainty of the recognition result. Only when the result is
estimated to be highly uncertain, the user label requester
prompts the user for feedback or ground-truth labels. The
labels are then used for re-training and updating models for
attribute detection and activity classification. The function
of this component is to reinforce activity recognition accu-
racy using minimal user feedback (Section 3.3).

All of the components can run on a mobile phone or
sensor-enabled wristwatch in our system implementation. In
cases where offline model training is needed, the attribute
detection models can be pre-trained on a server and then be
downloaded to a mobile device.

3. SYSTEM DESIGN AND ALGORITHMS

3.1 Feature Extraction
The NuActiv system is agnostic to input data type. Any

kind of sensor data can be fed into the system for learning an
activity recognition model. In this work, we select inertial
sensor data from two activity domains—exercise activities
and daily life activities—as examples to demonstrate the
effectiveness of the system. The features we use include:

• The mean and standard deviation of sensor data in
dimension x, y, and z.



0 100 200 300 400 500 600
−5

0

5
Feature−Mean

A
cc

el
er

at
io

n
(m

/s
2 )

Time (s)

 

 

x y z

0 100 200 300 400 500 600
0

5

10
Feature−Standard Deviation

Time (s)

A
cc

el
er

at
io

n
(m

/s
2 )

 

 

x y z

0 100 200 300 400 500 600
−1

0

1
Feature−Pairwise Correlation

U
ni

tle
ss

Time (s)

 

 

x y z

0 100 200 300 400 500 600
Bench Dips

Squat Upright Row
DB Side Raises

DB Shoulder Press
Dumbbell Curl

Triceps Extension
Chest Press

Push Up
Dumbbell Fly

Bent−Over Row

Time (s)

Ground−Truth Activity Class Label
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• Pairwise correlation between each pair of dimensions
x, y, and z.

• Local slope of sensor data in dimension x, y, and z in
using 1st-order linear regression.

• Zero-crossing rate in dimension x, y, and z.

Some examples of extracted features are shown in Figure
3. The sensor data and settings used in each dataset are
described in Section 4.2. To capture the temporal changes
of the features, we further include the nth-order temporal
features. Specifically, we concatenate the feature vector at
time t with those at time t−1, t−2, ..., t−n (n is empirically
set to 2 using a 10-fold cross validation on the validation set
in our experiments). For the daily life activity dataset [9],
we also include time of day as an additional input feature, as
it carries important information about the daily life routines
of a user.

3.2 Semantic Attribute-Based Activity
Recognition

3.2.1 Background and Problem Formulation
In this section, we describe the background and formu-

lation of the problem of activity recognition with unseen
classes. The formulation is inspired by and adapted from
previous work in attribute-based classification and zero-shot
learning [13,30].

The problem of activity recognition is formalized as fol-
lows. Let Y be the class label, a random variable that
can be one of the k classes in the activity class space Y =

Activity−Attribute Matrix
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Figure 5: Activity-attribute matrix for exercise ac-
tivities. The rows are the activities and the columns
are the attributes.

{y1, y2, ..., yk}. x = [X1, X2, ..., Xd] is a d-dimensional vec-
tor containing d input features in the feature space X. We
want to learn a classifier function f : X→ Y where the func-
tion outputs an estimate or prediction of the most likely class
label y given an input feature vector x. Most of the existing
approaches in activity recognition train the classifier f using
a training dataset Dtrain = {(xi, yi)|i = 1, 2, ..., N}, which
contains N pairs of input features and ground-truth output
class labels. If we have training instances for every class in
Y, we are able to train a classifier f . However, if there are
no training data for a subset of classes Y, we are not able to
predict those classes.

In this work, we aim to solve the problem of recognizing
previously unseen activity classes. Suppose Y = {{y1, y2, ...,
ys}, {ys+1, ..., ys+u}} = YS∪YU . YS is the set of seen classes,
where there exists some training data for every class in YS .
YU is the unseen classes set where there are no training data
for any class in YU . The problem is: How to recognize an
unseen class y ∈ YU?

The idea is to first transform low-level features x into a
vector of mid-level semantic attributes a = [A1, A2, ..., Am]
in the attribute space A. Each attribute corresponds to an
atomic physical motion or a specific characteristic of a com-
plex activity. If every high-level activity in Y can be mapped
to a point in the attribute space A, then it is possible for us
to recognize every activity class y ∈ Y given an accurately
detected attribute vector a. Since every semantic attribute
in a is a human readable term, the mapping between y and
a can be defined based on human knowledge without train-
ing data. Without this attribute layer, the direct mapping
between y and x can only be trained with labeled sensor
data, because the values in x low-level signal features that
are hard for humans to interpret directly. The fundamen-
tal idea of semantic attribute-based learning is illustrated in
Figure 4, where the edges represents P (A|x), the probability
of the attribute A given a feature vector x, and P (Y |a), the
probability of the class label Y given an attribute vector a.
We will explain each step in details in the following sections.

