Carnegie Mellon University

Towards Optimal Heterogeneous Client Sampling in Multi-Model Federated Learning

SEP 27, 2024

Haoran Zhang, Zejun Gong, Zekai Li, Marie Siew, Carlee Joe-Wong, Rachid El-Azouzi

Outline

• Introduction

Federated learning (FL)

Multi-model federated learning (MMFL)

- Variance-reduced client sampling in a simple MMFL system
- Modeling computational heterogeneity in MMFL
- Experiments

Federated Learning

Distributed learning with unshared local data

Server:

- 1 Receive updates from clients
- 2 Aggregate local updates for a better global model
- 3 Broadcast new model parameters to clients

Local client (device):

- 1 Get global model parameters
- 2 Train model parameters with local data
- 3 Send updated parameters to the server

Carnegie Mellon University

Examples: Multiple FL applications on one device.

Keyboard prediction

Predicting text selection

Sounds good. Let's meet at 350 Third Street, Cambridge later then Speech model

Source: federated.withgoogle.com

4

Key assumptions from previous work [1]

In each round, the server only allows <u>partial participation</u>, and each active client <u>can only train one model</u>.

1) Partial Participation: reduce communication cost

2) Only train one model: computational constraints

Multi-model federated learning

5 [1] Bhuyan, Neelkamal, Sharayu Moharir, and Gauri Joshi. "Multi-model federated learning with provable guarantees." *EAI International Conference on Performance Evaluation Methodologies and Tools.* Cham: Springer Nature Switzerland, 2022.

Key assumptions from previous work [1]

In each round, the server only allows <u>partial participation</u>, and each active client <u>can only train one model</u>.

1) Partial Participation: reduce communication cost

2) Only train one model: computational constraints

Multi-model federated learning

6 [1] Bhuyan, Neelkamal, Sharayu Moharir, and Gauri Joshi. "Multi-model federated learning with provable guarantees." *EAI International Conference on Performance Evaluation Methodologies and Tools*. Cham: Springer Nature Switzerland, 2022.

Idea: the server prefers selecting more "important" clients.

Idea: the server prefers selecting more "important" clients.

Idea: the server prefers selecting more "important" clients.

Idea: the server prefers selecting more "important" clients.

Idea: the server prefers selecting more "important" clients.

MMFL optimal variance-reduced sampling

Aggregation:

$$w_{s}^{\tau+1} = w_{s}^{\tau} - \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}^{\tau}} U_{i,s}^{\tau}$$

Random Variable X

 $\mathbb{E}[X]$ is given.

MMFL optimal variance-reduced sampling

Aggregation:

$$w_s^{\tau+1} = w_s^{\tau} - \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}^{\tau}} U_{i,s}^{\tau}$$

High variance of X can make the training unstable... Therefore, define our objective:

$$\min_{\{p_{s|i}^{\tau}\}} \sum_{s=1}^{S} \mathbb{E}_{\mathcal{A}_{\tau,s}} \left[\| \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}^{\tau}} U_{i,s}^{\tau} - \sum_{i=1}^{N} d_{i,s} U_{i,s}^{\tau} \|^2 \right]$$

MMFL optimal variance-reduced sampling

Aggregation:

$$w_{s}^{\tau+1} = w_{s}^{\tau} - \sum_{i \in \mathcal{A}_{\tau s}} \frac{d_{i,s}}{p_{s|i}^{\tau}} U_{i,s}^{\tau}$$

High variance of X can make the training unstable... Therefore, define our objective:

$$\min_{\{p_{s|i}^{\tau}\}} \sum_{s=1}^{S} \mathbb{E}_{\mathcal{A}_{\tau,s}} \left[\| \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}^{\tau}} U_{i,s}^{\tau} - \sum_{i=1}^{N} d_{i,s} U_{i,s}^{\tau} \|^2 \right]$$

