60 APPAVOO ET AL.

Enabling autonomic
behavior in systems
software with hot
swapping

Autonomic computing systems are designed
to be self-diagnosing and self-healing, such
that they detect performance and correctness
problems, identify their causes, and react
accordingly. These abilities can improve
performance, availability, and security, while
simultaneously reducing the effort and skills
required of system administrators. One way
that systems can support these abilities is by
allowing monitoring code, diagnostic code,
and function implementations to be
dynamically inserted and removed in live
systems. This “hot swapping” avoids the
requisite prescience and additional complexity
inherent in creating systems that have all
possible configurations built in ahead of time.
For already-complex pieces of code such as
operating systems, hot swapping provides a
simpler, higher-performance, and more
maintainable method of achieving autonomic
behavior. In this paper, we discuss hot
swapping as a technique for enabling
autonomic computing in systems software.
First, we discuss its advantages and describe
the required system structure. Next, we
describe K42, a research operating system
that explicitly supports interposition and
replacement of active operating system code.
Last, we describe the infrastructure of K42 for
hot swapping and several instances of its use
demonstrating autonomic behavior.

0018-8670/03/$5.00 © 2003 IBM

by J. Appavoo, K. Hui, C. A. N. Soules,
R. W. Wisniewski, D. M. Da Silva,
O. Krieger, M. A. Auslander, D. J. Edelsohn,
B. Gamsa, G. R. Ganger, P. McKenney,
M. Ostrowski, B. Rosenburg,
M. Stumm, J. Xenidis

As computer systems become more complex, they
become more difficult to administer properly. Spe-
cial training is needed to configure and maintain
modern systems, and this complexity continues to
increase. Autonomic computing systems address this
problem by managing themselves.' Ideal autonomic
systems just work, configuring and tuning themselves
as needed.

Central to autonomic computing is the ability of a
system to identify problems and to reconfigure it-
self in order to address them. In this paper, we in-
vestigate hot swapping as a technology that can be
used to address systems software’s autonomic re-
quirements. Hot swapping is accomplished either by
interpositioning of code, or by replacement of code.
Interpositioning involves inserting a new component
between two existing ones. This allows us, for exam-
ple, to enable more detailed monitoring when prob-
lems occur, while minimizing run-time costs when
the system is performing acceptably. Replacement
allows an active component to be switched with a
different implementation of that component while
the system is running, and while applications con-
tinue to use resources managed by that component.
As conditions change, upgraded components, bet-
ter suited to the new environment, dynamically re-
place the ones currently active.

©Copyright 2003 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

Hot swapping makes downloading of code more
powerful. New algorithms and monitoring code can
be added to a running system and employed with-
out disruption. Thus, system developers do not need
to be prescient about the state that needs to be mon-
itored or the alternative algorithms that need to be
available. More importantly, new implementations
that fix bugs or security holes can be introduced in
a running system.

The rest of the paper is organized as follows. The
next section describes how hot swapping can facil-
itate the autonomic features of systems software. An
important goal of autonomic systems software is
achieving good performance. The section “Auto-
nomically improving performance” illustrates how
hot swapping can autonomically improve perfor-
mance using examples from our K422 research op-
erating system (0S) as well as from the broader lit-
erature. The section that follows describes a generic
infrastructure for hot swapping and contrasts it with
the adaptive code alternative. Then the section “Hot
swapping in K42” describes the overall K42 struc-
ture, presents the implementation of hot swapping
in K42, and includes a brief status and a performance
evaluation. The next section discusses related work,
and the concluding section contains some final com-
ments.

Autonomic features through hot swapping

Autonomic computing encompasses a wide array of
technologies and crosses many disciplines. In our
work, we focus on systems software. In this section
we discuss a set of crucial characteristics of auto-
nomic systems software and describe how hot swap-
ping via interposition and replacement of compo-
nents can support these autonomic features, as
follows.

Performance—The optimal resource-management
mechanism and policy depends on the workload.
Workloads can vary as an application moves through
phases or as applications enter and exit the system.
As an example, to obtain good performance in mul-
tiprocessor systems, components servicing parallel
applications require fundamentally different data
structures than those for achieving good perfor-
mance for sequential applications. However, when
a component is created, for example, when a file is
opened, it is generally not known how it will be used.
With replacement, a component designed for se-
quential applications can be used initially, and then
it can be autonomically switched to one supporting

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

greater concurrency if contention is detected across
multiple processors.

System monitoring—Monitoring is required for au-
tonomic systems to be able to detect security threats,
performance problems, and so on. However, there
is a trade-off between placing extensive monitoring
in the system and the performance overhead this en-
tails. With support for interposition, upon detection
of a problem by broad-based monitoring, it becomes
possible to dynamically insert additional monitoring,
tracing, or debugging without incurring overhead
when the more extensive code is not needed. In an
object-oriented system, where each resource is man-
aged by a different instance of an object, it is pos-
sible to garner an additional advantage by monitor-
ing the code managing a specific resource.

Flexibility and maintainability—Autonomic systems
must evolve as their environment and workloads
change, but must remain easy to administer and
maintain. The danger is that additions and enhance-
ments to the system increase complexity, potentially
resulting in increased failures and decreased perfor-
mance. To perform hot swapping, a system needs to
be modularized so that individual components may
be identified. Although this places a burden on sys-
tem design, satisfying this constraint yields a more
maintainable system. Given a modular structure, hot
swapping often allows each policy and option to be
implemented as a separate, independent component,
with components swapped as needed. This separa-
tion of concerns simplifies the overall structure of
the system. The modular structure also provides data
structures local to the component. It becomes con-
ceivable to rejuvenate software by swapping in a new
component (same implementation) to replace the
decrepit one. This rejuvenation can be done by dis-
carding the data structures of the old object, then
starting from scratch or a known state in the new
object.

System availability—Numerous mission-critical sys-
tems require five-nines-level (99.999 percent) avail-
ability, making software upgrades challenging. Sup-
port for hot swapping allows software to be upgraded
(i.e., for bug fixes, security patches, new features, per-
formance improvements, etc.) without having to take
the system down. Telephony systems, financial trans-
action systems, and air traffic control systems are a
few examples of software systems that are used in
mission-critical settings and that would benefit from
hot-swappable component support.

APPAVOO ET AL. 61

Extensibility—As they evolve, autonomic systems
must take on tasks not anticipated in their original
design. These tasks can be performed by hot-
swapped code, using both interposition and dynamic
replacement. Interposition can be used to provide
existing components with wrappers that extend or
modify their interfaces. Thus, these wrappers allow
interfaces to be extended without requiring that ex-
isting components be rewritten. If more significant
changes are required, dynamic replacement can be
used to substitute an entirely new object into an ex-
isting running system.

Testing—Even in existing relatively inflexible systems,
testing is a significant cost that constrains develop-
ment. Autonomic systems are more complicated, ex-
acerbating this problem. Hot swapping can ease the
burden of testing the system. Individual components
can be tested by interposing an object to generate
input values and examine results, thereby improv-
ing code coverage. Delays can be injected into the
system at internal interfaces, allowing the system to
explore potential race conditions. This concept is mo-
tivated by a VLSI (very large scale integration) tech-
nique whereby insertion of test probes across the chip
allows intermediate values to be examined.**

Autonomically improving performance

As outlined in the previous section, autonomic com-
puting covers a wide range of goals, one of which is
improving performance. For systems software, the
ability to self-tune to maintain or improve perfor-
mance is one of the most important goals. In this
section, we discuss how hot swapping can support
and extend existing performance enhancements, al-
lowing the OS to tailor itself to a changing environ-
ment.

Optimizing for the common case. For many OS re-
sources the common access pattern is simple and can
be implemented efficiently. However, the implemen-
tation becomes expensive when it has to support all
the complex and less common cases. Dynamic re-
placement allows efficient implementations of com-
mon paths to be used when safe, and less-efficient,
less-common implementations to be switched in
when necessary.

