
18786 Recitation
Distributed Machine Learning

A P R 1 1 , 2 0 2 5

Haoran Zhang

Acknowledgement: Some slides are borrowed from 18667
https://www.andrew.cmu.edu/course/18-667/

2

Outline

• Convergence proof for centralized ML

• Distributed ML

• Federated Learning

Lipschitz Smoothness

• A function F (x) is L-Lipschitz smooth if its gradient is Lipschitz

continuous, that is,

krF (x) � rF (y)k Lkx � yk for all x, y 2 Rd

• Intuition: The slope of the function does not change too quickly –

its rate of change is bounded by L

• Example: Is the following function Lipschitz smooth?

F (x) =
1

2
x
2

F
0(x) = x

|F 0(x) � F
0(y)| = |x � y |

Thus, F (x) is Lipschitz smooth with L = 1

23

Important properties
of the objective
function

(1) L-smooth
An upper bound. F(x)
cannot change too
fast

(2) 𝜇-strongly convex
A lower bound. F(x)
cannot change too
slow

Important properties
of the objective
function

(1) L-smooth
An upper bound. F(x)
cannot change too
fast

(2) 𝜇-strongly convex
A lower bound. F(x)
cannot change too
slow

Equivalent Condition to Check L-smoothness

• A function is L-smooth if for any x and y it satisfies the following

upper bound F (x) F (y) + rF (y)>(x � y) +
L

2
kx � yk2

• This is an important bound that we are going to frequently use in

SGD convergence analysis

• Proof: See Appendix B of this lecture’s reading

https://arxiv.org/pdf/1606.04838.pdf

• For more conditions for Lipschitz smoothness check:

http://xingyuzhou.org/blog/notes/Lipschitz-gradient

25

Recall: Convexity

12.1 Convexity, Lipschitzness, and Smoothness 157

non-convex convex

Given ↵ 2 [0, 1], the combination, ↵u + (1 � ↵)v of the points u,v is called a
convex combination.

definition 12.2 (Convex Function) Let C be a convex set. A function f :
C ! R is convex if for every u,v 2 C and ↵ 2 [0, 1],

f(↵u + (1 � ↵)v) ↵f(u) + (1 � ↵)f(v) .

In words, f is convex if for any u,v, the graph of f between u and v lies below
the line segment joining f(u) and f(v). An illustration of a convex function,
f : R ! R, is depicted in the following.

f(u)

f(v)

u

↵u + (1 � ↵)v

v

↵f(u) + (1 � ↵)f(v)

f(↵u + (1 � ↵)v)

The epigraph of a function f is the set

epigraph(f) = {(x, �) : f(x) �}. (12.1)

It is easy to verify that a function f is convex if and only if its epigraph is a
convex set. An illustration of a nonconvex function f : R ! R, along with its
epigraph, is given in the following.

Source: Textbook on Understanding Machine Learning by

Shalev-Schwartz and Ben-David

26

Important properties
of the objective
function

(1) L-smooth
An upper bound. F(x)
cannot change too
fast

(2) 𝜇-strongly convex
A lower bound. F(x)
cannot change too
slow

Consequences of Strong Convexity

A Lower Bound on the Function

If function F (x) is c-strongly convex then

F (x) � F (y) + rF (y)>(x � y) +
1

2
ckx � yk2 for all x, y 2 Rd

Bound on the Optimality Gap

2c(F (x) � F (x⇤)) krF (x)k2 for all x 2 Rd

This is called the Polyak-Lojasiewicz (PL) inequality.