3.2.2 Activity-Attribute Matrix
The Activity-Attribute Matrix encodes the human knowl-

edge on the relationship between an activity and a set of se-
mantic attributes that are associated with the activity. We
designed the activity-attribute matrix by extending previ-
ous work in attribute-based object similarity and classifica-
tion [12,13]. For M activities and N attributes, the activity-
attribute matrix is an M×N matrix where the value of each



element aij represents the level of association between ac-
tivity i and attribute j. We define each element as a binary
value, indicating whether such an association exist (aij = 1)
or not (aij = 0), although in general aij can be real-valued
(0 ≤ aij ≤ 1), indicating the level or confidence of the as-
sociation. An example of a binary activity-attribute matrix
we manually defined for the exercise activity domain in our
experiments is shown in Figure 5. In general, an activity-
attribute matrix can be manually defined by common-sense
knowledge or domain knowledge. Alternatively, the process
can be automated using existing web text mining [31] or
crowdsourcing platforms [34]. A user can also manually de-
fine a custom new activity by describing it using the at-
tributes, which is equivalent to inserting a row in the matrix.

3.2.3 Attribute Detection
Given an activity-attribute matrix, the next step is to

train a set of attribute detectors so that we are able to
infer the presence/absence of an attribute from the sen-
sor data features. However, collecting a separate training
dataset for every attribute is not practical for several rea-
sons. First of all, not all of the attributes are sub-activities
themselves. Many attributes are descriptions, characteris-
tics, or consequences of an activities rather than standalone
sub-activities. Therefore, it may not be possible to collect
data for an attribute “alone” without other interference or
confounding factors. Furthermore, there can be a large num-
ber of possible attributes. If there were a need to collect
many separate training dataset, the benefit of attribute-
based learning would diminish significantly.

Since the goal is only to infer if an attribute is present
or not given the feature vector (i.e. P (A|x) in Figure 4),
what we need is one set of positive samples and another
set of negative samples. Therefore, to learn an attribute
detector, we reuse the existing training data by merging the
labeled data of all activity classes that are associated with
the attribute as the positive set. Similarly, the negative
set consists of the data of all activity classes that are not
associated with the attribute.

After the training sets are constructed, a binary classifier
is trained for each attribute. In general, any type of classifier
can be used. We evaluated various classifiers and selected
the Support Vector Machine (SVM) classifier [4] as the opti-
mal implementation (the experiments are discussed in Sec-
tion 4.4.3). SVM finds the hyperplane wTxi + b = 0 that
maximizes the margin between the data points of different
classes by optimizing the following Quadratic Programming
problem:

min
w,b

1

2
||w||2 + C

n∑
i=1

ξi (1)

s.t. ai(w
Txi + b) ≥ 1 − ξi and ξi ≥ 0, ∀i, where xi and ai

are the feature vector and the attribute value for the i-th
training sample, respectively. w and b controls the orienta-
tion and the offset of the hyperplane. The parameter C is a
regularization term which controls overfitting and the toler-
ance on the degree of false classification ξi for each sample.
After training phase, we have a trained attribute detector
for each attribute specified in the activity-attribute matrix.

In some cases, we might only have positive or negative
examples for an attribute. For example, this can happen
when all of the seen classes in the training data exhibit a
certain attribute. In such cases, we train the attribute de-

Algorithm 1 Hybrid Feature/Attribute-Based Activity
Recognition Algorithm

1: Input: low-level feature vector x
2: Output: estimated activity class y
3: isUnseenClass← unseenClassDetection(x);
4: if isUnseenClass = true then
5: Keep only unseen classes in the attribute space;
6: a← attributeDetector(x);
7: y ← attributeBasedActivityClassifier(a);
8: else
9: Keep only seen classes in the feature space;

10: y ← featureBasedActivityClassifier(x);
11: end if
12: return y;

tector using one-class SVM [23], which classifies a sample as
one of the two classes given only training data of one class
(positive or negative).

3.2.4 Attribute-Based Activity Classification
After the attributes are detected, in the attribute space, a

nearest-neighbor classifier is used to recognize the high-level
activity given an attribute vector generated from attribute
detectors [30]. Specifically, the activity recognizer takes an
attribute vector a = [A1, A2, ..., Am] as input and returns
the closest high-level activity y∗ represented in the attribute
space A according to the activity-attribute matrix. In other
words, the activity-attribute matrix essentially provides the
information of P (Y |a) shown in Figure 4.

3.2.5 Hybrid Feature/Attribute-Based Activity
Recognition

While attributes are human readable and can be used to
recognize previously unseen new classes, there are certain
amounts of information in the low-level feature space that
we do not want to discard. Transforming low-level features
to mid-level attributes has the benefit for unseen class recog-
nition, but there is an information loss associated with it.

Inspired by this thought, our idea is to keep the advan-
tages of both feature-based and attribute-based activity recog-
nition. Specifically, if we know that a sample belongs to a
seen class where we had training data in the dataset, we can
directly apply feature-based classifier to recognize the activ-
ity. On the other hand, if we think that a sample belongs to a
new class that we have not had any training data associated
with, we have to apply attribute-based activity recognition
so that we can learn by reusing the known attributes.

Now the question is: How do we know if a sample belongs
to a seen class or an unseen class? We draw an analogy
between this problem and the problem of anomaly detec-
tion. A sample from a seen class is like a typical sample,
which is similar to the other samples we had in the training
data. In comparison, a sample from an unseen class is like
an “anomaly” because it does not look like anything that
the system has seen before. To approach this problem, we
first train an unseen class detector using the one-class SVM
classifier [6], where only the positive samples (all samples
that belong to the seen classes) are given to the classifier.
After using the unseen class detector, we then do a hybrid
feature/attribute-based activity recognition using the algo-
rithm described in Algorithm 1.