Notice: variance is an ideal objective to stabilize the training, but there could be other factors... (will further discuss later)

$$\begin{split} \min_{\{p_{s|i}^{\tau}\}} \; & \sum_{s=1}^{S} \mathbb{E}_{\mathcal{A}_{\tau,s}} \left[\| \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}^{\tau}} U_{i,s}^{\tau} - \sum_{i=1}^{N} d_{i,s} U_{i,s}^{\tau} \|^{2} \right] \\ \text{s.t.} \; p_{s|i}^{\tau} \geq 0, \; & \sum_{s=1}^{S} p_{s|i}^{\tau} \leq 1, \; \sum_{s=1}^{S} \sum_{i=1}^{N} p_{s|i}^{\tau} = m \quad \forall i,s \end{split}$$

Minimizing the variance of update

τ: global round number *i*: client index *s*: model index *m*: expected number of active clients $d_{i,s}$: dataset size ratio *t*: local epoch number $\mathcal{A}_{\tau,s}$: set of active clients

Carnegie Mellon University

Closed-form solution of the problem

$$p_{s|i}^{\tau} = \begin{cases} (m - N + k) \frac{\|\tilde{U}_{i,s}^{\tau}\|}{\sum_{j=1}^{k} M_{j}^{\tau}} & \text{if } i = 1, 2, \cdots, k, \\ \frac{\|\tilde{U}_{i,s}^{\tau}\|}{M_{i}^{\tau}} & \text{if } i = k+1, \cdots, N. \end{cases}$$
(5)

where $\|\tilde{U}_{i,s}^{\tau}\| = \|d_{i,s}U_{i,s}^{\tau}\|$ and $M_i^{\tau} = \sum_{s=1}^{S} \|\tilde{U}_{i,s}^{\tau}\|$. We reorder clients such that $M_i^{\tau} \leq M_{i+1}^{\tau}$ for all *i*, and *k* is the largest integer for which $0 < (m - N + k) \leq \frac{\sum_{j=1}^{k} M_j^{\tau}}{M_k^{\tau}}$.

τ: global round number *i*: client index *s*: model index *m*: expected number of active clients $d_{i,s}$: dataset size ratio *t*: local epoch number $\mathcal{A}_{\tau,s}$: set of active clients

Closed-form solution of the problem

$$p_{s|i}^{\tau} = \begin{cases} (m - N + k) \frac{\|\tilde{U}_{i,s}^{\tau}\|}{\sum_{j=1}^{k} M_{j}^{\tau}} & \text{if } i = 1, 2, \cdots, k, \\ \frac{\|\tilde{U}_{i,s}^{\tau}\|}{M_{i}^{\tau}} & \text{if } i = k+1, \cdots, N. \end{cases}$$
(5)

where $\|\tilde{U}_{i,s}^{\tau}\| = \|d_{i,s}U_{i,s}^{\tau}\|$ and $M_i^{\tau} = \sum_{s=1}^{S} \|\tilde{U}_{i,s}^{\tau}\|$. We reorder clients such that $M_i^{\tau} \leq M_{i+1}^{\tau}$ for all *i*, and *k* is the largest integer for which $0 < (m - N + k) \leq \frac{\sum_{j=1}^{k} M_j^{\tau}}{M_k^{\tau}}$.

τ: global round number *i*: client index *s*: model index *m*: expected number of active clients $d_{i,s}$: dataset size ratio *t*: local epoch number $\mathcal{A}_{\tau,s}$: set of active clients

Gradient-based Variance-Reduce Sampling (GVR) Computing the gradient norm is too expensive on the client side!

19 Proof: https://tinyurl.com/mmflos

Reduce computational cost

Computing the gradient norm is too expensive on the client side.

τ: global round number *i*: client index *s*: model index *m*: expected number of active clients $d_{i,s}$: dataset size ratio *t*: local epoch number $\mathcal{A}_{\tau,s}$: set of active clients

Loss-based Variance-Reduced Sampling (LVR)

Reduce computational cost

Computing the gradient norm is too expensive on the client side.

