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Abstract

Small file performance in most file systems is limited by
slowly improving disk access times, even though cur-
rent file systems improve on-disk locality by allocat-
ing related data objects in the same general region.
The key insight for why current file systems perform
poorly is that locality is insufficient — exploiting disk
bandwidth for small data objects requires that they be
placed adjacently. We describe C-FFS (Co-locating
Fast File System), which introduces two techniques,
embedded inodes and explicit grouping, for exploit-
ing what disks do well (bulk data movement) to avoid
what they do poorly (reposition to new locations). With
embedded inodes, the inodes for most files are stored
in the directory with the corresponding name, remov-
ing a physical level of indirection without sacrificing the
logical level of indirection. With explicit grouping, the
data blocks of multiple small files named by a given di-
rectory are allocated adjacently and moved to and from
the disk as a unit in most cases. Measurements of our
C-FFS implementation show that embedded inodes and
explicit grouping have the potential to increase small
file throughput (for both reads and writes) by a factor
of 5–7 compared to the same file system without these
techniques. The improvement comes directly from re-
ducing the number of disk accesses required by an order
of magnitude. Preliminary experience with software-
development applications shows performance improve-
ments ranging from 10–300 percent.

1 Introduction

It is frequently reported that disk access times have not
kept pace with performance improvements in other sys-
tem components. However, while the time required to
fetch the first byte of data is high (i.e., measured in mil-

liseconds), the subsequent data bandwidth is reasonable
(> 10 MB/second). Unfortunately, although file systems
have been very successful at exploiting this bandwidth
for large files [Peacock88, McVoy91, Sweeney96], they
have failed to do so for small file activity (and the cor-
responding metadata activity). Because most files are
small (e.g., we observe that 79% of all files on our file
servers are less than 8 KB in size) and most files ac-
cessed are small (e.g., [Baker91] reports that 80% of
file accesses are to files of less than 10KB), file system
performance is often limited by disk access times rather
than disk bandwidth.

One approach often used in file systems like the fast
file system (FFS) [McKusick84] is to place related data
objects (e.g., an inode and the data blocks it points to)
near each other on disk (e.g., in the same cylinder group)
in order to reduce disk access times. This approach can
successfully reduce the seek time to just a fraction of that
for a random access pattern. Unfortunately, it has some
fundamental limitations. First, it affects only the seek
time component of the access time1, which generally
comprises only about half of the access time even for
random access patterns. Rotational latency, command
processing, and data movement, which are not reduced
by simply placing related data blocks in the same gen-
eral area, comprise the other half. Second, seek times
do not drop linearly with seek distance for small dis-
tances. Seeking a single cylinder (or just switching
between tracks) generally costs a full millisecond, and
this cost rises quickly for slightly longer seek distances
[Worthington95]. Third, it is successful only when no
other activity moves the disk arm between related re-
quests. As a result, this approach is generally limited
to providing less than a factor of two improvement in
performance (and often much less).

Another approach, the log-structured file system

1We use the terms access time and service time interchangeably to
refer to the time from when the device driver initiates a read or write
request to when the request completion interrupt occurs.



(LFS), exploits disk bandwidth for all file system data,
including large files, small files, and metadata. The
idea is to delay, remap and cluster all modified blocks,
only writing large chunks to the disk [Rosenblum92].
Assuming that free extents of disk blocks are always
available, LFS works extremely well for write activ-
ity. However, the design is based on the assumption
that file caches will absorb all read activity and does
not help in improving read performance. Unfortunately,
anecdotal evidence, measurements of real systems (e.g.,
[Baker91]), and simulation studies (e.g., [Dahlin94]) all
indicate that main memory caches have not eliminated
read traffic.

This paper describes the co-locating fast file system
(C-FFS), which introduces two techniques for exploiting
disk bandwidth for small files and metadata: embedded
inodes and explicit grouping. Embedding inodes in the
directory that names them (unless multipledirectories do
so), rather than storing them in separate inode blocks,
removes a physical on-disk level of indirection without
sacrificing the logical level of indirection. This tech-
nique offers many advantages: it halves the number of
blocks that must be accessed to open a file; it allows the
inodes for all names in a directory to be accessed with-
out requesting additional blocks; it eliminates one of
the ordering constraints required for integrity during file
creation and deletion; it eliminates the need for static
(over-)allocation of inodes, increasing the usable disk
capacity [Forin94]; and it simplifies the implementation
and increases the efficiency of explicit grouping (there
is a synergy between these two techniques).

Explicit grouping places the data blocks of multiple
files at adjacent disk locations and accesses them as a
single unit most of the time. To decide which small
files to co-locate, C-FFS exploits the inter-file relation-
ships indicated by the name space. Specifically, C-FFS
groups files whose inodes are embedded in the same di-
rectory. The characteristics of disk drives have reached
the point that accessing several blocks rather than just
one involves a fairly small additional cost. For exam-
ple, even assuming minimal seek distances, accessing
16 KB requires only 10% longer than accessing 8 KB,
and accessing 64 KB requires less than twice as long
as accessing a single 512-byte sector. Further, the rela-
tive cost of accessing more data has been dropping over
the past several years and should continue to do so. As
a result, explicit grouping has the potential to improve
small file performance by an order of magnitude over
conventional file system implementations. Because the
incremental cost is so low, grouping will improve per-
formance even when only a fraction of the blocks in a
group are needed.