As an example, consider file sharing. Although most
applications have exclusive access to their files, on
occasion files are shared among a set of applications.
In K42, when a file is accessed exclusively by one ap-
plication, an object in the application’s address space

62 APPAVOO ET AL.

handles the file control structures, allowing it to take
advantage of mapped file I/0, thereby achieving per-
formance benefits of 40 percent or more.” When the
file becomes shared, a new object dynamically re-
places the old object. This new object communicates
with the file system to maintain the control infor-
mation. Other examples where similar optimizations
are possible are (a) a pipe with a single producer and
consumer (in which case the implementation of the
pipe can use shared memory between the producer
and consumer) and (b) network connections that
have a single client on the system (in which case data
can be shared with zero copy between the network
service and the client).

Optimizing for a wide range of file attribute values.
Several specialized file system structures have been
proposed to optimize file layout and caching for files
with different attributes.®” We can optimize the per-
formance across the range of file attribute values by
implementing a number of components, where each
component is optimized for a given set of file at-
tribute values, and then having the OS hot swap be-
tween these components as appropriate.

For example, although the vast majority of files ac-
cessed are small (<4 KB), 0Ss must also support large
files as well as files that grow in size. Using dynamic
replacement we can take advantage of the file size
in order to optimize application performance. In
K42, in the case of a small unshared file, the mem-
ory contents backing the file are copied to the ap-
plication’s address space. An object in the applica-
tion’s address space services requests to that file, thus
reducing the number of interactions between the cli-
ent and file system. Once a file grows to a larger size,
the implementation is dynamically switched to an-
other object that communicates with the file system
to satisfy requests. In this case the file is mapped in
memory, and misses are handled by the memory
management infrastructure.

Access patterns. There is a plethora of literature
focused on optimizing caching and prefetching of file
blocks and memory pages from disk based on ap-
plication access patterns.®’ Researchers have shown
up to 30 percent fewer cache misses by using the ap-
propriate policy. Hot swapping can exploit these pol-
icies by interposing monitoring code to track access
patterns and then switching between policies based
on the current access pattern.

Exploiting architecture features. Many features of
modern processors are underutilized in today’s mul-

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

tiplatform 0Ss. To ensure portable code, without
making global code paths unduly complex, these fea-
tures are generally either crippled or ignored entirely.
This is because implementers need to provide a sin-
gle implementation to be used across all platforms.
For example, there is only limited OS support today
for large pages, even though a large number of pro-
cessors support them. Hot swapping makes it easier
to take advantage of such architectural features, be-
cause special-purpose objects can be introduced and
used without requiring that complete functionality
for all possible cases be implemented in every ob-
ject.

Multiprocessor optimizations. In large multiproces-
sor systems, parallel applications can benefit from
processor locality. To exploit this locality, some OSs
implement services in a partitioned fashion (code is
divided across different processors in order to dis-
tribute the load and avoid contention). However,
these partitioned implementations consume more
memory and incur larger overheads on some oper-
ations, for example, file destruction and process de-
struction. Conversely, shared implementations (code
on one processor) can minimize space and time over-
heads for sequential applications.

Figure 1, which illustrates a file-searching applica-
tion, can be used to visualize the performance ad-
vantages of dynamically switching between a shared
and partitioned version of the objects that cache file
pages in K42. The system monitors the number of
application threads and switches between implemen-
tations when appropriate. The y axis shows the num-
ber of machine cycles to complete a sample search;
lower is better. The figure shows that the shared im-
plementation has a 10 percent performance advan-
tage over the partitioned implementation when only
one application is searching through the file on one
processor. On the other hand, the shared implemen-
tation is 300 percent worse with 12 applications on
12 processors. With hot swapping, the system can
dynamically switch between the two implementations
and capture the best performance characteristics of
each.

Enabling client-specific customization. Extensible
0ss offer new interfaces that enable clients to cus-
tomize OS components. By using components opti-
mized for a particular application, it is possible to
achieve significant performance improvements in a
variety of system services. '*"® For example, the Ex-
okernel Cheetah Web server demonstrated factor
of two-to-four increases in throughput from network

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

Figure 1 Processor cycles required for p independent
concurrent searches over an entire 52 MB file

(low is good)

T T T T

600 -
—— SHARED
—— PARTITIONED

500 —=— SWAPPED

400

300

TIME IN MILLIONS OF CYCLES

200

100

stack and file cache specializations.'* Hot swapping
enables extensibility by allowing applications to re-
place OS components. Hot swapping improves upon
most existing extensible systems by allowing on-the-
fly switching, as well as replacement of generic sys-
tem components.

Exporting system structure information. Technol-
ogies such as compiler-directed 1/0 prefetching ™ and
storage latency estimation descriptors'® have shown
over 100 percent performance increases for appli-
cations, but require detailed knowledge about the
state of system structures. Always gathering the nec-
essary profiling information increases overhead and
can negatively affect the performance of applications
that do not require this information. Hot swapping
allows selected applications to gather more informa-
tion about the state of system structures by interpos-
ing a monitoring component when appropriate. By
inserting these monitors only when applications will
benefit, overall system performance will not degrade.
Without hot swapping, the additional cost of mon-
itoring and increased system complexity hampers the
ability of researchers to consider algorithms designed
for rare conditions that may be important for cer-
tain applications.

Supporting specialized workloads. In monolithic
systems, optimizations in support of one type of
workload often negatively impact the performance
of other types of workload. To alleviate this prob-
lem some development groups have implemented
multiple versions of an OS, where each version is

APPAVOO ET AL. 63

tuned for a particular type of workload. Another ap-
proach is incremental specialization, '’ where specific
portions of the kernel are recompiled to optimize
them for a particular type of workload. An OS using
hot swapping can dynamically switch components op-
timized to handle these types of workload. The re-
ported performance improvements when using in-
cremental specialization—as high as 70 percent for
small amounts of data read from files—can also be
obtained using hot swapping.

An infrastructure for hot swapping

Achieving an effective generic hot-swapping mech-
anism for systems software requires careful design.
In addition to the impact on the surrounding system
infrastructure that has to be taken into account, there
are several actions involved in performing a hot swap,
including triggering the hot swap, choosing the tar-
get, swapping components, transferring state, and po-
tentially adding object types. In this section, we first
describe system requirements for supporting hot
swapping, which involve both interposition and re-
placement, and then we describe the steps involved
in performing a component switch. We conclude this
section by comparing hot swapping to adaptive code.

System structure. Many large systems, such as da-
tabases, are structured with well-defined components
and interfaces to those components. This modular
structure is critical for hot swapping. Well-defined
interfaces are necessary for interposition and re-
placement of components. Any code, whether it is
the kernel, a database, a Web server, or any other
server or application at user level, can use the in-
frastructure for hot swapping. The code intended to
perform the hot swap need only be structured so that
there are identifiable components that can be inter-
posed or replaced.

In a system with only global components, hot swap-
ping can be used to change overall system perfor-
mance, but it becomes difficult to tune the system
to specific applications because the same component
is used across all applications. Additional advantages
can be gained if an object-oriented design is used,
where each individual use of a resource is managed
by an independent object that can be hot swapped
in order to tune that resource to its workload. For
example, optimization on a per-file basis is possible
if each file is implemented using a different object
instance that can be tuned to its access pattern.

64 APPAVOO ET AL.

Large parts of our existing OSs are not designed in
a fashion that allows for hot swapping. However, the
UNIX** Vnode'® interface, streams facility, and de-
vice driver interface are good examples where hot
swapping would be possible.

Modularity and the use of object-oriented design in
0ss is expanding. Some current OS interface designs
have demonstrated the effectiveness of modularity
by enabling flexibility and innovation. For example,
there are many Linux** file systems that have ex-
plored various possible designs behind the well-de-
fined Linux VFS (virtual file system)'" interface. As
systems become more complex, and autonomic com-
puting becomes more important, the incentives to
adopt such designs will grow.

The rest of this paper is presented with an object-
oriented structure in mind, and we use the terms
“component” and “object” interchangeably. How-
ever, much of this discussion applies to systems that
are not object-oriented but intend to support hot
swapping.