τ: global round number *i*: client index *s*: model index *m*: expected number of active clients $d_{i,s}$: dataset size ratio *t*: local epoch number $\mathcal{A}_{\tau,s}$: set of active clients

Now we have two methods to optimize the sampling distribution. Can we analyze their influence on convergence speed?

Carnegie Mellon University

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.) We modified and adapted the proof from [2].

Theorem 4 (Convergence). Let w_s^* denote the optimal weights of model s. If the learning rate $\eta_{\tau} = \frac{16}{\mu} \frac{1}{(\tau+1)K+\gamma}$, then

$$\mathbb{E}\left(\|w_s^{\tau} - w_s^*\|^2\right) \le \frac{V_{\tau}}{(\tau K + \gamma_{\tau})^2} \tag{413}$$

$$\begin{split} & \text{Here we define } \gamma_{\tau} = \max\{\frac{32L}{\mu}, 4K \sum_{i \in \mathcal{N}_{s}} \mathbb{1}_{i}^{s,\tau} P_{i,s}^{\tau}\} \\ & V_{\tau} = \max\{\gamma_{\tau}^{2} \mathbb{E}(\|w_{s}^{0} - w_{s}^{*}\|^{2}), (\frac{16}{\mu})^{2} \sum_{\tau'=0}^{\tau-1} z_{\tau'}\}, \\ & z_{\tau'} = \mathbb{E}[Z_{g}^{\tau'} + Z_{l}^{\tau'} + Z_{p}^{\tau'}], \\ & \mathbb{E}[Z_{g}^{\tau}] = K \sum_{i \in \mathcal{N}_{s}} \frac{(d_{i,s}\sigma_{i,s})^{2}}{p_{s|i}^{\tau}} + 4LK \sum_{i \in \mathcal{N}_{s}} d_{i,s}\Gamma_{i,s} + \max(\frac{1}{d_{i,s}})\mathbb{E}[\sum_{i \in \mathcal{N}_{s}} \frac{(d_{i,s})^{2} \sum_{t=1}^{K} \|\nabla f_{i,s}(w_{i,s}^{t,\tau})\|^{2}}{p_{s|i}^{\tau}}], \\ & \mathbb{E}[Z_{l}^{\tau}] = R\mathbb{E}[|\mathcal{N}_{s}| \sum_{i \in \mathcal{N}_{s}} (\mathbbm{1}_{i}^{s,\tau} P_{i,s}^{\tau} f_{i,s}(w_{s}^{\tau}) - d_{i,s}f_{i,s}(w_{s}^{\tau}))^{2}], \ where \ R = \frac{2K^{3}\bar{\sigma}^{2}}{e_{w}^{2}e_{f}^{2}\theta}, \\ & \mathbb{E}[Z_{p}^{\tau}] = (\frac{2}{\theta} + K(2 + \frac{\mu}{2L}))K^{2}\bar{\sigma}^{2} + \frac{2K^{3}\bar{\sigma}^{2}}{\theta}\mathbb{E}[(\sum_{i \in \mathcal{N}_{s}} \mathbbm{1}_{i}^{s,\tau} P_{i,s}^{\tau} - 1)^{2}]. \end{split}$$

[2] Ruan, Yichen, et al. "Towards flexible device participation in federated learning." *International Conference on Artificial Intelligence and Statistics*. PMLR, 2021.

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.) We modified and adapted the proof from [2].