Figure 1 illustrates the state-of-the-art and the im-
provements made by our techniques. Figure 1A shows
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A. Ideal Layout
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C. Embedded Inodes

D. Explicit Grouping

Figure 1: Organization and layout of file data on disk.
This figure shows the on-disk locations of directory
blocks (marked ‘D’), inode blocks (‘I’) and the data
for five single-block files (‘F1’ – ‘F5’) in four different
scenarios: (A) the ideal conventional layout, (B) a more
realistic conventional layout, (C) with the addition of
embedded inodes, and (D) with both embedded inodes
and explicit grouping (with a maximum group size of
four blocks).

the ideal layout of data and metadata for five single-
block files, which might be obtained if one uses a fresh
FFS partition. In this case, the inodes for all of the files
are located in the same inode block and the directory
block and the five file blocks are stored adjacently. With
this layout, the prefetching performed by most disks will
exploit the disk’s bandwidth for reads and scatter/gather
I/O from the file cache can do so for writes. Unfortu-
nately, a more realistic layout of these files for an FFS
file system that has been in use for a while is more like
that shown in Figure 1B. Reading or writing the same
set of files will now require several disk accesses, most
of which will require repositioning (albeit with limited
seek distances, since the picture shows only part of a
single cylinder group). With embedded inodes, one gets
the layout shown in Figure 1C, wherein the indirection
between on-disk directory entries and on-disk inodes is
eliminated. Finally, with both embedded inodes and ex-



plicit grouping, one gets the layout shown in Figure 1D.
In this case, one can read or write all five files with
two disk accesses. Further, for files F1 and F2, one
can read or write the name, inode and data block all
in a single disk request. In our actual implementation,
the maximum group size is larger than that shown and
the allocation code would try to place the second group
immediately after the first.

We have constructed a C-FFS implementation that
includes both of these techniques. Measurements of
C-FFS as compared to the same file system without these
techniques show that, for small file activity, embedded
inodes and explicit grouping can reduce the number of
disk accesses by more than an order of magnitude. On
the system under test (a modern PC), this translates into
a performance increase of a factor of 5–7 in small file
throughput for both reads and writes. Although our
evaluation is preliminary, experiments with actual appli-
cations show performance improvements ranging from
10–300 percent.

The remainder of this paper is organized as follows:
Section 2 provides more detailed motivation for co-
location, by exploring the characteristics of modern disk
drives and file storage usage. Section 3 describes our im-
plementation of embedded inodes and explicit grouping.
Section 4 shows that co-location improves performance
significantly by comparing two file system implementa-
tions that differ only in this respect. Section 5 discusses
related work. Section 6 discusses some open questions.
Section 7 summarizes this paper.

2 Motivation

The motivating insights for this work fall into two broad
categories: (1) The performance characteristics of mod-
ern disk drives, the de facto standard for on-line stor-
age, force us to aggressively pursue adjacency of small
objects rather than just locality. (2) The usage and or-
ganizational characteristics of popular file systems both
suggest the logical relationships that can be exploited
and expose the failure of current approaches in placing
related data adjacently.

2.1 Modern Disk Drive Characteristics

It has repeatedly been pointed out that disk drive access
times continue to fall behind relative to other system
components. However, disk drive manufacturers have
not been idle. They have matched the improvement
rates of other system components in areas other than the
access time, such as reliability, cost per byte, and record-
ing density. Also, although it has not improved quite as
rapidly, bulk data bandwidth has improved significantly.

This section uses characteristics of modern disk drives
to show that reading or writing several 4KB or 8KB disk
blocks costs a relatively small amount more than read-
ing or writing only one (e.g., 10% for 8KB extra and
100% for 56KB extra), and that this incremental cost is
dropping. Because of the high cost of accessing a single
block, it makes sense to access several even if only some
of them are likely to be necessary. Readers who do not
need to be convinced are welcome to skip to Section 2.2.

The service time for a disk request can be broken
into two parts, one that is dependent on the amount of
data being transferred and one that is not. The former
usually consists of just the media transfer time (unless
the media transfer occurs separately, as with prefetch or
write-behind). Most disks overlap the bus transfer time
with the positioning and media transfer times, such that
what remains, the ramp-up and ramp-down periods, is
independent of the size. Most of the service time com-
ponents, most notably including command processing
overheads, seek times, and rotational latencies, are inde-
pendent of the request size. With modern disk drives and
small requests, the size-independent parts of the service
time dominate the size-dependent part (e.g., > 90% of
the total for random 8KB requests).

Another way to view the same two aspects of the
service time are as per-request and per-byte. The domi-
nating performance characteristic of modern disk drives
is that the per-request cost is much larger than the per-
byte cost. Therefore, transferring larger quantities of
useful data in fewer requests will result in a significant
performance increase.

One approach currently used by many file system im-
plementors is to try to place related data items close to
each other on the disk, thereby reducing the per-request
cost. This approach does improve performance, but not
nearly as much as one might hope. It is generally lim-
ited to reducing seek distances, and thereby seek times,
which represent only about half of the per-request time.
Rotational latency, command processing and data move-
ment comprise the other half. In addition, even track
switches and single-cylinder seeks require a significant
amount of time (e.g., a millisecond or more) because
they still involve mechanical movement and settling de-
lays. Further, this approach is successful only when no
other activity uses the disk (and thereby moves the disk
arm) between related requests. As a result, this approach
is generally limited to providing less than a factor of two
in performance (and in practice much less).

To help illustrate the above claims, Table 1 lists char-
acteristics for three state-of-the-art (for 1996) disk drives
[HP96, Quantum96, Seagate96]. Figure 2 shows, for the
same three drives, average access times as a function of
the request size. Several points can be inferred from
these graphs. First, the incremental cost of reading or



Disk Drive Hewlett-Packard Seagate Quantum
Specification C3653a Barracuda Atlas II

Capacity 8.7 GB 9.1 GB 9.1 GB
Cylinders 5371 5333 5964
Surfaces 20 20 20

Sectors per Track 124–173 153–239 108–180
Rotation Speed 7200 RPM 7200 RPM 7200 RPM

Head Switch < 1 ms N/A N/A
One-cyl. Seek < 1 ms 0.6 ms (0.5 ms) 1.0 ms
Average Seek 8.7 ms (0.8 ms) 8.0 ms (1.5 ms) 7.9 ms

Maximum Seek 16.5 ms (1.0 ms) 19.0 ms (1.0 ms) 18.0 ms

Table 1: Characteristics of three modern disk drives, taken from [HP96, Seagate96, Quantum96]. N/A indicates
that the information was not available. For the seek times, the additional time needed for write settling is shown in
parentheses, if it was available.
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(a) HP C3653a (b) Seagate Barracuda ST19171FC (c) Quantum Atlas II