28

Important properties
of the objective
function

(1) L-smooth
An upper bound. F(x)
cannot change too
fast

(2) 𝜇-strongly convex
A lower bound. F(x)
cannot change too
slow

Important properties
of the objective
function

(1) L-smooth
An upper bound. F(x)
cannot change too
fast

(2) 𝜇-strongly convex
A lower bound. F(x)
cannot change too
slow

A c-strongly Convex and L-Smooth Function

Similarly since . Furthermore, applying Jensen’s

inequality for convex functions,

(b) SC = Strongly Convex, SS = Strongly Smooth

10

Satisfies the upper and lower bounds given by

F (x) F (y) + rF (y)>(x � y) +
L

2
kx � yk2

F (x) � F (y) + rF (y)>(x � y) +
1

2
ckx � yk2 for all x, y 2 Rd

Observe that L � c needs to be true for both of the above inequalities to

be satisfied
29

Convergence proof Recap: Gradient Descent (GD)

• GD starts from a random initial point x0 and updates x as follows:

xt+1 = xt � ⌘rF (x) (4)

for a small learning rate ⌘ > 0.

• For convex F and small enough ⌘ GD is guaranteed to converge to

the optimal x⇤

• For non-convex functions it can get stuck at local minima

HOW FAST DOES IT CONVERGE to x⇤?

33

Convergence proof Assumptions on the Objective Function

• F (x) is L-Lipschitz smooth. This implies that

F (x) F (y) + rF (y)>(x � y) +
L

2
kx � yk2

• F (x) is c-strongly convex. This implies that

F (x) � F (y) + rF (y)>(x � y) +
1

2
ckx � yk2 for all x, y 2 Rd

2c(F (x) � F (x⇤)) krF (x)k2 for all x 2 Rd

We are going to show convergence of F (xt) to the optimal value F (x⇤)

under these conditions

34

Convergence proof Convergence Analysis of GD

Starting with the Lipschitz smoothness condition with x replaced by xt+1

and y replaced by xt we have

F (xt+1) � F (xt) rF (xt)
>(xt+1 � xt) +

L

2
kxt+1 � xtk2

 rF (xt)
>(�⌘rF (xt)) +

L

2
k � ⌘rF (xt)k2

 ⌘

✓
1 � L

2
⌘

◆
(�krF (xt)k2)

Now using the strong convexity property 2c(F (x) � F (x⇤)) krF (x)k2

F (xt+1) � F (xt) ⌘

✓
1 � L

2
⌘

◆
(�krF (xt)k2)

 ⌘

✓
1 � L

2
⌘

◆
(�2c(F (xt) � F (x⇤)))

35

Convergence proof Convergence Analysis of GD

Now using the strong convexity property 2c(F (x) � F (x⇤)) krF (x)k2

F (xt+1) � F (xt) ⌘

✓
1 � L

2
⌘

◆
(�krF (xt)k2)

 ⌘

✓
1 � L

2
⌘

◆
(�2c(F (xt) � F (x⇤)))

Assume that ⌘ 1
L . Then

�
1 � L

2⌘
�

� 1
2 . Thus,

F (xt+1) � F (xt) �⌘c(F (xt) � F (x⇤))

F (xt+1)�F (x⇤) + F (x⇤) � F (xt) �⌘c(F (xt) � F (x⇤))

F (xt+1) � F (x⇤) �⌘c(F (xt) � F (x⇤)) + F (xt) � F (x⇤)

F (xt+1) � F (x⇤) (1 � ⌘c)(F (xt) � F (x⇤))

36

Convergence proof Convergence Analysis of GD

From the previous slide we have

F (xt+1) � F (x⇤) (1 � ⌘c)(F (xt) � F (x⇤))

 (1 � ⌘c)2(F (xt�1) � F (x⇤)) continuing recursively

...

 (1 � ⌘c)t+1(F (x0) � F (x⇤))

And we are done!

Convergence of GD

For a c-strongly convex and L-smooth function, if the learning rate

⌘ 1
L and the starting point is x0 then F (xt) after t gradient descent

iterations is bounded as

F (xt) � F (x⇤) (1 � ⌘c)t(F (x0) � F (x⇤))

37This proof is only for full-batch GD

Distributed ML – Why distributed?

13

Why Distributed SGD?

• For large training datasets, it can be prohibitively slow to conduct

training at a single node.