$$\begin{split} \mathbb{E}[Z_{g}^{\tau}] &= K \sum_{i \in \mathcal{N}_{s}} \frac{(d_{i,s}\sigma_{i,s})^{2}}{p_{s|i}^{\tau}} + 4LK \sum_{i \in \mathcal{N}_{s}} d_{i,s}\Gamma_{i,s} + \max(\frac{1}{d_{i,s}}) \mathbb{E}[\sum_{i \in \mathcal{N}_{s}} \frac{(d_{i,s})^{2} \sum_{t=1}^{K} \|\nabla f_{i,s}(w_{i,s}^{t,\tau})\|^{2}}{p_{s|i}^{\tau}}] \\ \mathbb{E}[Z_{l}^{\tau}] &= R\mathbb{E}[|\mathcal{N}_{s}| \sum_{i \in \mathcal{N}_{s}} (\mathbbm{1}_{i}^{s,\tau} P_{i,s}^{\tau} f_{i,s}(w_{s}^{\tau}) - d_{i,s} f_{i,s}(w_{s}^{\tau}))^{2}], \text{ where } R = \frac{2K^{3}\bar{\sigma}^{2}}{e_{w}^{2}e_{f}^{2}\theta}, \\ \mathbb{E}[Z_{p}^{\tau}] &= (\frac{2}{\theta} + K(2 + \frac{\mu}{2L}))K^{2}\bar{\sigma}^{2} + \frac{2K^{3}\bar{\sigma}^{2}}{\theta}\mathbb{E}[(\sum_{i \in \mathcal{N}_{s}} \mathbbm{1}_{i}^{s,\tau} P_{i,s}^{\tau} - 1)^{2}]. \end{split}$$

 $\mathbb{E}[Z_g^{\tau}]$ -> Sampled update variance (GVR)

In the proof: https://tinyurl.com/mmflos

From the upper bound to variance term: $\left\|\sum_{t=1}^{K} \nabla f_{i,s}\right\|^{2} \leq K \sum_{t=1}^{K} \left\|\nabla f_{i,s}\right\|^{2} (\text{GM-HM inequality})$

$$= \sum_{s=1}^{S} \left[\mathbb{E} \left[\left\| \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}^{\tau}} U_{i,s}^{\tau} \right\|^{2} \right] - \left\| \sum_{i=1}^{N} d_{i,s} U_{i,s}^{\tau} \right\|^{2} \right] \right]$$
(9)

$$= \sum_{s=1}^{S} \left[\mathbb{E} \left[\sum_{i,j} \frac{d_{i,s} (U_{i,s}^{\tau})^{\top}}{p_{s|i}^{\tau}} \frac{d_{j,s} U_{j,s}^{\tau}}{p_{s|j}^{\tau}} \mathbb{1}_{i,j \in \mathcal{A}_{\tau,s}} \right] - \sum_{i,j} d_{i,s} d_{j,s} (U_{i,s}^{\tau})^{\top} U_{j,s}^{\tau} \right]$$
(10)

$$= \sum_{s=1}^{S} \left[\sum_{i \neq j} d_{i,s} (U_{i,s}^{\tau})^{\top} d_{j,s} U_{j,s}^{\tau} + \sum_{i=1}^{N} \frac{d_{i,s}^{2} (U_{i,s}^{\tau})^{\top} U_{i,s}^{\tau}}{p_{s|i}^{\tau}} - \sum_{i,j} d_{i,s} d_{j,s} (U_{i,s}^{\tau})^{\top} U_{j,s}^{\tau} \right]$$
(11)

$$= \sum_{s=1}^{S} \left(\sum_{i=1}^{N} \left(\frac{\| d_{i,s} U_{i,s}^{\tau} \|^{2}}{p_{s|i}^{\tau}} - \| d_{i,s} U_{i,s}^{\tau} \|^{2} \right) \right)$$
(12)

$$= \sum_{s=1}^{S} \sum_{i=1}^{N} \frac{\| d_{i,s} U_{i,s}^{\tau} \|^{2}}{p_{s|i}^{\tau}} - \sum_{s=1}^{S} \sum_{i=1}^{N} \| d_{i,s} U_{i,s}^{\tau} \|^{2}$$
(13)

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.) We modified and adapted the proof from [2].