Figure 2: Average service time as a function of request size. The X-axis uses log scale. Two of the lines in each
plot represent the access time assuming an average seek time and a single-cylinder seek time, respectively. The other
two lines in each plot (labelled “immed”) represent the same values, but assuming that the disk utilizes a technique
known as immediate or zero-latency access. The basic idea is to read or write the data sectors in the order that they
pass under the read/write head rather than in strictly ascending order. This can eliminate part or all of the rotational
latency aspect of the service time. These values were calculated from the data in Table 1 using the read seek times
(which are shorter), assuming zero command initiation/processing overheads, and using the sector/track value for
the outermost zone.

writing several blocks rather than just one is small. For
example, a 16 KB access takes less than 10% longer than
an 8 KB access, even assuming a minimal seek time. A
64 KB access takes less than twice as long as an 8 KB ac-
cess. Second, immediate or zero-latency access extends
the range of request sizes that can be accessed for small
incremental cost, which will increase the effectiveness

of techniques that co-locate multiple small data objects.
Third, the seek time for random requests represents a
little more than half the total service time. Therefore,
eliminating it completely for a series of requests can
halve each service time after the first. In comparison,
co-location will eliminate the entire service time for a
set of requests after paying only a slightly higher cost



for the first. So, while reducing seek times can improve
performance somewhat, aggressive co-location has the
potential to provide much higher returns.

Not only are per-byte costs small relative to per-
request costs, but they have been decreasing and are
likely to continue to do so. For example, the HP C2247
disk drive [HP91, HP92] of a few years ago had only
half as many sectors on each track as the HP C3653
listed in Table 1, but an average access time that was
only 33% higher. As a result, a request of 64KB, which
takes only 2 times as long as a request of 8KB on state-
of-the-art disks, took nearly 3 times as long as a request
of 8KB on older drives. Projecting this trend into the fu-
ture suggests that co-location will become increasingly
important.

2.2 File System Characteristics

File systems use metadata to organize raw storage capac-
ity into human-readable name spaces. Most employ a
hierarchical name space, using directory files to translate
components of a full file name to an identifier for either
the desired file or the directory with which to translate
the next name component. At each step, the file system
uses the identifier (e.g., an inode number in UNIX file
systems) to determine the location of the file’s meta-
data (e.g., an inode). This metadata generally includes
a variety of information about the file, such as the last
modification time, the length, and pointers to where the
actual data blocks are stored. This organization involves
several levels of indirection between a file name and the
corresponding data, each of which can result in a sepa-
rate disk access. Additionally, the levels of indirection
generally cause each file’s data to be viewed as an inde-
pendent object (i.e., logical relationships between it and
other files are only loosely considered).

To get a better understanding of real file storage or-
ganizations, we constructed a small utility to scan some
of our group’s file servers. The two SunOS 4.1 servers
scanned supply 13.8 GB of storage from 9 file systems
on 5 disks. At the time of the examination, 9.8 GB (71%
of the total available) was allocated to 466,271 files.

In examining the statistics collected, three observa-
tions led us to explore embedded inodes and explicit
grouping. First, as shown in Figure 3 as well as by
previous studies, most files are small (i.e., 79% of those
on our server are smaller than a single 8KB block). In
addition to this static view of file size distributions, stud-
ies of dynamic file system activity have reported similar
behavior. For example, [Baker91] states that, although
most of the bytes accessed are in large files, “the vast
majority of file accesses are to small files” (e.g., about
80% of the files accessed during their study were less
than 10KB). These data, combined with the fact that
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Figure 3: Distribution of file sizes measured on our file
servers.

file system implementors are very good at dealing with
large files, suggest that it is important to address the
performance of small file access.

Second, despite the fact that each inode block con-
tains 64 inodes, multiple inode blocks are often used to
hold the metadata for files named in a particular direc-
tory (see Figure 4). On average, we found that the ratio
of names in a directory to referenced inode blocks is
roughly six to one. That is, every sixth name translates
to a different inode block. This suggests that the cur-
rent mechanism for choosing where to place an inode
(i.e., inode allocation) does a poor job of placing related
inodes adjacently. With embedded inodes, we store in-
odes in directories rather than pointers to inodes, except
in the rare case (less than 0.1 percent, on our server) of
having multiple links to a file from separate directories.
In addition to eliminating a physical level of indirec-
tion, embedding inodes reduces the number of blocks
that contain metadata for the files named by a particular
directory.

Third, despite the fact that the allocation algorithm
for single-block files in a directory might be expected
to achieve an ideal layout (as in Figure 1A) on a brand
new file system, these blocks tend to be local (e.g., in
the same cylinder group) but not adjacent after the file
system has been in use. For example, looking at entries
in their physical order in the directory, we find that only
30% of directories are adjacent to the first file that they
name. Further, fewer than 45% of files are placed adja-
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Figure 4: Distributions of the number of entries per directory and the corresponding number of inode blocks referred
to on our file servers.

cent to the file whose name precedes their name in the
directory.2 The consequence of this lack of adjacency
is that accessing multiple files in a directory involves
disk head movement for every other file (when the file
cache does not capture the accesses). The lack of ad-
jacency occurs because, for the first block of a file, the
file system always begins looking for free space at the
beginning of the cylinder group. With explicit grouping,
new file blocks for small files will be placed adjacently
to other files in the same directory whenever possible.
This should represent a substantial reduction in the num-
ber of disk requests required for a set of files named by
a given directory.

We believe that the relationships inherent in the name
space can be exploited to successfully realize the per-
formance potential of modern disks’ bandwidths. For
example, many applications examine the attributes (i.e.,
reference the inodes) of files named by a given directory
soon after scanning the directory itself (e.g., revision
control systems that use modification times to identify
files in the source tree that might have changed and di-

2Different applications access files named by a directory in dif-
ferent orders. For example, many shell utilities re-order file listings
alphabetically, while multi-file compile and link programs often apply
a user-specified ordering. As a result, we also looked at file adjacency
under alternative file sequences. For example, in alphabetical order,
only 16% of directories are adjacent to their first file and only 30% of
files are adjacent to their predecessor. Even with the best-caseordering
(by ascending disk block address), only 64% of files are next to their
predecessor.

rectory listing programs that format the output based on
permissions). Such temporal locality can be exploited
directly with embedded inodes. Similarly, it is common
for applications to access multiple files in a directory
(e.g., when scanning a set of files for a particular string
or when compiling and linking a multi-file program), as
opposed to accessing files randomly strewn throughout
the name space. Therefore, explicitly grouping small
files in a directory represents a significant performance
advantage.