Performing hot swapping. Perhaps surprisingly, only
a small number of research groups have looked into
hot swapping, '?**! and even then, their approaches
have been limited by restrictive conditions. One of
the reasons may be the difficulty in providing a gen-
eral and efficient service that can safely and efficiently
handle interposing and replacing components on a
multiprocessor in a multithreaded and preemptive
environment. For demonstration purposes, consider
the difficulties in replacing the TCP/IP (Transmission
Control Protocol/Internet Protocol) stack. To do this
requires: (1) synchronizing the switching with a po-
tentially large number of concurrent calls from ap-
plications and various parts of the OS; (2) atomically
transferring state that may include active connec-
tions, buffers, and outstanding timers; (3) installing
the new object in the system so that its clients au-
tomatically and transparently use the new object in-
stance.

The complexity of hot swapping components suggests
that the implementer of a specific object will con-
sider providing hot swapping only if the system in-
frastructure minimizes the implementation work
needed in the individual component. Below we dis-
cuss a framework that accomplishes this, and in later
sections we describe how we have implemented the
infrastructure in K42.

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

Triggering hot swapping. In many cases we expect an
object itself to trigger a replacement. For example,
if an object is designed to support small files and it
registers an increase in file size, then the object can
trigger a hot swap with an object that supports large
files. In other cases, we expect the system infrastruc-
ture to determine the need for an object replacement
through a hot swap. Monitoring is required for this
purpose, and additional monitoring can be enabled
by object interposition if more accurate information
is needed before initiating the swap. For example,
an OS might have a base level of monitoring in order
to identify excessive paging. When this condition oc-
curs the OS might interpose additional monitoring
on objects that cache files in order to determine the
source of the problem before choosing a specific ob-
ject instance to replace.

In some cases, applications will explicitly request an
object swap. Subsystems such as databases, Web serv-
ers, or performance-sensitive scientific applications,
can choose to optimize their performance by explic-
itly switching in new system objects to support known
demands. For example, a database application may
request the system use objects that support large
pages for the purpose of backing a specific region
of memory.

In the future, we expect that developers of autonomic
computing systems will provide the service infrastruc-
ture that allows their products to query for the lat-
est changes, such as bug fixes and security upgrades
(similar to the up2date program in Red Hat Linux
7.3). These systems will periodically download new
components and hot swap them in without disrupt-
ing running applications.

Choosing the target. In some cases, the initiator of
a hot swap can identify the target directly as, for ex-
ample, when upgrading a component. In most cases,
however, the target component is more appropriately
identified by its behavior than by its specific name
or type. For example, a client might request a page-
caching object optimized for streaming without need-
ing to know the particular class that implements that
functionality. Although introducing such a facility is
relatively simple, the complexity comes both in iden-
tifying the characteristics that it should encode and
the presentation of the encoding to the requester.

Performing the swap. In our experience, the most
complex part of hot swapping is performing the swap,
including getting the object in a state suitable for
swapping and performing the swap in a scalable man-

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

ner (across a large number of processors). The syn-
chronization needed to get into such a state is com-
plex and not recommended to be implemented on
a case-by-case basis. Moreover, synchronization in-
ternal to an object imposes a run-time overhead even
when hot swapping is not required. In the next sec-
tion we discuss the implementation of a generic hot-
swap mechanism in K42.

Transferring state. A key issue is how to transfer state
efficiently between the source and the target of an
object replacement. In many cases, the transfer of
state between objects being switched is simple. For
example, in K42 when an application-level object that
caches file state is swapped, we invalidate cached
state and pass only the control information. In other
cases, the work is more involved. For example, file
caching objects convert their internal list of pages
into a list of generic page descriptors.

The infrastructure cannot determine what state must
be transferred. It can, however, provide a means to
negotiate a best common format that both objects
support. Rather than flattening everything to a ca-
nonical state, in some cases pointers to complex data
structures may be passed. This is best worked out
for a given class hierarchy of objects. Additionally,
on a multiprocessor, the infrastructure allows the
transfer to occur in parallel.

Dynamically adding object types. Downloading new
code into the 0S provides two challenges that need
to be handled by the infrastructure. First, if an ob-
ject class is changed, it is necessary to track all in-
stances of that class in order to be able to replace
those. Second, if library or subsystem code is
changed, it is necessary to download code into all
running applications and subsystems using that li-
brary.

Adaptive code alternative. Among other features,
hot swapping allows system software to react to a
changing environment. A more common approach
in systems software to handling varying environments
is to use adaptive code. Although adaptive code may
not achieve the full autonomic vision previously out-
lined, a comparison to hot swapping is pertinent. In
the simplest case, adaptive code has run-time param-
eters that can be modified on line. In other cases,
there are multiple implementations with different
data structures, and the best choice of the implemen-
tation to use can vary over time.**** Adaptive code
is a combination of several individual algorithms,
each designed for a particular workload.

APPAVOO ET AL. 5

Table 1 Realization of autonomic features with adaptive code vs hot swapping

Feature Adaptive Code Hot-Swappable Code
Set of possible configurations Preprogrammed Can be extended
What gets monitored Preprogrammed Can be extended
When monitoring code is in system Always Dynamic
Adaptation decision algorithm Preprogrammed Can be swapped
Code complexity Made worse Reduced
Infrastructure required None Significant, but once
Enables on-line patches No Yes

Table 1 compares adaptive code to hot swapping.
When used for optimizing performance, the solution
involving adaptive code has three major disadvan-
tages: required foreknowledge, higher code complex-
ity, and higher overhead.

Adaptive code allows the system to switch between
aset of preprogrammed algorithms. The set of avail-
able algorithms, the monitoring code used to gather
data, and the decision-making code cannot be
changed once the system is running.

Adaptive code designed for different situations, or
to support many applications, is complex. This is es-
pecially true for system code designed to run across
a variety of hardware platforms. Coordinating ad-
aptation across the many components is more com-
plicated than allowing each component to make its
own adaptation decisions.

Adaptive code lacks interposition capability, and thus
imposes some monitoring overhead on all requests.
Achieving the right level of monitoring through both
stable periods and highly loaded, unstable periods,
is a challenge.

A more fundamental limitation of the adaptive code
solution is its unsuitability for the larger vision of au-
tonomic computing. For example, without the abil-
ity to add new code to the system, it does not pro-
vide a mechanism to deal with security upgrades or
bug fixes. It is possible to update the code off line
and restart the system, but this incurs downtime and
is disruptive to applications and users.

On a case-by-case basis, the infrastructure for hot
swapping we have described is more expensive than
simply using specialized adaptive code. However, it
only needs to be implemented once, at system de-
velopment time. In contrast, adaptive systems typ-
ically have to reimplement that complexity in each
of the services providing the adaptation.

66 APPAVOO ET AL.

Figure 2 illustrates two implementations of the same
function. The adaptive code approach is monolithic
and includes monitoring code that collects the data
needed by the adaptive algorithm to choose a par-
ticular code path. Algorithm options must be part
of the original code, and the code’s overall size and
complexity are increased. With hot swapping, each
algorithm is implemented independently (resulting
in reduced complexity per component), and is hot
swapped in when needed. Monitoring code can also
be interposed as needed. Decision code is decoupled
from the implementation of the components. The
shared code, for tracking usage patterns (not used
in the random case), needs to be integrated into the
code paths in the adaptive case and is inherited into
each object in the hot-swapping case.

Hot swapping in K42

In this section, we describe the generic hot-swapping
mechanism of K42. To provide context, we start by
presenting the overall structure and design of K42.2
We then describe K42’s infrastructure for hot swap-
ping, give its current status, and present some per-
formance results.

K42. K42 is an open source research kernel for cache-
coherent 64-bit multiprocessor systems, which cur-
rently runs on PowerPC* and MIPS** platforms, and
will soon be available for x86-64 platforms.

