HAORAN ZHANG

Phone: (+1) 412-514-7332 \diamond Email: haoranz5@andrew.cmu.edu

Homepage: users.ece.cmu.edu/~haoranz5

Google Scholar \diamond Github \diamond LinkedIn

EDUCATION

Carnegie Mellon University (CMU) M.S. in Electrical and Computer Engineering (Advanced Study) GPA: 4.0/4.0	May 2025 (expected)
Huazhong University of Science and Technology (HUST) B.E. in Automation (Advanced Class), School of Artificial Intelligence and GPA: 3.9/4.0 GRE: 327+3.5	June 2023 d Automation
The Technical University of Munich (TUM)	April 2023 - August 2023

Exchange student in Electrical Engineering Department

RESEARCH INTERESTS

My research focuses on optimizing federated learning (a type of distributed ML) systems through theoretical insights. I am also interested in system-level optimization for large-scale ML deployments, mathematical analysis of ML algorithms, and exploring new fields.

RESEARCH EXPERIENCE

Variance-Reduced Sampling in Multi-Model Federated Learning [1]Jan 2024 - Jul 2024Supervisors: Dr. Marie Siew, Prof. Carlee Joe-Wong, and Prof. Rachid El-AzouziCMU

- \cdot Proposed a client sampling approach to minimize the update variance for MMFL, boosting average accuracy across models by over 30% compared to random sampling.
- · Presented preliminary findings at ICDCS 2024, receiving the **Best Poster Award**.

Towards Optimal Sampling in Multi-Model Federated Learning [2], [3] Jan 2024 - Present Supervisors: Dr. Marie Siew, Prof. Carlee Joe-Wong, and Prof. Rachid El-Azouzi CMU

- Extended sampling process to a "multi-processor" level to incorporate device heterogeneity in MMFL.
- Proposed a cost-efficient sampling method to approximate the computation-intensive method presented in [1], making the approach more feasible for large-scale deployment.
- \cdot Improved training efficiency by integrating stale updates in the aggregation process, achieving a mere 4% accuracy gap with only 10% client participation versus full participation (100% clients).
- \cdot Conducted convergence analysis to explain the impact of different sampling methods on training.
- \cdot Developed an MMFL algorithm that organizes client sampling in a group-based manner, improving convergence speed by up to 15% through increased intra-group homogeneity.

Task Fairness in Multi-Model Federated Learning [4]	Jan 2024 - Mar 2024
Supervisors: Dr. Marie Siew and Prof. Carlee Joe-Wong	CMU

- \cdot Evaluated the FedFairMMFL algorithm across diverse multi-model settings, demonstrating improved fairness with 10 models and implemented q-FEL as a baseline.
- \cdot Optimized the codebase for clarity and GPU efficiency, streamlining experimental workflows.
- \cdot Explored a Bayesian-based sampling probability model to accelerate convergence under extreme client heterogeneity settings.

Efficient Medical Segmentation and Domain-adversarial Learning [5] Feb - Nov 2022

Supervisor: Prof. Hao Chen

The Hong Kong University of Science & Technology (HKUST)

- \cdot Proposed a pyramidally downsampled 3D Transformer, improving the model's accuracy by 1.72% and efficiency by 12% on brain stroke lesion and prostate segmentation tasks.
- · Introduced a cluster-based domain-adversarial learning method to exploit domains at a fine-grained level, improving generalization ability by 2.61% on multi-domains segmentation tasks.
- · Finished the code and manuscript (publised at ISBI 2023) independently.

4D Artery Reconstruction and Motion Magnification Apr - Aug 2023 TUM

Supervisor: Dr. Zhongliang Jiang

- · Implemented motion magnification algorithm to enhance the motion of the artery, facilitating the detection of potential diseases of arteries (demo: tinyurl.com/m-Magnification).
- · Implemented a method based on the Transformer and Siamese-like network for tracking 2D arteries from ultrasound videos (demo: tinyurl.com/arterytrack).

DNA Computing and Molecular Circuits Design (Undergrad Thesis) Sep 2022 - Jun 2023 Supervisor: Prof. Lingiang Pan HUST

• Designed DNA switching circuits to simulate the computational devices made of DNA.

· Simulated and synthesized multiple 3D nanostructures using DNA origami.

PUBLICATIONS

- [1] H. Zhang, Z. Li, Z. Gong, M. Siew, C. Joe-Wong, and R. El-Azouzi, "Poster: Optimal variancereduced client sampling for multiple models federated learning," in 2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS), Best Poster Award, IEEE, 2024.
- [2] H. Zhang, Z. Gong, Z. Li, M. Siew, C. Joe-Wong, and R. El-Azouzi, "Federated learning paper," Under Review.
- [3] Z. Gong^{*}, H. Zhang^{*}, M. Siew, C. Joe-Wong, and R. El-Azouzi, "Group-based client sampling in multi-model federated learning," Under Review at ICASSP 2025 (* for equal contribution).
- [4] M. Siew, H. Zhang, J.-I. Park, et al., "Fair concurrent training of multiple models in federated learning," arXiv preprint arXiv:2404.13841, 2024.
- H. Zhang and H. Chen, "Efficient 3d transformer with cluster-based domain-adversarial learning [5]for 3d medical image segmentation," in 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), IEEE, 2023, pp. 1–5.

ACHIEVEMENTS

Summer 2024
Summer 2023
Fall 2022
Summer 2022
Fall 2020
Fall 2020
Fall 2019

SKILLS/HOBBIES

Programming Languages	Python, C, C++, MATLAB
Machine Learning Tools	Pytorch, Tensorflow, Sklearn, Pandas, Numpy, MONAI
Hobbies	birding and hiking