3 Design and Implementation

To better exploit the data bandwidth provided by modern
disk drives, C-FFS uses embedded inodes and explicit
grouping to co-locate related small data objects. This
section describes the various issues that arise when ap-
plying these techniques and how our C-FFS implemen-
tation addresses them.

3.1 Embedded Inodes

Conceptually, embedding inodes in directories is
straightforward. One simply eliminates the previous
inode storage mechanism and replaces the inode pointer
generally found in each directory entry with the in-
ode itself. Unfortunately, a few complications do arise:
(1) Finding the location of an arbitrary inode given an



inode number (and to avoid changing other file system
components, this file ID must remain unique) must still
be both possible and efficient. (2) As part of enabling
the discovery of an arbitrary inode’s location, the cur-
rent C-FFS implementation replaces inode numbers with
inode locators that include an ID for the containing di-
rectory. One consequence of this approach is that when
a file is moved from one directory to another, its inode
locator will change. This can cause difficulties for sys-
tem components that are integrated with the file system
and rely on inode number constancy. (3) Although files
with links from multiple directories are rare, they are
useful and should still be supported. Also, files with
multiple links from within a directory should be sup-
ported with low cost, since some applications (such as
editors) use such links for backup management. (4) File
system recovery after both system crashes and partial
media corruption should be no less feasible than with a
conventional file system organization.

One of our implementation goals (on which we were
almost successful) was to change nothing beyond the
directory entry manipulation and on-disk inode access
portions of the file system. This section describes how
C-FFS implements embedded inodes, including how
C-FFS addresses each of the above issues.

Finding specific inodes

By eliminating the statically allocated, directly indexed
set of inodes, C-FFS breaks the direct translation be-
tween inode number and on-disk inode location. To
regain this, C-FFS replaces conventional inode numbers
with inode locators and adds an additional on-disk data
structure, called the directory map. In our current im-
plementation, an inode locator has three components: a
directory number, a sector number within the directory
and an identifier within the sector. C-FFS currently sizes
these at 16 bits, 13 bits and 3 bits, respectively, provid-
ing more than an order of magnitude more room for
growth in both directory count and directory size than
appears to be necessary from the characteristics of our
file server. However, shifting to a 64-bit inode locator
would overcome any realistic limitations.

To find the inode for an arbitrary inode locator, C-FFS
uses the following procedure:

1. Look in the inode cache.

2. If the inode is not in the cache, use the directory
number portion of the inode locator to index into
the directory map. This provides the inode locator
for the directory. A special directory number, 0,
is used to refer to the “directory” containing multi-
linked inodes that are not embedded (see below).

3. Get the directory’s inode. This may require recur-
sively executing steps 1, 2, and 3 several times.
However, the recursion is always bounded by the
root of the directory hierarchy and should rarely
occur in practice, since getting to the file’s inode
locator in the first place required looking in the di-
rectory. Further, this recursion could be eliminated
by exploiting the auxiliary physical location infor-
mation included in the directory map (see below).

4. Read the directory block that contains the sector
referred to by the sector number component of the
inode number. (Note that the sector number is not
really necessary — it simply allows us to restrict
the linear scan.)

5. Traverse the set of directory entries in the sector to
find the matching inode information, if it exists.

Moving files

Because C-FFS stores inodes inside the directories that
name them, moving a file from one directory to another
involves also moving the inode. Fortunately, this is easy.
However, because inode locators encode the inode’s lo-
cation, including the containing directory’s number, the
inode locator must be changed when an inode moves.3

In addition to file movement, C-FFS moves inodes when
they are named by multiple directories (see below) and
when the last name for a file is removed while it is
still open (to support POSIX semantics). Unfortunately,
changing the externally visible file ID can cause prob-
lems for system components, such as an NFS server,
that relies on constancy of the file ID for a given file.
Some solutions to this problem that we have considered
include not actually moving the inode (and using the
external link entry type discussed below), keeping an
additional structure to correlate the old and new inode
locators and forcing other system components to deal
with the change. We currently use this last solution,
but are growing concerned that too many applications
expect file IDs to remain constant.

We currently believe that the correct solution is to
bring back constant inode numbers and to introduce an-
other table to translate inode numbers to inode locators.
Properly implemented, we believe that such a table could
be maintained with low cost. In particular, it would only
need to be read when a desired inode is not in the inode
cache. Also, by keeping both the inode number and the

3Note that moving a directory will change the inode locator for the
directory but will not change the inode locators for any of the files it
names. The inode locators for these latter files encode the directory’s
identity by its index into the directory map rather than by its inode
locator.



inode locator in each inode, the table could be considered
soft state that is reconstructed if the system crashes.

Supporting hard links

Although it is rare to have multiple hard links to a sin-
gle file, it can be useful and we want to continue to
allow it. Therefore, C-FFS replaces the inode pointer
field of conventional directories with a type that can
take on one of five values: (1) invalid, which indicates
that the directory entry is just a space holder; (2) em-
bedded, which indicates that the inode itself is in the
entry; (3) directory pointer, which indicates that the en-
try contains a directory number that can be used to index
into the directory map to find the corresponding inode
locator (this entry type is used only for the special ‘.’
and ‘..’ entries); (4) internal link, which indicates that
the entry contains a pointer to the location of the actual
inode elsewhere within the directory; and (5) external
link, which says that the entry contains a pointer to the
location of the inode outside of the directory. Additional
space in the directory entry is used to hold the inode or
pointer for the latter four cases.

As suggested by the existence of an external link type,
C-FFS stores some inodes outside of directories. In par-
ticular, C-FFS does this for inodes that are named by
multiple files and for inodes that are not named but have
been opened by some process. For the latter case, ex-
ternalizing an inode is simple because we don’t need to
guarantee its existence across a system failure. External-
izing an inode to add a second external link, on the other
hand, is expensive in our current C-FFS implementation,
requiring two synchronous writes (one to copy the inode
to its new home and one to update the directory from
which is was moved). Externalized inodes are kept in a
dynamically-growable, file-like structure that is similar
to the IFILE in BSD-LFS [Seltzer93]. Some differences
are that the externalized inode structure grows as needed
but does not shrink and its blocks do not move once they
have been allocated.