3.3 Active Learning: Reinforcing Activity Rec-
ognition Using Minimal User Feedback

So far we have focused on the scenario where no train-
ing data for the target class are available. What if we have
the opportunity to acquire some ground-truth labeled data
from users? Obviously, if we ask users to label every sin-
gle sample, we can achieve the best recognition accuracy
possible. However, it is impractical to ask a user to label
his/her activity every single minute because it would be ex-
tremely intrusive. The more frequently we prompt the users
for inputs, the more intrusive the system will be [35]. This
observation motivates us to design a user feedback loop for
the NuActiv system using active learning algorithms [35,37].

Our idea is simple: We ask a user for labels only when we
are highly uncertain about our recognition result. To achieve
this, we used the idea of uncertainty sampling in the field
of active learning. The idea of active learning algorithms is
that a machine learning algorithm can perform better with
less training data if it is allowed to choose the data from
which it learns [35].

3.3.1 Sampling Scheme
There are two types of selective sampling schemes in ac-

tive learning [35]. The first one is Stream-Based Sampling,
where an unlabeled instance is typically drawn one at a time
from the input source, and the system must decide whether
to query or discard it. The second scheme is Pool-Based
Sampling, where a large pool of unlabeled data is available.
Having observed all the unlabeled instances, the system can
ask for the label of one instance at a time according to a
certain decision criteria.

In this work, we use a hybrid stream/pool-based sampling
scheme that is more suitable for the scenario of human ac-
tivity recognition using mobile phones or wearable devices.
The pool is not so big so that a user forgets what he/she
did during the time interval asked by the system, yet large
enough for the system to select a good sample to ask the user
for a ground-truth label. The detailed settings are described
in Section 4.6.

3.3.2 Uncertainty Sampling Metrics
In this work, we carefully evaluated several different widely

used metrics [35,37] that measure the uncertainty of a sam-
ple to the classifier in order to seek an optimal solution:

Least Confident: Ask the user for a ground-truth label
when the confidence score of the classifier output ŷ given the
input feature x of a sample is minimum:

x∗LC = argmin
x

Pθ(ŷ|x) (2)

Minimum Margin: Ask the user for a ground-truth la-
bel when the difference between the confidence of the first
and the second likely classes (ŷ1 and ŷ2) is small:

x∗M = argmin
x

[Pθ(ŷ1|x)− Pθ(ŷ2|x)] (3)

Maximum Entropy: Entropy, in information theory, is
measure of the uncertainty associated with a random vari-
able. Hθ(Y |x) = −

∑
y Pθ(y|x) logPθ(y|x) means that given

a sample x and classifier model θ, how uncertain the classi-
fier is about the value of class label Y . Therefore, we can
ask the user for a ground-truth label when the entropy over
Y given a specific sample x is the largest among all x in

Algorithm 2 Outlier-Aware Uncertainty-Sampling Active
Learning Algorithm for Activity Recognition

1: Input: A sequence of initial unlabeled instances U =
{xi|i = 1, ..., NU}; A set of initial labeled instances L =
{(xi, yi)|i = 1, ..., NL}; An initial classifier model θ; A
pool window length Lpwin

2: Output: Updated activity classifier model θ
3: /* NU: the number of unlabeled samples available in the

pool window */
4: while Activity Recognition Service is running do
5: while NU < Lpwin do
6: d← getCurrentSensorData();
7: x← extractFeatures(d);
8: insert x into U;
9: NU ← NU + 1;

10: end while
11: maxScore← −∞; x∗ ← x1;
12: for i from 1 to Lpwin do
13: score← getOutlierAwareUncertainty(xi);
14: if score > maxScore then
15: maxScore← score;
16: x∗ ← xi
17: end if
18: end for
19: y∗ ← queryForLabel(x);
20: insert (x∗, y∗) to L;
21: θ ← trainClassifier(L);
22: Remove all samples in pool U; NU ← 0;
23: end while
24: return θ;

consideration:

x∗H = argmax
x

−
∑
y

Pθ(y|x) logPθ(y|x) (4)

The comparison between the performances using different
metrics is reported in Section 4.

3.3.3 Outlier-Aware Uncertainty Sampling
Using uncertainty sampling, however, can run the risk of

choosing outliers as samples to query [35]. The reason is that
outliers are away from the other samples of the same class in
the feature space; therefore, for most uncertainty metrics we
use, outliers are likely to receive higher uncertainty scores
than other samples. Unfortunately, knowing the label of
outliers does not help training a classifier because outliers
are exceptions rather than representative examples that a
classifier should learn from. As a result, actively choosing
outliers for training can even “mislead” the classifier and end
up degrading the accuracy.