Project motivation and goals. K42 focuses on achiev-
ing good performance and scalability, on providing
a customizable and maintainable system, on support-
ing a wide variety of platforms, systems, and prob-
lem domains, and on being accessible to a large com-
munity as Open Source Software.

e Performance—K42 is designed to scale up to run
well on large multiprocessors and support large-
scale applications efficiently. It also scales down
to run well on small multiprocessors. Moreover,

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

Figure 2 An adaptive code implementation (A) vs a hot-swapping implementation (B) of the same function

ENTRY POINT

v

MONITORING
CODE

DECISION CODE

SHARED CODE RANDOM

LRU MRU FIFO

SHARED EXIT CODE

it supports small-scale applications as efficiently on
large multiprocessors as on small multiprocessors.

* Customizability—K42 allows applications to deter-
mine (by choosing from existing components or
by writing new ones) how the OS manages their
resources. It autonomically adapts to changing
workload characteristics.

* Applicability—K4?2 is intended to effectively sup-
port a wide variety of systems and problem do-
mains and to make it easy to modify the OS to sup-
port new processor and system architectures. It can
support systems ranging from embedded proces-
sors to high-end enterprise servers.

* Wide availability—K42 is open source, and is avail-
able to a large community. It makes it easy to add
specialized components for experimenting with
policies and implementation strategies, and will
open up for experimentation parts of the system
that were traditionally accessible only to experts.

K42 fully supports the Linux API (application pro-
gramming interface) and ABI (application binary in-
terface) and uses Linux libraries, device drivers, file
systems, and other code without modification. The
system is fully functional for 64-bit applications, and
can run codes ranging from scientific applications
to complex benchmarks like SPEC SDET (Standard
Performance Evaluation Corporation Software De-

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

E DECISION CODE
ENTRY POINT

:_MONITORING
| CODE :
o o 3 | 1
|
|

e

velopment Environment Throughput) to significant
subsystems like Apache Software Foundation’s
Apache HTTP Server. Supporting the Linux API and
ABI makes K42 available to a wide base of applica-
tion programmers, and our modular structure makes
the system accessible to the community of develop-
ers who wish to experiment with kernel innovations.

Some research OS projects have taken particular phi-
losophies and have followed them rigorously to ex-
tremes in order to fully examine their implications.
Although we follow a set of design principles, we are
willing to make compromises for the sake of perfor-
mance. The principles that guide our design include
(1) structuring the system using modular, object-ori-
ented code, (2) designing the system to scale to very
large shared-memory multiprocessors, (3) leverag-
ing performance advantages of 64-bit processors, (4)
avoiding centralized code paths, global data struc-
tures, and global locks, (5) moving system function-
ality to application libraries, and (6) moving system
functionality from the kernel to server processes.

K42 structure. K42 is structured around a client-
server model (see Figure 3). The kernel is one of
the core servers, currently providing memory man-
agement, process management, IPC (interprocess
communication) infrastructure, base scheduling, net-

APPAVOO ET AL.

67

Figure 3 Structural overview of K42

APPLICATION

FILE SERVER

working, device support, and so on. (In the future
we plan to move networking and device support into
user-mode servers.)

Above the kernel are applications and system serv-
ers, including the NFS (Network File System) file
server, name server, socket server, pty (pseudotele-
type) server, and pipe server. For flexibility, and to
avoid IPC overhead, we implement as much function-
ality as possible in application-level libraries. For ex-
ample, all thread scheduling is done by a user-level
scheduler linked into each process.

All layers of K42, the kernel, system servers, and us-
er-level libraries, make extensive use of object-ori-
ented technology. All interprocess communication
is between objects in the client and server address
spaces. We use a stub compiler with decorations on
the C++ class declarations to automatically gener-
ate IPC calls from a client to a server, and have op-

68 APPAVOO ET AL.

LINUX API/ABI

timized these IPC paths to have good performance.
The kernel provides the basic IPC transport and at-
taches sufficient information for the server to pro-
vide authentication on those calls.

From an application’s perspective, K42 supports the
Linux API and ABI. This is accomplished by an em-
ulation layer that implements Linux system calls by
method invocations on K42 objects. When writing
an application to run on K42, it is possible to pro-
gram to the Linux API or directly to the native K42
interfaces. All applications, including servers, are free
to reach past the Linux interfaces and call the K42
interfaces directly. Programming against the native
interfaces allows the application to take advantage
of K42 optimizations. The translation of standard
Linux system calls is done by intercepting glibc (GNU
Clibrary) system calls and implementing them with
K42 code. Although Linux is the first and currently

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

only personality we support, the base facilities of K42
are designed to be personality-independent.

We also support a Linux-kernel internal personality.
K42 has a set of libraries that will allow Linux-ker-
nel components such as device drivers, file systems,
and network protocols to run inside the kernel or
in user mode. These libraries provide the run-time
environment that Linux-kernel components expect.
This infrastructure allows K42 to use the large code
base of hardware drivers available for Linux.

K42 key technologies. To achieve the above men-
tioned goals, we have incorporated many technol-
ogies into K42. We have written several white pa-
pers (available on our Web site?) describing these
technologies in greater detail; the intent of this sec-
tion is to provide an overview of the key technol-
ogies used in K42. Many of these have an impact on
hot swapping; for example moving functionality to
application libraries makes the hot swapping infra-
structure more complicated, but provides additional
possibilities for customization and thus for hot swap-
ping. K42 key technologies are listed below. The
technologies used by the hot-swapping infrastructure
are discussed in “K42 features used” of the subsec-
tion “Infrastructure for hot swapping.”

* Object-oriented technology, which has been used
in the design of the entire system, helps achieve
good performance through customization, helps
achieve good multiprocessing performance by in-
creasing locality, helps increase maintainability by
isolating modifications, and helps perform auto-
nomic functions by allowing components to be hot
swapped.

e Much traditional kernel functionality is imple-
mented in libraries in the application’s own address
space, providing a large degree of customizability
and reducing overhead by avoiding crossing ad-
dress space boundaries to invoke system services.

e K42 is easily ported to new hardware and due to
its structure can exploit machine-specific features
such as the PowerPC inverted page table and the
MIPS software-controlled TLB (translation looka-
side buffer).

* Much system functionality has been implemented
in user-level servers with good performance main-
tained via efficient 1PCs similar to 1.4.%*

o K42 uses processor-specific memory (the same vir-
tual address on different processors maps to dif-
ferent physical addresses) to achieve good scalable
NUMA (nonuniform memory access) performance.
This technology, and avoiding global data, global

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

code paths, and global locks, allows K42’s design
to scale to thousands of processors.
Built on K42’s object-oriented structure, clustered
objects® provide an infrastructure to implement
scalable services with the degree of distribution
transparent to the client. This also facilitates au-
tonomic multiprocessor computing, as K42 can
dynamically swap between uniprocessor and mul-
tiprocessor clustered objects.

K42 is designed to run on 64-bit architectures and

we have taken advantage of 64 bits to make per-

formance gains by, for example, using large vir-
tually sparse arrays rather than hash tables.

K42 is fully preemptable and most of the kernel

data structures are pageable.

K42 is designed to support a simultaneous mix of

time-shared, real-time, and fine-grained gang-

scheduled applications.

* K42 has developed deferred object deletion® sim-
ilar to RCU,? in which objects release their locks
before calling other objects. This efficient program-
ming model is crucial for multiprocessor perfor-
mance and is similar to type-safe memory.?

K42 overall status.K42 is available under an LGPL®
license (a source tree is available at the URL in Ref-
erence 2). We are actively working on providing a
complete environment including build and debug
tools, simulator, and source. The modular structure
of the system makes it a good teaching, research, and
prototyping vehicle. Some of the policies and imple-
mentations studied in this framework have been
transferred into “vanilla” Linux, and we expect that
work to continue. Also, in the long term, we expect
that the kind of base technologies we are exploring
with K42 will be important to Linux.