• Solution: Split the dataset across m nodes into partitions D1, D2,

. . .Dm and perform data-parallel distributed training, using an

algorithm that is called Synchronous Distributed SGD

Parameter Server

Worker 1 Worker 2 Worker m

Data D1 Data D2 Data Dm

26

Distributed ML in the Data-center Setting

• We have a massive training dataset, which is shu✏ed and split across

multiple nodes (servers in the cloud, often equipped with GPUs)

• A parameter server aggregates gradients from them using

synchronous, asynchronous, local-update and/or gradient

compression methods that we learned so far

26

Data Collection at Edge Clients

• Edge clients such as cell phone and IoT devices collect massive

amounts of data that can be used to train informative ML models

• Consider the next word prediction service on cell phone keyboards

• Training data – What each user types on their phone

• This data can be used to train language models that can accurately

predict the next word

27Privacy concerns and high communication cost

From Distributed ML to Federated Learning

16

The FedAvg Algorithm

Server Update: Initialize the model xt , and for each communication

round t = 1, . . .T . At the t-th round, do the following:

• Select a set St of m out of the K clients, uniformly at random

• Perform ClientUpdate(i , xt) at the chosen clients, and receive x(i)t+1

from client i 2 St

• Aggregate the updates: xt+1 =
P

i2St
pix

(i)
t+1

Client Updates: ClientUpdate(i , xt)

• Initialize the local model x(i)t,0 xt for ⌧i =
Eni
B local updates

• For local iteration index j = 0, . . . , ⌧i � 1 do the following:

• Sample minibatch ⇠j from the local dataset Di , and make the local

update

x(i)t,j+1 = x(i)t,j � ⌘g(x(i)t,j , ⇠j)

• Return x(i)t+1 x(i)t,⌧i to the server

37

E↵ect of Data Heterogeneity

• MNIST (handwritten digit dataset) IID experiment – shu✏e and

partition the data across 100 clients, each receiving 600 examples

• MNIST (handwritten digit dataset) non-IID experiment – the data

sorted by labels and divided into 200 shards of size 300 and each of

the 100 clients receives 2 shards (at most 2 digits)

• Two di↵erent neural networks, a 2-hidden layer perceptron (2NN)

and 2-layer convolutional network (CNN) trained on these datasets

38
McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.

Multi-Model Federated Learning

Keyboard prediction Predicting text selection Speech model

Examples: Multiple FL applications on one device.

20

Source: federated.withgoogle.com

Multi-Model Federated Learning

21

Model 1:

Server

Clients:

Model 2:

Model S:

…… … ………

Key assumptions from previous work [1]

In each round, the server only allows partial participation,
and each active client can only train one model.

1) Partial Participation: reduce communication cost

2) Only train one model: computational constraints

Multi-model federated learning

[1] Bhuyan, Neelkamal, Sharayu Moharir, and Gauri Joshi. “Multi-model federated learning with
provable guarantees.” EAI International Conference on Performance Evaluation Methodologies
and Tools. Cham: Springer Nature Switzerland, 2022.

Multi-Model Federated Learning

22

Multi-model federated learning

Model 1:

Server

Clients:

Model 2:

Model S:

…… … ………

In each round, the server only allows partial participation,
and each active client can only train one model.

1) Partial Participation: reduce communication cost

2) Only train one model: computational constraints

Key assumptions from previous work [1]

[1] Bhuyan, Neelkamal, Sharayu Moharir, and Gauri Joshi. “Multi-model federated learning with
provable guarantees.” EAI International Conference on Performance Evaluation Methodologies
and Tools. Cham: Springer Nature Switzerland, 2022.

23

MMFL Optimal Variance-Reduced Sampling

Client i

FL models

ServerIn Round 𝝉

2. Probability
feedback

Probability vector

3. Upload updated model parameters
to the server

[0.6, 0.1, 0.1, 0.2]

…

Decide model

1. “importance” measure

Idea: the server prefers selecting more “important” clients.

1. How to ensure unbiased training?
2. How to measure “importance?”

In each global round (Aggregation):

24

MMFL Optimal Variance-Reduced Sampling

Client i

FL models

ServerIn Round 𝝉

Probability vector
Decide model

[0.6, 0.1, 0.1, 0.2]

…

𝑤!"#$ = 𝑤!" − %
%∈𝒜!,#

𝑑%,!
𝑝!|%"

𝑈%,!"