To mitigate the negative affect of outliers, we used Outlier-
Aware Uncertainty Sampling in tandem with the uncer-
tainty sampling metrics. The idea is to select samples that
are uncertain but not outliers, i.e., samples that are repre-
sentative of the underlying distribution (e.g. in dense region
of the feature space). To determine whether a sample is
representative of the underlying distribution, we calculate
the mean similarity between this sample and all the other
samples. If a sample is close to many other samples in the
feature space, its mean similarity with all the other samples
will be high; on the other hand, for an outlier that is far from
most samples, the mean similarity will be low. Incorporat-



ing this constraint into the uncertainty sampling metric, the
new objective function is:

x∗OA = argmax
x∈U

(
φ(x) · 1

NU

∑
x′∈U

S(x, x′)

)
(5)

The first term φ(x) refers to one of the uncertainty met-
rics we described in Section 3.3.2. To be consistent with
the argmax objective, for Lease Confident uncertainty met-
ric, φ(x) is defined as exp(−Pθ(ŷ|x)). Similarly, φ(x) =
exp(−(Pθ(ŷ1|x) − Pθ(ŷ2|x))) for minimum margin metric,
and φ(x) = Hθ(Y |x) for the maximum entropy metric. The
second term 1

NU

∑
x′∈U S(x, x′) measures the mean similar-

ity, S(x, x′), between a sample x and all other samples x′ in
the unlabeled sample pool U, where NU is the total num-
ber of samples in U. The complete algorithm is shown in
Algorithm 2.

4. EVALUATION
To evaluate our approaches, we investigated and answered

the following questions through system implementation, data-
set collection, and experiments:

• What is the overall precision/recall of unseen activity
recognition using NuActiv? How does the performance
vary among classes? (Section 4.4.1)

• How does the recognition accuracy change with the
number of unseen classes? (Section 4.4.2)

• How does the performance vary with the use of dif-
ferent classification algorithms for attribute detectors?
(Section 4.4.3)

• How to select attributes based on their importance to
unseen activity recognition? (Section 4.4.4)

• What is the cross-user performance, i.e. when the
users in the training set are different from those in
the testing set? Is the system able to generalize from
one or a few users to many new users? (Section 4.4.5)

• How does the attribute detection accuracy vary with
the position and combination of the devices and sen-
sors? (Section 4.4.6)

• How does NuActiv perform on recognizing unseen daily
life activities? (Section 4.5.2)

• How efficiently can the system reinforce its perfor-
mance using active learning? How does the perfor-
mance vary with different active learning algorithms?
(Section 4.6.1)

• What is the effect of outlier-aware uncertainty sam-
pling on active learning algorithms? (Section 4.6.2)

4.1 System Implementation
We have implemented and tested the system on Nexus S

4G phones and MotoACTV wristwatches [27]. A picture of
our system running on these two types of devices is shown in
Figure 6. The Nexus S 4G phone has a three-dimensional ac-
celerometer and a gyroscope. The MotoACTV has a three-
dimensional accelerometer, Wi-Fi, and Bluetooth radio.

For the software part, we have implemented the code for
feature extraction and the classification algorithm in the
Java programming language. The code runs on the An-
droid Operating System installed on the Nexus S 4G phones
and the MotoACTV. For the classification algorithm, the
Support Vector Machine classifier is implemented using the

Figure 6: NuActiv running on MotoACTV wrist-
watch (left) and Nexus S 4G phone (right).

Activity Recognition Output! Requesting User for Labels! Sensor Data & Feature Dashboard!

Figure 7: The screenshots of our mobile app running
NuActiv activity recognition system.

LibSVM library [6]. The screenshots of several operations
of the application are shown in Figure 7.

4.2 Datasets

4.2.1 Exercise Activity Dataset
We conducted an experiment involving exercise activities

on 20 subjects. Each subject is asked to perform a set of
10 exercise activities as listed in Figure 5 with 10 iterations.
Before the experiments, the subjects are given instructions
on how to perform each of the 10 exercise activities. More
information about these activities can be found in the litera-
ture [7,28]. During the experiment, each subject is equipped
with three sensor-enabled devices: A Nexus S 4G phones
attached to the arm using an armband, a MotoACTV wrist-
watch, and a second MotoACTV unit fixed at the hip po-
sition using a clip. A pair of three-pound dumbbells is also
provided to the subject to perform some of the free-weight
exercises (e.g. Dumbbell Side Raises, Dumbbell Curl, etc.).
For sensor data collection, we collected accelerometer and
gyroscope data using our mobile application with a sampling
rate of 30 Hz. For feature extraction, the sliding window size
is empirically set to 1 second with 50% overlap, based on a
10-fold cross-validation test on the validation dataset to find
the optimal parameter.

4.2.2 Public Dataset on Daily-Life Activities
For the scenario of recognizing daily-life activities, we use

a published and publicly-available dataset collected by Tech-
nische Universitat Darmstadt (TU Darmstadt) [9, 36]. The
dataset includes 34 daily life activity classes (including the
unlabeled class) collected from one subject for seven days.



Table 1: Attribute list for daily life activities.

Type Attribute Name

Basic Sitting, Standing, Walking
Posture PostureUpright, PostureKneeling
Hand/
Arm

HandsOnTable, HandAboveChest,
WristMovement, ArmPendulumSwing

Motion
Type

TranslationMotion, CyclicMotion,
IntenseMotion

Relation WashingRelated, MealRelated
Time TimeMorning, TimeNoon, TimeEvening

The sensor data were collected using a wearable sensor plat-
form with a three-axis accelerometer (ADXL330) worn on
the wrist and the hip of the subject. The sampling rate is
100Hz, and the features are computed from a sliding window
of 30 seconds with 50% overlap.

To apply NuActiv to the TU Darmstadt daily-life activity
dataset, we defined a list of 17 attributes (as shown in Table
1) and an activity-attribute matrix1 based on the 34 daily
life activities in the dataset. It is to be noted that the list is
not mutually exclusive or collectively exhaustive. We show
that these semantic attributes defined by human knowledge
can enable unseen activity recognition using NuActiv in Sec-
tion 4.5.