K42 currently runs on 64-bit MIPS (NUMA) and Pow-
erPC (SMP—symmetric multiprocessor) platforms
and is being ported to x86-64. As stated, K42 is fully
functional for 64-bit applications, and can run codes
ranging from scientific applications to complex
benchmarks like SDET, to significant subsystems like
Apache. We have demonstrated better base perfor-
mance for real applications and demonstrated bet-
ter scalability than other commercial OSs. We expect
in the near future to achieve full self-hosting and
demonstrate that specialized subsystems can custom-
ize the OS to achieve better performance at reduced
complexity. There are still edge conditions that have
not yet been addressed, and there are still objects
with only simplistic implementations.

APPAVOO ET AL. 69

Infrastructure for hot swapping. In K42, each vir-
tual resource instance, for example, open file instance
or memory region, is implemented by combining a
set of (C++) object instances we call building
blocks.” Each building block implements a partic-
ular abstraction or policy and might (1) manage some
part of the virtual resource, (2) manage some of the
physical resources backing the virtual resource, or
(3) manage the flow of control through the building
blocks. For example, there is no global page cache
in K42; instead, for each file there is an independent
object that caches the blocks of that file.

K42’s infrastructure allows any object to replace any
other object implementing the same interface, or to
interpose any object with one providing the same in-
terface. In K42 we use hot swapping to replace ker-
nel objects as well as objects in user-level servers.
The hot swapping occurs transparently to the clients
of the component and no support or code changes
are needed in the clients.

Dynamic replacement algorithm: Design issues. This
algorithm contains the following steps: (1) instan-
tiate the replacement component, (2) establish a qui-
escent state for the component to be replaced, (3)
transfer state from the old component to the new
component, (4) swap in the new component replac-
ing all references, and (5) deallocate the old com-
ponent.

There are three key issues that need to be addressed
in this design. First, we need to establish a quiescent
state so that it is safe to transfer state and swap ref-
erences. The swap can only be done when the com-
ponent state is not currently being accessed by any
thread in the system. Perhaps the most straightfor-
ward way to achieve a quiescent state would be to
require all clients of the component to acquire a read-
er-writer lock in read mode before any call to the
component. Acquiring this external lock in write
mode would thus establish that the component is safe
for swapping. However, this would add overhead for
the common case, and cause locality problems in the
case of multiprocessors. Further, the lock could not
be part of the component itself.

Second, we need to determine what state needs to
be transferred and how to transfer it to the new com-
ponent safely and efficiently. Although the state
could be converted to a canonical, serialized form,
this would lose context, be a less efficient transfer
protocol, and potentially prevent parallelism when
the transfer is occurring on a multiprocessor.

70 APPAVOO ET AL.

Third, we need to swap all of the references held by
the clients of the component so that the references
refer to the new component. In a system built around
a single, fully typed language, like the Java** lan-
guage, this could be done using the same infrastruc-
ture as used by garbage collection systems. However,
this would be prohibitively expensive for a single
component switch. An alternative would be to par-
tition a hot-swappable component into a front-end
component and a back-end component, where the
front-end component is referenced (and invoked) by
the component clients, and is used only to forward
requests to the back-end component. There would
then be only a single reference (in the front-end com-
ponent) to the back-end component that would need
to be changed when a component is swapped, but
this adds extra overhead to the common call path.

K42 features used. Our implementation of hot swap-
ping leverages three key features of K42 that allow
us to address the issues listed above in an efficient
and straightforward manner. Similar features exist
or could be retrofitted into other systems.

First, because K42 has an object-oriented structure
implemented using C++,% each system component
maps naturally to a language object. Hot swapping
is facilitated because the objects are self-contained
with well-defined interfaces. A similar approach
could be used in a system that is not object-oriented
but uses operations tables, such as vnodes. '

Second, each K42 object is accessed through a sin-
gle pointer indirection, where the indirection pointer
of all objects is maintained in an Object Translation
Table (OTT) indexed by the object identifier. The OTT
was originally implemented in K42 to support a new
form of scalable structure called Clustered Objects.”
Another method for doing this would be the dynamic
linking technology such as that used in ELF (Execut-
able and Linking Format), otherwise the indirection
would need to be added explicitly.

Finally, K42 has a generation count mechanism that
allows us to easily determine when all threads that
were started before a given point in time have com-
pleted, or reached a safe point. (A similar mecha-
nism has been used by [formerly] Sequent’s
NUMA-Q**3 for the same reason we originally de-
veloped it for K42, namely to improve multiproces-
sor performance by deferring expensive, but noncrit-
ical operations.®!) This mechanism is used to achieve
a quiescent state for an object. The mechanism ex-
ploits the fact that OSs are event-driven, where most

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

Figure 4 Stages in replacing instance A of object i by instance B

OBJECT TRANSLATION TABLE (OTT) oTT

oTT

i

[}
IMPL A IMPL B 1

MEDIATOR
[}
[}

IMPL A IMPL B

IMPL A

IMPL B

requests are serviced and completed quickly. Long-
living daemon threads are treated specially. This type
of functionality can usually be added to other event-
driven systems, such as Web, file, or database serv-
ers, in which the thread of control frequently reaches
safe points such as the completion of a system call,
or entering a sleep.

Description of algorithm. A part of the replacement
algorithm involves interpositioning a mediator. In-
terpositioning is the ability to redirect future calls
intended for a given object to another object. To per-
form interpositioning the object’s indirection pointer
in the OTT is changed to point to the interposed ob-
ject. It is not necessary to reach object quiescence.
This interposition object remains active and can for-
ward calls to the original object performing what-
ever operation or monitoring it desires prior to the
forwarding.

Conceptually there are three stages in replacing a
component as depicted in Figure 4. In the OTT’s ini-
tial state, the i-th table entry contains a pointer to
the current (old) object. In the second stage, a me-
diator is interposed. In the third stage the OTT is in
its final state, with the i-th entry pointing to the new
object.

To perform a replacement, a mediator object is in-
terposed in front of the old object. This mediator
object proceeds through the three phases. To estab-
lish a quiescent state, in which it is guaranteed that
no threads have an active reference to the compo-
nent to be swapped, the mediator object initially, in
the Forward phase, tracks all threads making calls
to the component and forwards each call on to the
original component. It does so until it is certain that

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

all calls started before call tracking began have com-
pleted. To detect this, we rely on K42’s generation
count feature to determine when all calls that were
started before tracking began have completed. Un-
til that point, the mediator continues to forward new
requests to the original component, which services
them as normal.

At that point, the mediator starts the Blocked phase
and temporarily blocks new calls, while it waits for
the tracked calls to complete. Exceptions are made
for recursive calls that need to be allowed to pro-
ceed to avoid deadlock. If the user subverts the K42
programming model making recursive object calls
across servers while simultaneously switching mul-
tiple objects, the infrastructure will not be able to
detect deadlock loops. To handle this, and poten-
tially other unknown deadlock circumstances, a time-
out mechanism is used. If the timeout is triggered,
it terminates the hot swap, setting the client point-
ers back to the original object. In nonerroneous ob-
ject implementations, calls can be correctly tracked
and blocked. Once all the tracked calls have com-
pleted, the component is in a quiescent state, and
the state transfer can begin. While the Blocked phase
may seem to unduly reduce the responsiveness of
the component, in practice the delay depends only
on the number of tracked calls, which are generally
short and few in number.

To make state transfer between the original and the
new component efficient and preserve as much of
the original state and semantics as possible, the orig-
inal and new objects negotiate a best common for-
mat that they both support. This, for example, may
allow a hash table to be passed directly through a
pointer, rather than converted to and from some ca-

APPAVOO ET AL. 71

nonical form, such as a list or array, as well as, in a
large multiprocessor, allow much of the transfer to
occur in parallel across multiple processors, preserv-
ing locality where possible.

Finally, after the state transfer, the mediator enters
the Completed phase. It removes its interception by
updating the appropriate indirection pointer in the
OTT to point to the new component so that future
calls go to the new component directly. It also re-
sumes all threads that were suspended during the
Blocked phase and directs them to the new compo-
nent. The mediator then deallocates the original ob-
ject and finally itself.