File system recovery

One concern that re-arranging file system metadata
raises is that of integrity in the face of system fail-
ures and media corruption. Regarding the first, we
have had no difficulties constructing an off-line file sys-
tem recovery program much like the UNIX FSCK utility
[McKusick94]. Although inodes are no longer at stat-
ically determined locations, they can all be found (as-
suming no media corruption) by following the directory
hierarchy. We also do not believe that embedded inodes
increase the time required to complete failure recovery,
since reading the directories is required for checking link

counts anyway. In fact, embedded inodes reduce the ef-
fort involved with verifying the link counts, since extra
state need not be kept (a valid embedded inode has a link
count of one plus the number of internal links).

The one potential problem that embedding inodes in-
troduces is that an unfortunate media corruption can
cause all files below a corrupted directory to be lost.
Even though they are uncorrupted, the single way to
find them will have been destroyed. This is unaccept-
able when compared to the current scheme, which loses
a maximum of 64 files or directories when an inode
block is destroyed. All files that become disconnected
from the name hierarchy due to such a loss can still be
found. Fortunately, we can employ a simple solution to
this problem — redundancy. By augmenting the direc-
tory map with the physical location of each directory’s
inode, we eliminate the loss of directories and files be-
low a lost directory. Although the absolute amount of
loss may be slightly higher (because the density of use-
ful information is higher), it should be acceptable given
the infrequency of post-factory media corruption.

Simplifying integrity maintenance

Although the original goal of embedded inodes was to
reduce the number of separate disk requests, a pleasant
side effect is that we can also eliminate one of the se-
quencing constraints associated with metadata updates
[Ganger94]. In particular, by eliminating the physical
separation between a name and the corresponding inode,
C-FFS exploits a disk drive characteristic to atomically
update the pair. Most disks employ powerful error cor-
recting codes on each sector, which has the effect of elim-
inating (with absurdlyhigh probability)the possibilityof
only part of the sector being updated. So, by keeping the
two items in the same sector, we can guarantee that they
will be consistent with respect to each other. For file
systems that use synchronous writes to ensure proper
sequencing, this can result in a two-fold performance
improvement [Ganger94]. For more aggressive imple-
mentations (e.g., [Hagmann87, Chutani92, Ganger95]),
this reduces complexity and the amount of book-keeping
required.

Directory sizes

A potential down-side of embedded inodes is that the
directory size can increase substantially. While making
certain that an inode and its name remain in the same
sector, three directory entries with embedded 128-byte
inodes can be placed in each 512-byte sector. Fortu-
nately, as shown in Figure 4, the number of directory
entries is generally small. For example, 94% of all di-
rectories would require only one 8 KB block on our file



servers. For many of these, embedded inodes actually
fit into space that was allocated anyway (the minimum
unit of allocation is a 1 KB fragment). Still, there are a
few directories with many entries (e.g., several of over
1000 and one of 9000). For a large directory, embedded
inodes could greatly increase the amount of data that
must be read from disk in order to scan just the names
in a directory (e.g., when adding yet another directory
entry). We are not particularly concerned about this,
since bandwidth is what disks are good at. However, if
experience teaches us that large directories are a signif-
icant problem, one option is to use the external inode
“file” for the inodes of such directories.

3.2 Grouping Small Files

Like embedded inodes, small file grouping is concep-
tually quite simple. C-FFS simply places several small
files adjacently on the disk and read/writes the entire
group as a unit. The three main issues that arise are
identifying the disk locations that make up a group, al-
locating disk locations appropriately, and caching the
additional group items before they have been requested
or identified. We discuss each of these below.

Identifying the group boundaries

To better exploit available disk bandwidth, C-FFS moves
groups of blocks to and from the disk at once rather than
individually. To do so, it must be possible to determine,
for any given block, whether it is part of a group and,
if so, what other disk locations are in the same group.
C-FFS does this by augmenting each inode with two
fields identifying the start and length of the group.4 Be-
cause grouping is targeted for small files, we don’t see
any reason to allow an inode to point to data in more than
one group. In fact, C-FFS currently allows only the first
block (the only block for 79% of observed files) of any
file other than a directory to be part of a group. Identi-
fying the boundaries of the group is a simple matter of
looking in the inode, which must already be present in
order to identify the disk location of the desired block.

Allocation for groups

Before describing what is different about the allocation
routines used to group small files, we want to stress
what is not different. Placement of data for large files
remains unchanged and should exploit clustering tech-
nology [Peacock88, McVoy91]. Directories are also
placed as in current systems, by finding a cylinder group

4Although we have added fields to support grouping in the C-FFS
prototype, it would seem reasonable to overload two of the indirect
block pointers instead and simply disable grouping for large files.

with many free blocks. (The fast file system actually
performs directory allocation based on the number of
free inodes rather than the amount of free space. With
embedded inodes, however, this becomes both difficult
and of questionable value.)

The main change occurs in deciding where to place
the first block (or fragment) of a file. The standard
approach is to scan the freelist for a free block in the
cylinder group that contains the inode, always starting
from the beginning. As files come and go, the free re-
gions towards the front of the cylinder group become
fragmented. C-FFS, on the other hand, tries to incor-
porate the new file block (or fragment) into an existing
group associated with the directory that names the file.
This succeeds if there is free space within one of the
groups (perhaps due to a previous file deletion or trun-
cation) or if there is a free block outside of a group that
can be incorporated without causing the group to ex-
ceed its maximum size (currently hard-coded to 64 KB
in our prototype, which approximates the knees of the
curves in Figure 2). To identify the groups associated
with a particular directory, C-FFS exploits the fact that
using embedded inodes gives us direct access to all of
the relevant inodes (and thus their group information)
by examining the directory’s inode (which identifies the
boundaries of the first group) and scanning the directory
(ignoring any inodes for directories). If the new block
extends an existing group, C-FFS again exploits embed-
ded inodes to scan the directory and update the group
information for other group members. If the new block
cannot be added to an existing group, the conventional
approach is used to allocate the block and a new group
with one member is created.