4.3 Evaluation Methodology
We used leave-two-class-out cross validation, the most

widely used validation method used in the literature of zero-
shot/zero-data learning [15, 30]. The validation scheme is
used for recognizing unseen classes that do not have any
sample in the training set. The traditional 10-fold cross val-
idation is not applicable to unseen class recognition because
it does not leave out all samples of certain“unseen”classes in
the training step, so that every class will have some samples
in the training set.

The leave-two-class-out cross validation works as follows.
Suppose there are a total of N classes. Each time we first
train our system on (N − 2) classes, and then test the dis-
criminative capability of the classifier on the remaining 2
classes that were “unseen” by the system during the train-
ing process. We repeat this test for all

(
N
2

)
unseen/seen

class combinations. Finally, the average performance over
all tests is reported.

The results are reported in precision, recall, and F1-score.
These metrics show different aspects of the performance of
an activity recognition system. Specifically, the metrics are
defined as follows:

precision =
TP

TP + FP
recall =

TP

TP + FN
(6)

F1-score =
2 · precision · recall
precision+ recall

(7)

where TP , FP , TN , and FN denotes true positive, false
positive, true negative, and false negative, respectively. Pre-
cision indicates the percentage of times that a recognition
result made by the system is correct. Recall means the per-
centage of times that an activity performed by a user is de-
tected by the system. F1-score is a integrated measure that
combines both. For overall performance across all classes,

1The activity-attribute matrix can be downloaded from
the supplemental materials at http://www.ece.cmu.edu/
~hengtzec/data/DLActivityAttributeMatrix.pdf
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Figure 8: Confusion matrix of recognizing un-
seen activities using the 10-Exercise dataset. The
rows are the ground-truth activity classes, and the
columns are the estimated activity classes (classifier
outputs). The numbers are shown as percentages.
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Figure 9: Precision and recall rate of recognizing
unseen activities using the 10-Exercise dataset.

the accuracy is computed as the number of correctly recog-
nized samples divided by the number of all samples in the
test set.

4.4 Case Study I: Exercise Activities

4.4.1 Unseen Activity Recognition Result
The confusion matrix of recognizing previously unseen ex-

ercise activities is shown in Figure 8. The average accuracy
is 79% over all activities, among which the system achieved
a promising recognition accuracy of 80-90% for five activity
classes. It is to be noted that in these results, the target
activities are recognized under the situation that no train-
ing data of any target activity class were given to or seen
by the system during the training phase. The results sup-
port our hypothesis that unseen new human activities can
be recognized with a reasonable accuracy using the proposed
semantic-attribute-based learning approach in NuActiv.

One observation that we can draw from the experimental
result is that misclassification usually happens when two ac-
tivities only differ in one attribute. In this case, the success
of recognition depends heavily on the detection accuracy

http://www.ece.cmu.edu/~hengtzec/data/DLActivityAttributeMatrix.pdf
http://www.ece.cmu.edu/~hengtzec/data/DLActivityAttributeMatrix.pdf
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Figure 10: Accuracy vs. number of unseen classes
in the testing dataset.

of the presence of that particular attribute. For example,
“DumbbellFly” is classified as “ChestPress” because these
two activities are inherently similar and are only different
in the attribute “ArmCurl”. The problem can potentially
be overcome by including additional sensors/modalities so
that other discriminative attributes can be used to further
distinguish two similar classes.

4.4.2 The Impact of Number of Unseen Classes And
Comparison with Baseline

The capability to recognize unseen new activity classes is
built on the knowledge learned from the seen activity classes.
As we can imagine, if all the classes were unseen, the system
has nothing to learn from and thus is not able to recognize
any activity with reasonable accuracy. To understand the
capability and limitation of our approach, we conducted the
following experiment: For a total of k classes, we vary the
number of unseen classes (nu) in the testing data from 2
to k, where the corresponding number of seen classes (ns =
k−nu) in the training data varies from k− 2 to 0. For each
number of unseen classes, we repeat the test for all

(
k
nu

)
combinations and report the average results.

The result is shown in Figure 10. We observe that the
recognition accuracy gradually degrades as the number of
unseen classes in the testing data increases (i.e. the number
of seen classes in the training data decreases). This is in ac-
cordance with the expectation, because it gradually becomes
difficult for the system to generalize to a large number of un-
seen activity classes based on only a few seen classes. Fur-
thermore, a successful unseen activity recognition relies on
an accurate attribute detection. To accurately detect an at-
tribute, it is important for the training classes to cover both
positive and negative examples of the attribute. Therefore,
the larger the seen-to-unseen class ratio is, the more likely
that we can recognize unseen activities effectively.

We also compare our results with a baseline approach.
The baseline approach is the random-guess prediction given
the number of unseen classes, which is the best that a su-
pervised learning-based activity recognition system can do.
From Figure 10, we can see that our semantic-attribute-
based approach is 20-30% better than the baseline for most
cases, except for the cases where almost all the classes were
unseen (when the system has seen zero to two classes in the
training data). The results suggest that NuActiv is an viable
approach to unseen activity recognition.
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Figure 11: F1-score of unseen activity recognition
vs. different classifiers for attribute detectors.
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Figure 12: F1-score vs selected attributes. Each
color represent an attribute that was unselected.