𝑑%,! =
*$,#

∑%&'
(*%,#

: dataset	size	ratio.

𝑈%,!" = 𝜂" ∑,-$. ∇𝑓%,!
,,": local update.

𝑝!|%" : probability of assigning client 𝑖 to model 𝑠.

𝒜",!: set of assigned clients for model 𝑠.

In each global round (Aggregation):

25

MMFL Optimal Variance-Reduced Sampling

Client i

FL models

Server

Probability vector
Decide model

[0.6, 0.1, 0.1, 0.2]

…

𝑤!"#$ = 𝑤!" − %
%∈𝒜!,#

𝑑%,!
𝑝!|%"

𝑈%,!"

Unbiased Training:

𝔼 ∑%∈𝒜!,#
/$,#
0#|$
! 𝑈%,!"

= 𝔼 ∑%-$1 /$,#
0#|$
! 𝑈%,!" 1%∈𝒜!,#

= ∑%-$1 𝑑%,!𝑈%,!"

In Round 𝝉

MMFL optimal variance-reduced sampling

26

Random Variable 𝑋

𝔼[𝑋] is given.
𝑤!"#$ = 𝑤!" − %

%∈𝒜!,#

𝑑%,!
𝑝!|%"

𝑈%,!"

Aggregation:

MMFL optimal variance-reduced sampling

27

High variance of 𝑋 can make the training unstable…
Therefore, define our objective:

𝑤!"

𝑤!"2$

The optimal model weights 𝑤!∗

Full participation update
𝔼[𝑋]

Sampled update
𝑋 = 𝑥′

𝑤!"#$𝑋 = 𝑥$

𝑋 = 𝑥4

High 𝑉𝑎𝑟(𝑋)

Random Variable 𝑋

𝔼[𝑋] is given.
𝑤!"#$ = 𝑤!" − %

%∈𝒜!,#

𝑑%,!
𝑝!|%"

𝑈%,!"

Aggregation:

MMFL optimal variance-reduced sampling

28

High variance of 𝑋 can make the training unstable…
Therefore, define our objective:

𝑤!"

𝑤!"2$

The optimal model weights 𝑤!∗

Full participation update
𝔼[𝑋]

Sampled update
𝑋 = 𝑥′

𝑤!"#$

Low 𝑉𝑎𝑟(𝑋)

Notice: variance is an ideal objective to stabilize
the training, but there could be other factors…
(will further discuss later)

Random Variable 𝑋

𝔼[𝑋] is given.
𝑤!"#$ = 𝑤!" − %

%∈𝒜!,#

𝑑%,!
𝑝!|%"

𝑈%,!"

Aggregation:

MMFL Optimal Variance-Reduced Sampling

29

τ: global round number
𝑖: client index
𝑠: model index
𝑚: expected number of
active clients
𝑑%,!: dataset size ratio
𝑡: local epoch number
𝒜",!: set of active clients

Minimizing the variance of update

MMFL Optimal Variance-Reduced Sampling

30

Closed-form solution of the problem

Proof: https://tinyurl.com/mmflos

τ: global round number
𝑖: client index
𝑠: model index
𝑚: expected number of
active clients
𝑑%,!: dataset size ratio
𝑡: local epoch number
𝒜",!: set of active clients

Full participation (N=4) Partial participation (active=2)
i=1 i=2 i=3

i=4

Aggregation
i=1 i=2 i=3

i=4
Aggregation

Experiments

31

3 Models: all Fashion-MNIST.
N=120 clients
m=12 (active rate=0.1)
Each client: 30% labels.

For each model: 10% high-data
clients, 90% low-data clients.
10% clients hold 52.6% data of
each task.

25% clients: 𝐵% = 3
50% clients: 𝐵% = 2
25% clients: 𝐵% = 1

Experiments

32

Experiments

33

3 Models: all Fashion-MNIST.

5 Models: two Fashion-MNIST,
one CIFAR-10, one EMNIST, one
Shakespeare.

10% clients only have data for
S-1 models.