One point worth stressing about explicit grouping is
that it does not require all blocks within the boundaries
of a group to belong to inodes in a particular directory.
AlthoughC-FFS tries to achieve this ideal, arbitrary files
can allocate blocks that end up falling within the bound-
aries of an unrelated group. The decision to allow this
greatly simplifies the management of group information
(i.e., it is simply a hint that describes blocks that are
hopefully related). Although this could result in sub-
optimal behavior, we believe that it is appropriate given
the fact that reading/writing a few extra disk blocks has
a small incremental cost and given the complexity of
alternative approaches.

Multi-block directories are the exception to both the
allocation routine described above and to the rule that
only the first block of a file can be included in a group.
Because scanning the contents of a directory is a com-
mon operation, C-FFS tries to ensure that all of its blocks
are part of the first group associated with the directory
(i.e., the one identified by the directory’s inode). For-
tunately, even with embedded inodes, most directories



(e.g., 94 percent for our file servers) will be less than
one block in size. If a subsequent directory block must
be allocated and can not be incorporated into the direc-
tory’s first group, C-FFS selects one of the non-directory
blocks in the first group, moves it (i.e., copies it to a new
disk location and changes the pointer in the inode), and
gives its location to the new directory block. Once again,
this operation exploits embedded inodes to find a mem-
ber of the first group from which to steal a block. Unfor-
tunately, moving the group member’s block requires two
synchronous writes (one to write the new block and one
to update the corresponding inode). A better metadata
integrity maintenance mechanism (e.g., write-ahead log-
ging or soft updates) could eliminate these synchronous
writes. When no blocks are available for stealing, C-FFS
falls back to allocating a block via the conventional ap-
proach (with a preference for a location immediately
after the first group).

Cache functionality required

Grouping requires that the file block cache provide a
few capabilities, most of which are not new. In par-
ticular, C-FFS requires the ability to cache and search
for blocks whose higher level identities (i.e., file ID
and offset) are not known. Therefore, our file cache
is indexed by both disk address5, like the original
UNIX buffer cache, and higher-level identities, like the
SunOS integrated caching and virtual memory system
[Gingell87, Moran87]. C-FFS uses physical identities to
insert newly-read blocks of a group into the cache with-
out back-translating to discover their file/offset identi-
ties. Instead, C-FFS inserts these blocks into the cache
based on physical disk address and an invalid file/offset
identity. When a cache miss occurs for a file/offset that
is a member of any group, C-FFS searches the cache
a second time, by physical disk address (since it might
have been brought in by a previous grouped access). If
the block is present under this identity, C-FFS changes
the file/offset identity to its proper value and returns the
block without an additional disk read.

The ability to search the cache by physical disk ad-
dress is also necessary when initiating a disk request for
an entire group. When reading a group, C-FFS prunes
the extent read based on which blocks are already in the
cache (it would be disastrous to replace a dirty block
with one read from the disk). When writing a group,
C-FFS prunes the extent written to include only those
blocks that are actually present in the cache and dirty.

Given that C-FFS requires the cache to support

5By physical disk address, we mean the address given to the device
driver when initiating a disk request, as opposed to more detailed
information about how the cylinder, surface and rotational offset at
which the data are stored inside the disk.

Specification Value
Capacity 1 GB
Cylinders 2700
Surfaces 9

Sectors/Track 84
Rotation Speed 5400 RPM

Head Switch N/A
One-cyl Seek 1 ms
Average Seek 9/10.5 ms

Maximum Seek 22 ms

Table 2: Characteristics of the Seagate ST31200 drive.

lookups based on disk address, C-FFS uses this mech-
anism (rather than clustering or grouping information)
to identify additional dirty blocks to write out with any
given block. With this scheme, the main benefit provided
by grouping is to increase the frequency with which
dirty blocks are physically adjacent on the disk. C-FFS
uses scatter/gather support to deal with non-contiguity
of blocks in the cache. Were scatter/gather support not
present, C-FFS would rely on more complicated extent-
based memory management to provide contiguous re-
gions of physical memory for reading and writing of
both small file groups and large file clusters.

4 Performance Evaluation

This section reports measurements of our C-FFS im-
plementation, which show that it can dramatically im-
prove performance. For small file activity (both reads
and writes), we observe order of magnitude reductions
in the number of disk requests and factor of 5–7 im-
provements in performance. We observe no negative
effects for large file I/O. Preliminary measurements of
application performance show improvements of 10–300
percent.

4.1 Experimental Apparatus

All experiments were performed on a PC with a
120 MHz Pentium processor and 32 MB of main mem-
ory. The disk on the system is a Seagate ST31200 (see
Table 2). The disk driver, originally taken from NetBSD,
supports scatter/gather I/O and uses a C-LOOK schedul-
ing algorithm [Worthington94]. The disk prefetches se-
quential disk data into its on-board cache. During the
experiments, there was no other activity on the system,
and no virtual memory paging occurred. In all of our
experiments, we forcefully write back all dirty blocks
before considering the measurement complete. There-
fore, our disk request counts include all blocks dirtied



by a particular application or micro-benchmark.
The disk drive used in the experiments is several years

old and can deliver only one-third to one-half of the
bandwidth available from a state-of-the-art disk (as seen
in Table 1). As a result, we believe that the perfor-
mance improvements shown for embedded inodes and
explicit grouping are actually conservative estimates.
These techniques depend on high bandwidth to deliver
high performance for small files, while the conventional
approach depends on disk access times (which have im-
proved much less).

The C-FFS implementation evaluated here is the de-
fault file system for the Intel x86 version of the exok-
ernel operating system [Engler95]. It includes most of
the functionality expected from an FFS-like file system.
Its major limitations are that it currently does not sup-
port prefetching or fragments (the units of allocation are
4 KB blocks). Prefetching is more relevant for large files
than the small files our techniques address and should
be independent of both embedded inodes and explicit
grouping. Fragments, on the other hand, are very rel-
evant and we expect that they would further increase
the value of grouping, because the allocator would ex-
plicitly attempts to allocate fragments within the group
rather than taking the first available fragment or trying to
optimize for growth by allocating new fragment blocks.