$$\begin{split} \mathbb{E}[Z_{g}^{\tau}] &= K \sum_{i \in \mathcal{N}_{s}} \frac{(d_{i,s}\sigma_{i,s})^{2}}{p_{s|i}^{\tau}} + 4LK \sum_{i \in \mathcal{N}_{s}} d_{i,s}\Gamma_{i,s} + \max(\frac{1}{d_{i,s}}) \mathbb{E}[\sum_{i \in \mathcal{N}_{s}} \frac{(d_{i,s})^{2} \sum_{t=1}^{K} \|\nabla f_{i,s}(w_{i,s}^{t,\tau})\|^{2}}{p_{s|i}^{\tau}}], \\ \mathbb{E}[Z_{l}^{\tau}] &= R\mathbb{E}[|\mathcal{N}_{s}| \left[\sum_{i \in \mathcal{N}_{s}} (\mathbbm{1}_{i}^{s,\tau} P_{i,s}^{\tau} f_{i,s}(w_{s}^{\tau}) - d_{i,s} f_{i,s}(w_{s}^{\tau}))^{2}\right], \text{ where } R = \frac{2K^{3}\bar{\sigma}^{2}}{e_{w}^{2}e_{f}^{2}\theta}, \\ \mathbb{E}[Z_{p}^{\tau}] &= (\frac{2}{\theta} + K(2 + \frac{\mu}{2L}))K^{2}\bar{\sigma}^{2} + \frac{2K^{3}\bar{\sigma}^{2}}{\theta}\mathbb{E}[(\sum_{i \in \mathcal{N}_{s}} \mathbbm{1}_{i}^{s,\tau} P_{i,s}^{\tau} - 1)^{2}]. \end{split}$$

 $\mathbb{E}[Z_l^{\tau}]$ -> Sampled loss variance (LVR), with similar GM-HM inequality.

$$\begin{split} \min_{\{p_{s|i}^{\tau}\}} & \sum_{s=1}^{S} \mathbb{E}_{\mathcal{A}_{\tau,s}} \left[\| \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}^{\tau}} U_{i,s}^{\tau} - \sum_{i=1}^{N} d_{i,s} U_{i,s}^{\tau} \|^{2} \right] \\ \text{s.t.} & p_{s|i}^{\tau} \geq 0, \ \sum_{s=1}^{S} p_{s|i}^{\tau} \leq 1, \ \sum_{s=1}^{S} \sum_{i=1}^{N} p_{s|i}^{\tau} = m \quad \forall i, s \end{split}$$

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.) We modified and adapted the proof from [2].

$$\begin{split} \mathbb{E}[Z_{g}^{\tau}] &= K \sum_{i \in \mathcal{N}_{s}} \frac{(d_{i,s}\sigma_{i,s})^{2}}{p_{s|i}^{\tau}} + 4LK \sum_{i \in \mathcal{N}_{s}} d_{i,s}\Gamma_{i,s} + \max(\frac{1}{d_{i,s}}) \mathbb{E}[\sum_{i \in \mathcal{N}_{s}} \frac{(d_{i,s})^{2} \sum_{t=1}^{K} \|\nabla f_{i,s}(w_{i,s}^{t,\tau})\|^{2}}{p_{s|i}^{\tau}}], \\ \mathbb{E}[Z_{l}^{\tau}] &= R\mathbb{E}[|\mathcal{N}_{s}| \sum_{i \in \mathcal{N}_{s}} (\mathbbm{1}_{i}^{s,\tau} P_{i,s}^{\tau} f_{i,s}(w_{s}^{\tau}) - d_{i,s} f_{i,s}(w_{s}^{\tau}))^{2}], \text{ where } R = \frac{2K^{3}\bar{\sigma}^{2}}{e_{w}^{2}}e_{f}^{2}\theta}, \\ \mathbb{E}[Z_{p}^{\tau}] &= (\frac{2}{\theta} + K(2 + \frac{\mu}{2L}))K^{2}\bar{\sigma}^{2} + \frac{2K^{3}\bar{\sigma}^{2}}{\theta} \mathbb{E}[(\sum_{i \in \mathcal{N}_{s}} \mathbbm{1}_{i}^{s,\tau} P_{i,s}^{\tau} - 1)^{2}]. \\ P_{i,s}^{\tau} &= \frac{d_{i,s}}{p_{s|i}^{\tau}} \end{split}$$

 $\mathbb{E}[Z_p^{\tau}]$ -> Participation heterogeneity (or variance).