The implementation of the above design has a num-
ber of important features. There is no overhead dur-
ing normal operation; overhead occurs only when
the mediator is interposed, and the mediator is used
only during the hot-swapping process. The imple-
mentation works efficiently in a multithreaded mul-
tiprocessor system. The mediator runs in parallel and
state transfer proceeds in parallel. Call interception
and mediation is transparent to the clients, facilitated
by K42’s component system infrastructure. Finally,
our solution is generic in that it separates the com-
plexity of swap-time in-flight call tracking and dead-
lock avoidance from the implementation of the com-
ponent itself. With the exception of component state
transfer, the rest of the swapping process does not
require support from the component, simplifying the
addition of components that wish to take advantage
of the hot-swapping capability.

Status, performance, and continuing work. K42 fully
supports the hot-swapping infrastructure described
in the previous section. We have used it for simple
applications, such as the search program in Figure
1, as well as for complex applications, such as the
SPEC SDET benchmark. The code works for all the
objects in our system, and the main current limita-
tion is in the number of choices of objects we can
hot swap. We are continuing to explore the use of
hot swapping in implementing additional autonomic
computing features. Next we present a performance
study involving a significant application, and then we
discuss our plans for the future.

An important aspect of the virtual memory system
is keeping track of in-core pages. In K42, this func-
tion is implemented by a File Cache Manager (FCM)
component. We focus on two of the default imple-
mentations: shared and distributed. For each open
file, an instance of an FCM is used to cache the pages

72 APPAVOO ET AL.

of the file’s data in physical frames. By default, to
achieve better performance when a file is opened,
a simple shared implementation of the FCM is cre-
ated. The default decision is made based on the fact
that most files are accessed by one thread on one
processor and opened only briefly. If the file is ac-
cessed on one processor, the shared FCM implemen-
tation performs well and has little memory overhead.
If the file is accessed by multiple processors concur-
rently, the associated FCM is hot swapped to a dis-
tributed implementation. This alleviates contention
and yields better scalability, thus ensuring that only
the files that experience contention due to sharing
use the more complex and expensive distributed FCM
implementation. However, because the shared im-
plementation performs an order of magnitude worse
when running on many processors, without hot swap-
ping, an FCM suitable for the distributed case would
need to be used all the time and a performance pen-
alty paid in the single processor case.

One of the studies we did to understand the advan-
tages of hot swapping the FCM implementations was
to run the PostMark** and SPEC SDET benchmarks.
PostMark is a uniprocessor file system benchmark
that creates a large number of small files on which
a number of operations are performed, including
reading and appending. SPEC SDET is a multiproces-
sor UNIX development workload that simulates con-
current users running standard UNIX commands
(Due to tool chain issues we used a modified ver-
sion that does not include a compiler or UNIX com-
mand “ps.”). If we disable hot swapping and run Post-
Mark using only shared FCMs, and then run it using
only distributed FCMs, we find that we suffer a 7 per-
cent drop in performance for the distributed imple-
mentation of the FCM. On the other hand, if we run
SDET in a similar fashion we find that the distributed
FCM gets an 8 percent performance improvement on
4 processors and an order of magnitude improve-
ment on 24 processors over the shared FCM. When
hot swapping is enabled, the best performance is
achieved automatically for both PostMark and SDET,
with the individual FCM instances choosing the right
implementation based on the demands it experi-
ences.

The above experiment shows the power of hot swap-
ping. In other work we have studied the performance
advantages of hot swapping. The results we have ob-
tained are encouraging, but there is still much to do
within the K42 project to bring hot swapping to a
mature state. Currently the trigger for an object hot
swap is either specified by an object or by an appli-

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

cation via an explicit request. Although this has
proven to be sufficient for many cases, we have found
situations where a monitoring infrastructure would
allow us to make the trigger decision on behalf of
an object. The monitoring code we currently use has
often been placed in the object for convenience and
to gain experience with how to gather and use the
information. We plan to use object interposition to
reduce the overhead of this scheme and provide a
more generic mechanism for gathering this informa-
tion.

Determining the target object is done today explic-
itly by the requester of a hot swap. We are currently
extending the K42 type system to provide a service
that identifies objects by their characteristics, again
allowing a more generic mechanism for handling the
hot swap. Because our project has been perfor-
mance-driven, our focus so far has been to use au-
tonomic computing to improve performance. How-
ever, there are important benefits to be gained from
being able to autonomically swap in a security patch,
or achieve higher availability by a live upgrade. Thus,
we are beginning to explore other autonomic fea-
tures.

There is considerable potential, and required effort,
to understand the longer-term and larger issues in-
volved in providing many components that manage
a given resource and getting them to safely and cor-
rectly interact. So far, we have successfully used hot
swapping and its autonomic features in K42 and ex-
pect continued progress in our research.

Related work

Although there is a large body of prior work focus-
ing on the downloading and dynamic binding of new
components, there has been less work on swapping
components in a live system. Hjalmtysson and Gray
describe a mechanism for updating C++ objects in
a running program,* but their client objects need
to be able to recover from broken bindings due to
an object swap and retry the operation, so their
mechanism is not transparent to client objects. More-
over, they do not detect quiescent state, and old ob-
jects continue to service prior calls while the new ob-
ject begins to service new calls.

The virtualizing Operating System (vOS)* is a middle-
ware application that offers an abstraction layer be-
tween applications and the underlying OS. vOS allows
modules to be refreshed, that is, to be dynamically
reloaded to achieve software rejuvenation. It does

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

not address loading of new implementations, and its
approach does not apply to OS components.

Pu et al. describe a “replugging mechanism” for in-
cremental and optimistic specialization,'” but they
assume there can be at most one thread executing
in a swappable module at a time. In later work that
constraint is relaxed but is nonscalable. Hicks et al.
describe a method for dynamic software updating,
but in their approach, all objects of a certain type
are updated simultaneously, not just individual in-
stances, as is possible with our scheme.? Moreover,
they require that the program be coded to decide
when a safe point has been reached and initiate the
update.

The modular structure, level of indirection, and avail-
ability of a mechanism for detecting a quiescent state
is not unique to K42. Sequent has a mechanism for
detecting quiescent state,’' and we are working with
this group to incorporate a similar facility into Linux.
This will allow hot swapping of system modules (i.e.,
device drivers and file systems).

In general, the work described here can be viewed
as part of wide-spread research efforts to make 0Ss
more adaptive and extensible as in SPIN, '’ Exoker-
nel,' and VINO. " These systems are unable to swap
entire components, but rather just provide hooks for
customization. Our work is complementary to the
above mentioned related work. We focus primarily
on a mechanism for swapping generic components
in a highly dynamic, multithreaded multiprocessing
system. Several groups have also done work on add-
ing extensibility to both applications and systems.
CORBA**,% DCE,* and RMI*® are all application ar-
chitectures that allow components to be modified
during program execution; but they do not address
the performance or complexity concerns present in
an OS.

Conclusions

Autonomic systems software should have self-main-
tenance capabilities, and should be able to run ap-
plications well on various hardware platforms and
across various environments. We proposed an object-
oriented system structure that supports hot swapping
as an infrastructure toward meeting these autonomic
challenges by dynamically monitoring and modify-
ing the 0S. We demonstrated the technical feasibil-
ity of the hot-swapping approach by describing our
implementation of it in K42. We described how hot
swapping can yield performance advantages and

APPAVOO ET AL. 73

showed an application involving K42. We will con-
tinue to explore other autonomic features in K42 by
examining security, software upgrading, and multi-
ple object coordination issues.

Our prototype is Open Source Software and avail-
able on our Web site.? Readers may use the Web
site for accessing related white papers, and for con-
tacting us if interested in participating in this proj-
ect.

Acknowledgments

We would like to thank the anonymous referees for
their positive and helpful comments.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of The Open Group, Li-
nus Torvalds, MIPS Technologies, Inc., Sun Microsystems, Inc.,
Sequent Computer Systems, Inc., or Object Management Group.