We compare our C-FFS implementation to itself with
embedded inodes and explicit grouping disabled. Al-
though this may raise questions about how solid our
baseline is, we are comfortable that it is reasonable.
Comparisons of our restricted C-FFS (without embed-
ded inodes or explicit grouping) to OpenBSD’s FFS on
the same hardware indicate that our baseline is actually
as fast or faster for most file system operations (e.g.,
twice as fast for file creation and writing, equivalent
for deletion and reading from disk, and much faster
when the static file cache size of OpenBSD limits per-
formance). The performance differences are partially
due to the system structure, which links the file sys-
tem code directly into the application (thereby avoiding
many system calls), and partially due to the file sys-
tem implementation (e.g., aggressively clustering dirty
file blocks based on physical disk addresses rather than
logical relationships).

For our micro-benchmark experiments, we wanted to
recreate the non-adjacency of on-disk placements ob-
served on our file servers. Our simplistic approach was
to modify the allocation routines. Rather than allocating
a new file’s first block at the first free location within the
cylinder group, we start looking for free space at other
locations within the cylinder group. For half of the files
in a directory, we start looking at the last direct block of
the previous entry. For the other half, we start looking
at a random location within the cylinder group. The

resulting data layouts are somewhat better than those
observed on our file server, and therefore should favor
the conventional layout scheme. We do not modify the
inode allocation routines in any way, so inodes allocated
in sequence for files in a given directory will tend to
be packed into inode blocks much more densely than
was observed on our server. Again, this favors the con-
ventional organization. For the non-microbenchmark
experiments, we do not do this.

4.2 Small File Performance

Figure 5 compares the throughput of 1 KB file opera-
tions supported by our prototype with embedded inodes,
with explicit grouping, with neither and with both. The
micro-benchmark, based on the small-file benchmark
from [Rosenblum92], has four phases: create and write
10000 1KB files, read the same files in the same or-
der, overwrite the same files in the same order, and then
remove the files in the same order. To avoid the cost
of name lookups in large directories, the files are spread
among directories such that no single directory has more
than 100 entries. In this comparison, both file systems
are configured to use synchronous writes for metadata
integrity maintenance (as is common among UNIX file
systems).

For file creation, we observe a twentyfold reduction in
the number of disk requests necessary when using both
embedded inodes and explicit grouping. This results in
a sevenfold increase in throughput. Half of the reduction
in the number of disk requests comes from eliminating
the synchronous writes required for integrity (by mak-
ing the name and inode updates atomic) and half comes
from writing the blocks for several new files with each
disk request. It is interesting to note that half of the disk
requests that remain are synchronous writes required be-
cause additional directory blocks are being forced into
the directory’s first group. This cost could be eliminated
by a better integrity maintenance scheme (see below) or
by not shuffling disk blocks in this way (which could
involve a performance cost for later directory scanning
operations). It is also interesting to observe that C-FFS
with both embedded inodes and explicit grouping sig-
nificantly outperforms C-FFS with either of these tech-
niques alone (5 times fewer disk requests and 3–4 times
the create/write throughput).

For file read and overwrite, we observe an order of
magnitude reduction in the number of disk requests when
using explicit grouping. This increases throughput by
factors of 4.5–5.5. For these operations, embedded in-
odes alone provide marginal improvements. However,
embedded inodes do provide measurable improvement
when explicit grouping is in use, once again making the
combination of the two the best option.
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Figure 5: Small file throughput when using synchronous writes for metadata integrity.
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Figure 6: Small file throughput when using soft updates for metadata integrity. The “remove” throughput values are
off the scale, ranging from 1500–2000 files per second.



For file deletion, we see a twofold decrease in the
number of disk requests when using embedded inodes,
since embedding the inodes eliminates one of the two
sequencing requirements for file deletion. The second
sequencing requirement, which relates to the relation-
ship between the inode and the free map, remains. The
result is a 250% increase in file deletion throughput,
provided both by the reduction in the number of disk
requests and improved locality (i.e., the same block gets
overwritten repeatedly as the multiple inodes that it con-
tains are re-initialized).

Because there exist techniques (e.g., soft updates
[Ganger94]) that have been shown to effectively elimi-
nate the performance cost of maintaining metadata in-
tegrity, we repeat the same experiments with this cost
removed. Figure 6 shows these results. We have not yet
actually implemented soft updates in C-FFS, but rather
emulate it by using delayed writes for all metadata up-
dates — [Ganger94] shows that this will accurately pre-
dict the performance impact of soft updates. The change
in performance that we observe for the conventional file
system is consistent with previous studies.

With the synchronous metadata writes removed, we
still observe an order of magnitude reduction in disk
requests when using explicit grouping for create/write,
read and overwrite operations. The result is throughput
increases of 4–7 times. Although the performance bene-
fit of embedded inodes is lower for the create/write phase
(because synchronous writes are not an issue), there is
still a gain because embedded inodes significantly reduce
the work involved with allocation for explicit grouping.
As before, the combination of embedded inodes and ex-
plicit grouping provides the highest throughput for both
the read and overwrite phases. With synchronous writes
eliminated, file deletion throughput increases substan-
tially. Although it has no interesting effect on perfor-
mance (because resulting file deletion throughput is so
high), embedding inodes halves the number of blocks
actually dirtied when removing the files because there
are no separate inode blocks.