The red term is only related to dataset distribution and sampling distribution.

What is the meaning of this term?

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.) We modified and adapted the proof from [2].

$$\mathbb{E}[Z_p^{\tau}] = \left(\frac{2}{\theta} + K\left(2 + \frac{\mu}{2L}\right)\right)K^2\bar{\sigma}^2 + \frac{2K^3\bar{\sigma}^2}{\theta}\mathbb{E}\left[\left(\sum_{i\in\mathcal{N}_s}\mathbbm{1}_i^{s,\tau}P_{i,s}^{\tau} - 1\right)^2\right].$$
$$P_{i,s}^{\tau} = \frac{d_{i,s}}{p_{s|i}^{\tau}}$$

 $\mathbb{E}[Z_p^{\tau}]$ -> Participation heterogeneity (or variance) Recall our global aggregation rule:

$$w_s^{\tau+1} = w_s^{\tau} - \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}^{\tau}} U_{i,s}^{\tau}$$

Can be rewritten as:

$$w_s^{\tau+1} = w_s^{\tau} - (H_s^{\tau})^{\mathsf{T}} U_s^{\tau}$$

$$H_{S}^{\tau} = \left[\cdots, 1_{i}^{s,\tau} P_{i,s}^{\tau}, \cdots\right]^{\mathsf{T}}, U_{S}^{\tau} = \left[\cdots, U_{i,s}^{\tau}, \cdots\right]$$
26

Based on some common assumptions (L-smoothness, mu-strongly convex, etc.) We modified and adapted the proof from [2].

$$\mathbb{E}[Z_p^{\tau}] = \left(\frac{2}{\theta} + K\left(2 + \frac{\mu}{2L}\right)\right)K^2\bar{\sigma}^2 + \frac{2K^3\bar{\sigma}^2}{\theta}\mathbb{E}\left[\left(\sum_{i\in\mathcal{N}_s}\mathbbm{1}_i^{s,\tau}P_{i,s}^{\tau} - 1\right)^2\right].$$
$$P_{i,s}^{\tau} = \frac{d_{i,s}}{p_{s|i}^{\tau}}$$

 $\mathbb{E}[Z_p^{\tau}]$ -> Participation heterogeneity (or variance) Recall our global aggregation rule:

$$w_{s}^{\tau+1} = w_{s}^{\tau} - \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}}{p_{s|i}^{\tau}} U_{i,s}^{\tau}$$

Can be rewritten as:

$$w_s^{\tau+1} = w_s^{\tau} - (H_s^{\tau})^{\mathsf{T}} U_s^{\tau}$$

$$H_{s}^{\tau} = \left[\cdots, 1_{i}^{s,\tau} P_{i,s}^{\tau}, \cdots\right]^{\mathsf{T}}, U_{s}^{\tau} = \left[\cdots, U_{i,s}^{\tau}, \cdots\right]$$
27

$$|H_{s}^{\tau}|_{1} = \sum_{i=1}^{N} 1_{i}^{s,\tau} P_{i,s}^{\tau} = \sum_{i=1}^{N} 1_{i}^{s,\tau} \frac{d_{i,s}}{p_{s|i}^{\tau}}$$

Notice $\mathbb{E}[|H_s^{\tau}|_1] = 1$, therefore

 $red term = \mathbb{E}[(|H_s^{\tau}|_1 - 1)^2]$

This is also a variance!

How does this variance influence the training?

The influence of participation heterogeneity

$$|H_{S}^{\tau}|_{1} = \sum_{i=1}^{N} \mathbb{1}_{i}^{s,\tau} P_{i,s}^{\tau} = \sum_{i=1}^{N} \mathbb{1}_{i}^{s,\tau} \frac{d_{i,s}}{p_{s|i}^{\tau}}$$
$$Var_{H} = \mathbb{E}[(|H_{S}^{\tau}|_{1} - 1)^{2}]$$

High Var_H : $|H_s^{\tau}|_1$ may change a lot across rounds.