Cited references

1. IBM Corporation, Autonomic Computing, http:/www.
research.ibm.com/autonomic/.

2. IBM Corporation, Research Division, The K42 Project, http:
//www.research.ibm.com/K42.

3. D.Knebel et al., “Diagnosis and Characterization of Timing-
Related Defects by Time-Dependent Light Emission,” Pro-
ceedings of the International Test Conference, October 18-23,
1998, Washington, DC, IEEE, New York (1998), pp. 733—
739.

4. M. Paniccia, T. Eiles, V. R. M. Rao, and W. M. Yee, “Novel
Optical Probing Technique for Flip Chip Packaged Micro-
processors,” Proceedings of the International Test Conference,
October 18-23, 1998, Washington, DC, IEEE, New York
(1998), pp. 740-747.

5. O. Krieger, M. Stumm, and R. Unrau, “The Alloc Stream
Facility: A Redesign of Application-Level Stream 1/O,” IEEE
Computer 27, No. 3, 75-82 (1994).

6. O. Krieger and M. Stumm, “HFS: A Performance-Oriented
Flexible File System Based on Building-Block Compositions,”
ACM Transactions on Computer Systems 15, No. 3, 286-321
(1997).

7. Reiser File System (ReiserFS), see http://www.namesys.com.

8. G. Glass and P. Cao, “Adaptive Page Replacement Based
on Memory Reference Behavior,” Proceedings of the 1997
ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, Seattle, WA, ACM Press,
New York (1997), pp. 115-126.

9. J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho, and
C. S. Kim, “A Low-Overhead High-Performance Unified
Buffer Management Scheme That Exploits Sequential and
Looping References,” Proceedings, Symposium on Operating
Systems Design and Implementation, San Diego, CA, USENIX
Association (2000), pp. 119-134.

10. B. N. Bershad, S. Savage, P. Pardyn, E. G. Sirer, M. E. Fi-
uczynski, D. Becker, C. Chambers, and S. Eggers, “Exten-
sibility, Safety and Performance in the SPIN Operating Sys-
tem,” Proceedings, ACM Symposium on Operating System

74 APPAVOO ET AL

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Principles, Copper Mountain Resort, CO, ACM, New York
(1995), pp. 267-283.

D. R. Engler, M. F. Kaashoek, and J. O’Toole, “Exokernel:
An Operating System Architecture for Application-Level Re-
source Management,” Proceedings, ACM Symposium on Op-
erating System Principles, Copper Mountain Resort, CO,
ACM, New York (1995), pp. 251-266.

D. Mosberger and L. L. Peterson, “Making Paths Explicit in
the Scout Operating System,” Proceedings, Symposium on Op-
erating Systems Design and Implementation, Seattle, WA,
ACM, New York (1996), pp. 153-167.

M. Seltzer, Y. Endo, C. Small, and K. A. Smith, An Intro-
duction to the Architecture of the VINO Kernel, Technical Re-
port TR-34-94, Harvard University, Cambridge, MA (1994).
G. R. Ganger, D. R. Engler, M. F. Kaashoek, H. M. Briceno,
R. Hunt, and T. Pinckney, “Fast and Flexible Application-
Level Networking on Exokernel Systems,” ACM Transactions
on Computer Systems 20, No. 1, 49-83 (2002).
A.D.Brown, T. C. Mowry, and O. Krieger, “Compiler-Based
I/O Prefetching for Out-of-Core Applications,” ACM Trans-
actions on Computer Systems 19, No. 2, 111-170 (2001).
R. V. Meter and M. Gao, “Latency Management in Storage
Systems,” Proceedings, Symposium on Operating Systems De-
sign and Implementation, San Diego, CA, USENIX Associ-
ation (2000), pp. 103-117.

C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J. Inouye,
L. Kethana, J. Walpole, and K. Zhang, “Optimistic Incremen-
tal Specialization: Streamlining a Commercial Operating Sys-
tem,” Proceedings, ACM Symposium on Operating System Prin-
ciples, Copper Mountain Resort, CO, ACM, New York
(1995), pp. 314-321.

S. R. Kleiman, “Vnodes: An Architecture for Multiple File
System Types in Sun UNIX,” Proceedings of the Summer Con-
ference, Atlanta, GA, 1986, USENIX Association (1986), pp.
238-247.

R. Gooch, “Linux Virtual File System,” http://www.
atnf.csiro.au/people/rgooch/linux/vfs.txt.

M. Hicks, J. T. Moore, and S. Nettles, “Dynamic Software
Updating,” Proceedings of the ACM SIGPLAN’01 Conference
on Programming Language Design and Implementation, Snow-
bird, UT, ACM Press, New York (2001), pp. 13-23.

G. Hjalmtysson and R. Gray, “Dynamic C++ Classes: A
Lightweight Mechanism to Update Code in a Running Pro-
gram,” Proceedings, Annual USENIX Technical Conference,
USENIX Association (1998), pp. 65-76.

J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and D. Dillen-
berger, “Adaptive Algorithms for Managing a Distributed
Data Processing Workload,” IBM Systems Journal 36, No. 2,
242-283 (1997).

Y. Li, S.-M. Tan, Z. Chen, and R. H. Campbell, Disk Sched-
uling with Dynamic Request Priorities, Technical Report, Uni-
versity of Illinois at Urbana-Champaign, IL (August 1995).
J. Liedtke, “On Micro-Kernel Construction,” Proceedings of
the Fifteenth ACM Symposium on Operating Systems Princi-
ples, Copper Mountain, CO, ACM Press, New York (1995),
pp. 237-250.

B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm, “Torna-
do: Maximizing Locality and Concurrency in a Shared Mem-
ory Multiprocessor Operating System,” Proceedings, Sympo-
sium on Operating Systems Design and Implementation, New
Orleans, LA, USENIX Association (1999), pp. 87-100.

P. E. McKenney, D. Sarma, A. Arcangeli, A. Kleen,
O. Krieger, and R. Russell, “Read Copy Update,” Proceed-
ings of the Ottawa Linux Symposium, Ottawa, Canada (June
2002).

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

27. M. Greenwald and D. Cheriton, “The Synergy Between Non-
Blocking Synchronization and Operating System Structure,”
Proceedings of the Second USENIX Symposium on Operating
Systems Design and Implementation, Seattle, WA, ACM Press,
New York (1996), pp. 123-136.

28. Free Software Foundation, Inc., GNU Lesser General Pub-
lic License, http://www.research.ibm.com/K42/LICENSE.html.

29. M. Auslander, H. Franke, B. Gamsa, O. Krieger, and
M. Stumm, “Customization Lite,” Hot Topics in Operating
Systems, IEEE, New York (May 1997), pp. 43-48.

30. T. Lovett and R. Clapp, “STiNG: A CC-NUMA Computer
System for the Commercial Marketplace,” Proceedings of the
23rd International Symposium on Computer Architecture,
ACM, New York (1996), pp. 308-317.

31. P. E. McKenney and J. D. Slingwine, “Read-Copy Update:
Using Execution History to Solve Concurrency Problems,”
International Conference on Parallel and Distributed Com-
puting and Systems, Las Vegas, NV, 28-31 October 1998,
IASTED (International Association of Science and Technol-
ogy for Development), Calgary, Canada (1998).

32. J.Katcher, PostMark: A New File System Benchmark, TR3022,
Network Appliance, Sunnyvale, CA 94089, http://www.
netapp.com/tech_library/3022.html.

33. T.Boyd and P. Dasgupta, “Preemptive Module Replacement
Using the Virtualizing Operating System,” Workshop on Self-
Healing, Adaptive and Self-Managed Systems (SHAMAN)
(June 2002).

34. Z. Yang and K. Duddy, “CORBA: A Platform for Distrib-
uted Object Computing,” ACM Operating Systems Review 30,
No. 2, 4-31 (1996).

35. Distributed Computing Environment: Overview, OSF-DCE-PD-
590-1, Open Software Foundation (May 1990).

36. Java Remote Method Invocation—Distributed Computing
for Java, Sun Microsystems, Inc., http://java.sun.com/
marketing/collateral/javarmi.html.