4.4.3 Comparison of Different Attribute Detectors
We also compare the SVM classifier with other classifiers

that are widely used in the related work, including the De-
cision Tree classifier, Naive Bayes classifier, and k-Nearest
Neighbor (k-NN) classifier [2,18,20]. For k-NN, the optimal
result with k = 3 is reported.

The results are shown in Figure 11. SVM outperforms the
Decision Tree and Naive Bayes classifier on average and for
most of the classes if we break down the results by activity
class. Overall, the accuracy using k-NN is comparable to
the result using SVM. However, k-NN classification requires
the storage and access to all the training data. Thus, k-NN
is less scalable for a large dataset and less practical to run
on mobile devices given their limited storage. Therefore, we
used SVM for our experiments and implementation on the
mobile devices.

4.4.4 Evaluation of The Importance of Attributes
We now investigate the importance of each semantic at-

tribute and gain insights into attribute selection. The selec-
tion of attributes is important in two aspects. The first one
is discriminability, meaning how well can an attribute dis-
criminate between different high-level classes. The second
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Figure 13: Cross-user recognition accuracy vs. num-
ber of seen users in the training data. The testing
set includes 10 users that are different from those in
the training data.

one is detectability, namely how accurately can we detect
the presence or absence of an attribute.

To test the discriminability, we conducted the following
experiment: First, we run the unseen activity recognition
test using all nA semantic attributes (nA = 7 for exercise
activities). Then, we run nA tests where each time we ex-
clude one of the attributes and observe the change of the
performance. If the performance drops significantly when
an attribute is excluded, then being able to detect this at-
tribute is important to accurately recognize the high-level
activities. On the other hand, if the performance does not
change much without an attribute, then the attribute is less
likely to be important. To test the detectability, we com-
pute the detection accuracy of each attribute. The accuracy
is computed as the number of times an attribute is correctly
detected divided by the number of times an attribute ap-
pears in the samples of the testing data.

The results of the discriminability and detectability test
are shown in Figure 12 and 14, respectively. From the aver-
age F1-score (the rightmost bar group) in Figure 12, we can
see that the attributes ArmUp, ArmDown, and ArmFwd have a
higher impact on the activity recognition performance than
other attributes. However, from the results broken down by
activity class, we can see that an attribute may be important
to some activity classes but not for other classes. Therefore,
the selection of attributes also depends on the characteristics
of the targeted classes. One reason for these phenomena is
the inherent attribute-composition of an activity. Another
possible reason is that some attributes are easier to detect
than others. As shown in Figure 14, the system generally
achieves higher accuracy detecting the first four attributes.
These differences in detectability can be caused by the po-
sitions and types of the sensors used, the type of classifier
used for detection, and the consistency of the presence of an
attribute given an activity is performed.

4.4.5 Cross-User Activity Recognition Results
It is important for an activity recognition system to not

only be able to recognize the activities of the users it has
seen, but also be able to generalize to the activities of new
users it has never seen before. To evaluate the generalizabil-
ity and the limitation of our approach, we randomly divide
the 20 users into two equal sets. While fixing the test set to
be the 10 users in the first held-out set, we iterate the num-
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Figure 14: Attribute detection accuracy vs. de-
vice/sensor positions for each attribute.

ber of training users from 1 to 10, randomly chosen from the
second set. For each test, we repeat the random choice for
100 times and report the average performance.

The results are shown in Figure 13. As we can see, the
performance stays approximately constant when the number
of seen users in the training data is equal to or greater than
five. Furthermore, the precision, recall, and F1-score are al-
most the same as the case where the data of all the users
exist in both the training set and the testing set, as shown
previously in Figure 9. The F1-score decreases slightly when
number of seen users in the training data falls below four,
yet the system can maintain an F1-score of over 70% when
having seen 2–4 users in the training data. The edge case
happens when the system has only seen one user in the train-
ing set, where the F1-score is 60%. Overall, the system is
able to achieve 70-80% accuracy after training on two or
more users in the training set.

4.4.6 Impact of Device Position on Attribute Detec-
tion Accuracy

An attribute is often inherently associated with a charac-
teristic of a human activity or a motion of a specific part of
human body. Therefore, we conducted experiments to un-
derstand how the position or the set of positions at which
the sensors are placed affects the attribute detection accu-
racy, which in turns affects the final activity recognition ac-
curacy. When collecting the exercise activity dataset, we
have placed sensor-enabled phones/devices on three different
body positions of the users (as described in Section 4.2.1).
The experimental results using sensor data from different
body positions is shown in Figure 14. It is observed that
while using the upper arm sensors (phone in an armband)
usually achieves better and more stable accuracy than us-
ing the wrist sensors (wristwatch), combining these two data
sources leads to improvement in accuracy in some cases. One
possible reason is that while the movement of the wrist is
of larger variation and less predictable, it complements the
limitation of what can be observed by the upper arm sen-
sors. Adding the hip sensor did not improve the accuracy,
possibly because most attributes defined in our case study
do not involve changes in lower-body postures. It is to be
noted that the results do depend on the activity domains
and sensor types.

4.5 Case Study II: Daily-Life Activities

4.5.1 Reproduction of Results in Previous Work
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Figure 15: Precision, recall, and F1-score of recognizing unseen daily life activities in the TU Darmstadt
dataset using NuActiv.