Lead to unstable "global step."

 $w_s^{\tau+1} = w_s^{\tau} - (H_s^{\tau})^{\top} U_s^{\tau}$

Impact the training especially at the end stage of the training.

28

Compare GVR and LVR

 $w_s^{\tau+1} = w_s^{\tau} - (H_s^{\tau})^{\top} U_s^{\tau}$

How to mitigate the impact of unstable "global step?"

Mitigate the impact of participation heterogeneity

Previous Aggregation Rule: $|H^{\tau}|_{A}$

$$|H_{s}^{\tau}|_{1} = \sum_{i=1}^{N} 1_{i}^{s,\tau} P_{i,s}^{\tau} = \sum_{i=1}^{N} 1_{i}^{s,\tau} \frac{d_{i,s}}{p_{s|i}^{\tau}}$$
$$w_{s}^{\tau+1} = w_{s}^{\tau} - (H_{s}^{\tau})^{\top} U_{s}^{\tau}$$

New Aggregation Rule [3]:

$$w_{s}^{\tau+1} = w_{s}^{\tau} - \left(\sum_{i=1}^{N} d_{i,s}h_{i,s}^{\tau} + \sum_{i \in \mathcal{A}_{\tau,s}} \frac{d_{i,s}\left(U_{i,s}^{\tau} - h_{i,s}^{\tau}\right)}{p_{s|i}^{\tau}}\right)$$
$$h_{i,s}^{\tau} = \begin{cases} U_{i,s}^{\tau-1}, & \text{if } i \in \mathcal{A}_{\tau-1,s}\\ h_{i,s}^{\tau-1}, & \text{if } i \in \mathcal{A}_{\tau-1,s} \end{cases}$$

 $U_{i,s}^{\tau} - h_{i,s}^{\tau}$ should be small. Even though $|H_s^{\tau}|_1$ has a high variance, the impact is small.

Server stores stale updates from clients, and use stale updates to stabilize the training. **GVR***

30 [3] Jhunjhunwala, Divyansh, et al. "Fedvarp: Tackling the variance due to partial client participation in federated learning." *Uncertainty in Artificial Intelligence*. PMLR, 2022.

Outline

• Introduction

Federated learning (FL) 🗸

Multi-model federated learning (MMFL) 🗸

- Variance-reduced client sampling in a simple MMFL system \checkmark
- Modeling computational heterogeneity in MMFL
- Experiments

Recall

Key assumptions from previous work [1]

In each round, the server only allows **partial participation**, and each active client **can only train one model**.

1) Partial Participation: reduce communication cost

2) Only train one model: computational constraints

"Only train one model" is too ideal, without considering heterogeneity of computational abilities.

32 [1] Bhuyan, Neelkamal, Sharayu Moharir, and Gauri Joshi. "Multi-model federated learning with provable guarantees." *EAI International Conference on Performance Evaluation Methodologies and Tools*. Cham: Springer Nature Switzerland, 2022.

Multi-model federated learning

Make more realistic assumptions

In each round, the server only allows <u>partial participation</u>, and each active client i <u>can train</u> B_i <u>models in parallel</u>.

1) Partial Participation: reduce communication cost

2) Client *i* can train B_i models ($B_i \leq S$):

Computational constraint & heterogeneity

"Powerful" clients train more models, leading to biased convergence. How to achieve unbiased training? 33

Multi-model federated learning

System model for heterogeneous MMFL

For ease of description, <u>assume client *i* has B_i processors</u>, each processor (i, b) can train one model independently.