Accepted for publication July 29, 2002

Jonathan Appavoo Department of Computer Science, Univer-
sity of Toronto, 10 King’s College Road, Toronto, Ontario, Canada
MS5S 3G4 (electronic mail: jonathan@eecg.toronto.edu). Mr. Appavoo
has a Master of Computer Science degree from the University
of Toronto, where he is currently enrolled in the Ph.D. program.
He has spent the last four years working on K42 and its prede-
cessor, Tornado. He works closely with the K42 team at the IBM
Thomas J. Watson Research Center, where he has interned. His
research has focused on multiprocessor operating system perfor-
mance with a particular interest in scalable data structures.

Kevin Hui Kaleidescape, Inc., 155 Frobisher Drive, Suite I-205,
Waterloo, Ontario, Canada N2V 2E1 (electronic mail: kevin@
kaleidescape.com). Mr. Hui is a software engineer at Kaleides-
cape, where he works on operating system and information se-
curity. Under the supervision of Dr. Michael Stumm, he obtained
his M.Sc. in computer science in 2000 at the University of Toronto.
Prior to receiving his degree, he enjoyed a productive stay at the
IBM Thomas J. Watson Research Center, where he designed and
implemented K42’s hot-swapping infrastructure with Dr. Robert
Wisniewski and the rest of the K42 team.

Craig A. N. Soules Computer Science Department, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15212 (electronic mail:
soules@cmu.edu). Mr. Soules has been a graduate student in the
Computer Science Department at Carnegie Mellon University

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

since fall 2000. His research has focused mainly on the design
and performance of operating systems and file systems.

Robert W. Wisniewski IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (electronic mail: bob@watson.ibm.com). Dr. Wisniewski is
a research scientist at the Watson Research Center working on
the K42 operating system, and is currently exploring scalable, por-
table, and configurable next-generation operating systems. He re-
ceived his Ph.D. degree in 1996 from the University of Roches-
ter, Rochester, NY, where his thesis was “Achieving High
Performance in Parallel Applications via Kernel-Application In-
teraction.” His research interests include scalable parallel systems,
first-class system customization, and performance monitoring.

Dilma M. Da Silva IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: dilmasilva@us.ibm.com). Dr. Da Silva received
her B.S. and M.S. degrees in computer science from the Univer-
sity of Sao Paulo, Brazil, and her Ph.D. from Georgia Institute
of Technology, Atlanta, GA. From 1996 to 2000 she was an as-
sistant professor in the Department of Computer Science at the
University of Sao Paulo, Brazil. She is currently a research staft
member at IBM’s Thomas J. Watson Research Center. Her re-
search interests include operating systems and dynamic system
configuration.

Orran Krieger IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: okrieg@us.ibm.com). Dr. Krieger is a manager
at IBM’s Thomas J. Watson Research Center. He received a
B.A.Sc. degree from the University of Ottawa in 1985, an M.A.Sc.
degree from the University of Toronto in 1989, and a Ph.D. de-
gree from the University of Toronto in 1994, all in electrical and
computer engineering. He was one of the main architects and
developers of the Hurricane and Tornado operating systems at
the University of Toronto, and was heavily involved in the ar-
chitecture and development of the Hector and NUMAchine
shared-memory multiprocessors. Currently, he is project leader
of the K42 operating system project at the IBM Research Center
and an adjunct associate professor in computer science at Car-
negie Mellon University, Pittsburgh, PA. His research interests
include operating systems, file systems, and computer architec-
ture.

Marc A. Auslander IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: Marc_Auslander@us.ibm.com). Mr. Auslander
is an IBM Fellow, a member of the National Academy of En-
gineering, an ACM Fellow, and an IEEE Fellow. He received
the A.B. in mathematics from Princeton University in 1963. He
joined IBM in 1964 and transferred to the Thomas J. Watson Re-
search Center in 1968. Mr. Auslander contributed significantly
to IBM’s entry into virtual systems. He was an original member
of the group that designed and built the first IBM RISC machine
and the first RISC optimiziné compiler. He has also made im-
portant contributions to AIX ™, other operating systems, and the
PowerPC architecture. He is currently working on the K42 op-
erating system. His research interests include multiprocessor op-
erating systems, compilers, and processor architecture.

David J. Edelsohn IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: dje@watson.ibm.com). Dr. Edelsohn is a research

APPAVOO ET AL. 75

staff member in IBM’s Research Division. He received his Ph.D.
degree in 1996 from Syracuse University, Syracuse, NY. At Syr-
acuse University’s Northeast Parallel Architectures Center, he
worked with Geoffrey Fox studying mixed media systems and mas-
sively parallel hierarchical algorithms. His research interests in-
clude compiler optimizations, operating systems, and parallel com-
puting.

Ben Gamsa SOMA Networks, Inc., 312 Adelaide Street West, Suite
700, Toronto, Ontario, Canada M5V IR2 (electronic mail:
ben@somanetworks.com). Dr. Gamsa received his Ph.D. degree
in 1999 from the Department of Computer Science at the Uni-
versity of Toronto and is currently employed at SOMA Networks.

Greg R. Ganger Carnegie Mellon University, Pittsburgh, Penn-
sylvania 15212 (electronic mail: greg.ganger@cmu.edu). Dr. Ganger
is a professor in the Electrical and Computer Engineering De-
partment at Carnegie Mellon University, Pittsburgh, PA. His
broad research interests in computer systems include storage sys-
tems, security, and operating systems. He is director of Carnegie
Mellon’s Parallel Data Lab, academia’s premiere storage systems
research center. His Ph.D. in computer science and engineering
is from the University of Michigan, and he spent two and one
halfyears as a postdoctoral student at Massachusetts Institute of
Technology, working on the Exokernel project.

Paul McKenney IBM Server Group, Linux Technology Center,
15450 S.W. Koll Parkway, Beaverton, Oregon 97006-6096 (electron-
ic mail: pmckenne@us.ibm.com). Mr. McKenney is a system ar-
chitect at the Linux Technology Center. Prior to that he worked
on locking and parallel operating-system algorithms at Sequent
Computer Systems. He is working toward his Ph.D. degree at Or-
egon Graduate Institute. His research interests include parallel-
ism, virtualization, and autonomic computing.

Michal Ostrowski IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: mostrows @watson.ibm.com). Mr. Ostrowski is a
member of the Advanced Operating Systems (K42) group at the
IBM Research Center. He is involved in research and develop-
ment activities on the K42 operating system, currently focusing
on developing a framework for using Linux kernel code in K42
and developing frameworks and mechanisms for efficient asyn-
chronous I/O interfaces. He completed his master’s degree at the
University of Waterloo in 2000.

Bryan Rosenburg IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(electronic mail: rosnbrg@us.ibm.com). Dr. Rosenburg received
his Ph.D. degree in computer sciences at the University of Wis-
consin-Madison in 1986, and immediately thereafter joined the
Watson Research Center as a research staff member in the op-
erating system group of the RP3 NUMA multiprocessor project.
He has been a member of the K42 team since its inception. His
current research interests are in the lowest levels of operating
system architecture: interrupt handling, context switching, inter-
process communication, and low-level scheduling.

Michael Stumm Department of Computer Science, University of
Toronto, 10 King’s College Road, Toronto, Ontario, Canada M5S
3GH4 (electronic mail: stumm@eecg.toronto.edu). Dr. Stumm is a
professor in the Department of Electrical and Computer Engi-
neering and the Department of Computer Science at the Uni-

76 APPAVOO ET AL.

versity of Toronto. He received a diploma in mathematics and
a Ph.D. degree in computer science from the University of Zur-
ich in 1980 and 1984, respectively. Dr. Stumm’s research inter-
ests are in the areas of computer systems, in particular operating
systems for distributed and parallel systems.

Jimi Xenidis IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598 (elec-
tronic mail: jimix@watson.ibm.com). Mr. Xenidis is a software en-
gineer at the Watson Research Center working with several groups
in addition to the K42 project. His research interests include op-
erating systems, linkers and libraries, and machine virtualization.

IBM SYSTEMS JOURNAL, VOL 42, NO 1, 2003