For the daily life activity recognition experiments, we used
the public dataset of 34 daily life activities provided by TU
Darmstadt [9], as described in Section 4.2.2. We first imple-
ment the supervised learning method closely following the
experiment protocols in the paper of the dataset provider [9].
Given that all the classes were seen in the training set, our
implementation achieved 71.2% accuracy, which is very close
to 72.7% as reported in the previous work [9]. This repro-
duction of previous results confirms that our use and under-
standing of the dataset and features are valid.

4.5.2 New Task: Recognizing Previously Unseen New
Daily Life Activity

After successfully reproducing the results in the previous
work, we proceeded to a new problem—recognizing unseen
daily life activities—which has not been addressed before in
the activity recognition literature. We applied the NuActiv
system and algorithms to the 34-daily-life dataset [9], and
evaluated the performance using the evaluation methodol-
ogy described in Section 4.3. The results are shown in Fig-
ure 15. We can see that for some classes the system can
achieve high recall and lower precision, and vice versa for
some classes. Overall, the system achieves 60-70% precision
and recall rate for most classes. The mean precision and
recall rate is 52.3% and 73.4%, respectively, averaged over
all classes. Some classes, such as “sitting-desk-activities” or
“sitting-talking-on-phone”, do not have a clear difference in
attributes since we only have inertial sensor data available in
the dataset. Therefore, the system tends to have a low pre-
cision rate on these classes. This problem can be alleviated
by incorporating extra sensing modalities such as ambient
sound. While there is clearly room for improvement, the
fact that our system is able to recognize an unseen daily
life activity class with no training data with a reasonable
accuracy is a new result in the field of activity recognition.

4.6 Active Learning Experiments

4.6.1 Comparison of Active Learning Algorithms
In addition to unseen activity recognition, we further eval-

uate how the system can improve itself using minimal user
feedback. The active learning algorithms we used for the
experiment are explained in Section 3.3.

Following the experiment protocols in the active learning
literatures [35], our experiment setting is described as fol-
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Figure 16: Recognition accuracy vs. user labels re-
quested in the active learning experiment.

lows. The data set we used is the 34-daily-life dataset [9].
Each sample is a feature vector extracted from a window
of 30 seconds of sensor data. An initial labeled set L of 50
samples from Day 1 of the dataset is provided to the sys-
tem. Then, an unlabeled set U of 11087 samples from the
rest of Day 1 to Day 5 is sequentially provided to the sys-
tem in the order of time. Each time the system improves
itself using the newly acquired labeled data, we evaluate its
performance on a separate test set T of 5951 samples from
Day 6 and 7. The active learning is performed as described
in Algorithm 2, with Lpwin = 100 and SVM classifiers.

The results are shown in Figure 16. Using active learning,
the classifier generally improves faster (using less labeled
samples from the user) than the random baseline (randomly
query the user without active learning). The margin-based
uncertainty metric achieved 70% accuracy using only 30 la-
beled samples from the user and converged faster than other
approaches. The entropy and least-confident metrics yielded
comparable results.

4.6.2 Outlier-Aware Uncertainty Sampling Results
We further incorporate the outlier-aware uncertainty sam-

pling as described in Section 3.3.3, and compare the results
with those not using outlier-aware uncertainty sampling.
The results are shown in Figure 17. It is observed that given
the same amount of user-labeled samples requested by the
system, using outlier-aware uncertainty sampling in general
leads to comparable or better accuracy when compared to
active learning algorithms without outlier-awareness. The



0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

Number of User−Labeled Samples Requested by System

A
cc

ur
ac

y 
(%

)

 

 

LeastConfident+OutlierAware
LeastConfident

(a) Least-confidence-based sampling.
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(c) Entropy-based sampling.

Figure 17: Comparison between the learning curve of active learning algorithms with/without outlier-aware
uncertainty sampling .

amount of improvement, of course, would depend on the
relative weighting between the uncertainty term and the
outlier-awareness term in Equation 5, and on whether there
is a large number of outlier samples in the input data.

5. DISCUSSION
In this section, we discuss some assumptions and limi-

tations of the current version of NuActiv, along with our
ongoing work and potential future directions.

5.1 Semantic Attribute-Based Learning
In the current version of our semantic attribute-based

learning approach, it is assumed that there exists a one-
to-one mapping between an activity class label and a point
in the attribute space, and that the associations between ac-
tivities and attributes are fixed. This implies a fundamental
limitation that the lower bound on the minimum number of
attributes is nA ≥ log2 nY for nY activity classes and nA
different attributes, assuming binary-valued attributes are
used. As a future research direction, it is possible to over-
come this limitation by incorporating continuous-valued at-
tributes or relative attributes [32]. Further more, while we
present an initial attempt to evaluate the attribute-based
learning approach on two datasets, it would be beneficial to
expand the study to more activity domains with a larger
number of activities, attributes, and users in the future.

In the current implementation, the attributes are man-
ually defined using common-sense knowledge and domain
knowledge as an initial attempt towards zero-shot learning
for activity recognition. To further reduce the effort of one-
time manual definition per class, a potential future direction
and part of our ongoing work is to automate the process us-
ing web text mining [31] or crowdsourcing [34] as explored
in the zero-shot learning literature.

Our results suggest that the performance of the zero-shot
learning model varies depending on the selected semantic at-
tributes. Therefore, another future direction is to develop a
systematic way for semantic attribute selection based on the
discriminability and detectability of the attributes. Further,
to truly exploit the advantages of both low-level features and
mid-level attributes, future work and experiments are to be
done to explore and compare various kinds of algorithms for
hybrid feature/attribute-based activity recognition.