1) Adjust the aggregation rule to ensure unbiased training

$$w_{s}^{\tau+1} = w_{s}^{\tau} - \sum_{(i,b)\in\mathcal{A}_{\tau,s}} P_{(i,b),s}^{\tau} G_{(i,b),s}^{\tau}$$

$$P_{(i,b),s}^{\tau} = \frac{d_{i,s}}{B_i p_{s|(i,b)}^{\tau}}, \qquad G_{(i,b),s}^{\tau} = \eta_{\tau} \sum_{t=1}^{K} \nabla f_{i,s}^{t,\tau}$$

Notations:

 w_s^{τ} : global model parameters $\mathcal{A}_{\tau,s}$: set of active "processors" $d_{i,s}$: dataset size ratio $p_{s|(i,b)}^{\tau}$: the probability of having processor (i, b) to train model s τ : global round index t: local epoch index

System model for heterogeneous MMFL

For ease of description, <u>assume client *i* has B_i processors</u>, each processor (i, b) can train one model independently.

1) Adjust the aggregation rule to ensure unbiased training

$$w_{s}^{\tau+1} = w_{s}^{\tau} - \sum_{(i,b)\in\mathcal{A}_{\tau,s}} P_{(i,b),s}^{\tau} G_{(i,b),s}^{\tau}$$

$$\mathbb{E}\left[\sum_{i=1}^{N}\sum_{b=1}^{B_{i}}1_{(i,b),s}^{\tau}\frac{d_{i,s}}{B_{i}p_{s|(i,b)}}G_{(i,b),s}^{\tau}\right] = \sum_{i=1}^{N}d_{i,s}\mathbb{E}\left[G_{(i,b),s}^{\tau}\right]$$

Sampling at the "processor-level"

Notations: w_s^{τ} : global model parameters $\mathcal{A}_{\tau,s}$: set of active "processors" $d_{i,s}$: dataset size ratio $p_{s|(i,b)}^{\tau}$: the probability of having processor (i, b) to train model s τ : global round index t: local epoch index

Experiments

3 Models: all Fashion-MNIST. N=120 clients m=12 (active rate=0.1) Each client: 30% labels.

For each model: 10% high-data clients, 90% low-data clients. 10% clients hold 52.6% data of each task.

25% clients: $B_i = 3$ 50% clients: $B_i = 2$ 25% clients: $B_i = 1$

Experiments

Experiments

3 Models: all Fashion-MNIST.

5 Models: two Fashion-MNIST, one CIFAR-10, one EMNIST, one Shakespeare.

10% clients only have data for S-1 models.

TABLE I FINAL AVERAGE MODEL ACCURACY RELATIVE TO THAT FROM FULL PARTICIPATION (THEORETICALLY THE BEST UNDER THE SAME LOCAL TRAINING SETTINGS).

Methods	3 tasks	5 tasks	Comm. Cost	Comp. Cost	Mem. Cost
FedVARP [30]	$0.712 \pm .14$	$0.690 \pm .19$	Low	Low	High
MIFA [31]	$0.868 {\pm}.18$	$0.835 {\pm}.18$	Low	Low	High
SCAFFOLD [32]	$0.794 {\pm}.14$	$0.650 {\pm}.24$	Low	Low	Low
Random	$0.778 {\pm}.19$	$0.749 \pm .23$	Low	Low	Low
Full Participation	$1.000 \pm .13$	$1.000 \pm .14$	High	High	Low
MMFL-GVR	$0.893 \pm .14$	$0.842 \pm .20$	Low	High	Low
MMFL-LVR	$0.912 \pm .15$	$0.849 \pm .16$	Low	Low	Low
MMFL-GVR*	0.960 ±.15	0.869 ±.18	Low	High	High

Summary

Make more realistic assumptions

In each round, the server only allows <u>partial participation</u>, and each active client i <u>can train</u> B_i <u>models in parallel</u>.

Other ways to model computational heterogeneity:

1) Asynchronous training [4]

2) Flexible local epochs number [5]

3) Flexible model architectures [6]

[4] Askin, Baris, et al. "FedAST: Federated Asynchronous Simultaneous Training."
 [5] Ruan, Yichen, et al. "Towards flexible device participation in federated learning."
 [6] Park, Jong-Ik, and Carlee Joe-Wong. "Federated Learning with Flexible Architectures."

Multi-model federated learning