5.2 Active Learning for Activity Recognition
For the active learning experiment, it is assumed that the

users are willing to provide the label and all the labels pro-
vided by the user are correct. Related study or future work
on usability and interruptibility [33] can be further leveraged
to adjust the frequency of requesting labels from users based
on their preferences, and to improve the effectiveness of ac-
tive learning in real practice. It would also be beneficial to
study the ideal way (e.g. haptic, gestural, or audio-based in-
terfaces) to engage users to provide labeled data for activity
recognition using wearable and mobile devices.

6. RELATED WORK

6.1 Activity Recognition

6.1.1 Supervised Learning
In the field of mobile, wearable, and pervasive computing,

extensive research has been done to recognize human activi-
ties (e.g. sitting, walking, running) [2,5,14,21,25,36,37,40].
In terms of the learning method, the majority of the re-
search in this field used supervised learning approaches, in-
cluding discriminative classifiers (e.g. Decision Trees, SVM)
and generative models (e.g. Naive Bayes, Hidden Markov
Model), where a classifier is trained on a large set of labeled
examples of every target activity. [2, 3, 18, 21, 25, 40]. There
has also been prior study of representing high-level activities
as a composite of simple actions, using a supervised layered
dynamic Bayesian network [39]. While many promising re-
sults have been reported, a widely acknowledged problem
is that labeled examples are often time consuming and ex-
pensive to obtain, as they require a lot of effort from test
subjects, human annotators, or domain experts [36,37].

6.1.2 Semi-Supervised and Transfer Learning
To lessen the reliance on labeled training data and to

exploit the benefit of abundant unlabeled data, previous
work has incorporated semi-supervised learning into activ-
ity or context recognition systems [19, 22, 24, 36, 37]. Semi-
supervised learning approaches can improve the recognition
accuracy by refining the decision boundary based on the
distribution of the unlabeled data, or by assigning highly-
confident estimated labels to the unlabeled data. Recently,
transfer learning has also been explored so that the model
learned for one target class can be transferred to improve
the recognition accuracy of another target class [5, 41]. As
a result, the amount of training data required for new ap-
plications can be reduced. While many promising results



have been reported, most of the existing approaches can only
recognize activity classes that were included in the training
data. Inspired by previous study, our work presents an early
attempt to recognize unseen human activities with no train-
ing data using attribute-based zero-shot learning.

6.1.3 Active Learning
Active learning has been used to improve the accuracy

of human activity recognition [17, 19, 37] or to model the
interruptibility of a mobile phone user [33]. We extend the
previous work by incorporating active learning in the frame-
work of zero-shot learning for activity recognition, so that
the system is able to not only recognize unseen activities but
also actively request labels from users when possible.

6.1.4 Unsupervised Learning
Another related research direction is unsupervised learn-

ing. Unsupervised learning focuses on clustering or pattern
discovery rather than classification [9, 26]. Although labels
are not required for unsupervised learning approaches, the
output is a set of unnamed clusters which cannot be used for
classification purposes. To perform classification, labels are
still needed to connect the discovered patterns to the actual
classes.

6.1.5 Human Activity Domain
In terms of the activity domain of interest, some previous

work in the area of human activity recognition focused on
daily life activities [9, 18, 36] and some focused on sports
and exercise activities [7, 28]. In this work, we evaluated
our system in both domains to validate its effectiveness in
general unseen activity recognition.

6.2 Zero-Shot Learning
The idea of semantic or human-nameable visual attributes

and zero-shot learning has recently been explored in the field
of computer vision such as object recognition and has been
shown to be useful [13,16,34]. Palatucci et al. presented an
early study on the problem of zero-shot learning [30], where
the goal is to learn a classifier that can predict new classes
that were omitted from the training dataset. A theoretical
analysis is done to study the conditions under which a clas-
sifier can predict novel classes. For case study, the authors
study the problem of decoding the word that a human is
thinking from functional magnetic resonance images (fMRI).
There has also been some previous work on using zero-shot
learning to solve computer vision problems [13, 34]. In [13],
the system does object detection based on a human-specified
high-level description (such as shapes or colors) of the target
objects instead of training images. Compared to our work,
these problem domains are inherently different from activ-
ity recognition because image data are static rather than
sequential. Furthermore, the image attributes and descrip-
tion for visual objects cannot be directly applied to activity
recognition. Inspired by these previous studies, we designed
and implemented a new activity recognition system using
the concept of attribute-based zero-shot learning.

7. CONCLUSION
In this paper, we have presented the design, implementa-

tion, and evaluation of NuActiv, a new activity recognition
system. Existing machine-learning-based approaches can
only classify sensor data as one of the pre-trained classes

in the training data, and thus cannot recognize any pre-
vious unseen class without training data. NuActiv uses
semantic attribute-based learning to recognize unseen new
activity classes by reusing and generalizing the attribute
model learned for other seen activities. An outlier-aware
active learning algorithm is also developed to efficiently im-
proves the recognition accuracy of the system using mini-
mal user feedback. The system achieved up to an average of
79% recognition accuracy on the unseen activity recognition
problem, which could not be solved using existing super-
vised or semi-supervised approaches. Experimental results
also support our hypothesis that using outlier-aware active
learning the system can converge faster to optimal accuracy
using fewer labels from the user.
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