4.3 File System Aging

To get a handle on the impact of file system fragmen-
tation on the performance of C-FFS, we use an aging
program similar to that described in [Herrin93]. The
program simply creates and deletes a large number of
files. The probability that the next operation performed
is a file creation (rather than a deletion) is taken from a
distributioncentered around a desired file system utiliza-
tion. After reaching the desired file system utilization for
the first time, the aging program executes some number
of additional file operations taken from the same distri-
bution. The size of each file created is taken from the
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Figure 7: Small file throughput with embedded inodes
and explicit grouping after aging the file system. Before
running the small file micro-benchmark (without soft
updates), the file system was aged by filling the file sys-
tem to a desired capacity and then executing 100000 file
create and delete operations. To increase the impact of
the aging, we performed these experiments on a 128 MB
partition. The four bars for each phase represent C-FFS
performance for a fresh file system, for a 50%-full aged
file system, for a 70%-full aged file system and for a
90%-full aged file system, respectively.

distribution measured on our file servers.
Figure 7 shows performance for the small file micro-

benchmark after the file system has been aged. As ex-
pected, aging does have a significant negative impact
on performance. At 70% capacity, the throughputs for
the first three phases decrease by 30–40%. However,
comparing these throughputs to those reported in the
previous section, C-FFS still outperforms the conven-
tional file system by a factor of 3–4. Further, our current
C-FFS allocation algorithms do not reduce or compen-
sate for fragmentation of free extents. We expect that the
degradation due to file system aging can be significantly
reduced by better allocation algorithms.

4.4 Large File Performance

Although C-FFS focuses on improving performance for
small files, it is essential that it not reduce the perfor-
mance that can be realized for large files. To verify
that this is the case, we use a standard large file micro-
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Figure 8: Large file bandwidth.

benchmark, which allocates and writes a large (32 MB)
file sequentially, reads it sequentially and overwrites it
sequentially. The results (shown in Figure 8) allow us
to make two important points. First, using embedded
inodes and explicit grouping has no significant effect
on large file performance. Second, the C-FFS proto-
type, which supports clustering of large file data,delivers
most of the disk’s available bandwidth to applications for
large files. (We believe that the somewhat disappoint-
ing file write bandwidth values are caused by software
inefficiency; we have verified that it is not due to poor
clustering.)

4.5 Applications

Figure 9 shows performance for four different applica-
tions which are intended to approximate some of the ac-
tivities common to software development environments.
As expected, we see significant improvements (e.g., a
50–66% reduction in execution time) for file-intensive
applications like “pax” and “rm”. For gmake, we see
a much smaller improvement of only 10%. While such
a small improvement could be viewed as a negative re-
sult, we were actually quite happy with it because of
the extremely untuned nature of certain aspects of our
system (which has just barely reached the point, at the
time of this writing, where such applications can be run
at all). In particular, process creation and shutdown
(which are used extensively by the “gmake” applica-
tion) are currently expensive. As a result, the time re-
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Figure 9: Application performance. “pax” uses the PAX

utility to unpack a compressed archive file containing
a substantial portion of the source tree for the default
exokernel library operating system (about 1000 C files).
“rm” uses the UNIX RM utility to recursively remove
the directory tree created by “pax”. “gmake” compiles
a sub-directory containing 32 C files. “clean” removes
the newly created object files from “gmake”.

quired for “gmake” on our exokernel system is currently
250% greater than the corresponding execution time
on OpenBSD. The same absolute improvement given
a baseline equal to that of OpenBSD would represent
a 25% reduction in execution time for this compute-
intensive task.

We believe that, for most applications, the name space
provides useful information about relationships between
files that can be exploited by explicit grouping. How-
ever, there are some applications (e.g., the web page
caches of many HTTP browsers) that explicitly random-
ize file accesses across several directories in order to
reduce the number of files per directory. For workloads
where the name space is a poor indicator of access lo-
cality, we expect grouping to reduce read performance
slightly, because it reads from the disk more data than
are necessary.

5 Related Work

Previous researchers and file system implementors have
been very successful at extracting large fractions of



disks’ maximum bandwidths for large files. One sim-
ple approach, which does have some drawbacks, is to
increase the size of the basic file block [McKusick84].
Another is to cluster blocks (i.e., allocate them con-
tiguously and read/write them as a unit when appropri-
ate) [Peacock88, McVoy91]. Enumeration of a large
file’s disk blocks can also be significantly improved by
using extents (instead of per-block pointers), B+ trees
[Sweeney96] and/or sparse bitmaps [Herrin93]. We
build on previous work by trying to exploit disk band-
width for small files and metadata.

To increase the efficiency of the many small disk
requests that characterize accesses to small files and
metadata, file systems often try to localize logically
related objects. For example, the Fast File System
[McKusick84] breaks the file system’s disk storage
into cylinder groups and attempts to allocate most
new objects in the same cylinder group as related
objects (e.g., inodes in same cylinder group as con-
taining directory and data blocks in same cylinder
group as owning inode). Similarly, several researchers
have investigated the value of moving the most pop-
ular (i.e., most heavily used) data to the centermost
disk cylinders in order to reduce disk seek distances
[Vongsathorn90, Ruemmler91, Staelin91]. As described
in Section 2, simply locating related objects near each
other offers some performance gains, but such locality
affects only the seek time and is thus limited in scope.
Co-locating related objects and reading/writing them as
a unit offers qualitatively larger improvements in perfor-
mance.

Immediate files are a form of co-location for small
files. The idea, as proposed by [Mullender84], is to ex-
pand the inode to the size of a block and include the first
part of the file in it. They found that over 60% of their
files could be kept with the inode in a single block (and
therefore both could be read or written with a single disk
request). Another way to look at the same idea is simply
that the inode is moved to the first block of the file. One
potential down-side to this approach is that it replaces
co-location of possibly related inodes (in an inode block)
with co-location of an inode and its file data, which can
reduce the performance of operations that examine file
attributes but not file data. One simple application of
the basic idea, however, is to put the data for very small
files in the “normally” sized inode, perhaps replacing
the space used by block pointers.

The log-structured file system’s answer to the disk
performance problem is to delay, remap and cluster
all new data, only writing large chunks to the disk
[Rosenblum92]. So long as neither cleaning nor read
traffic represent significant portionsof the workload, this
will offer the highest performance. Unfortunately, while
it may be feasible to limit cleaning activity to idle pe-

riods [Blackwell95], anecdotal evidence, measurements
of real systems (e.g., [Baker91]), and simulation studies
(e.g., [Dahlin94]) all suggest that main memory caches
have not eliminated read traffic as hoped. Our work at-
tempts to achieve performance improvements for both
reads and writes of small files and metadata. While we
are working within the context of a conventional update-
in-place file system, we could easily see co-location
being used in a log-structured file system to improve
performance when reads become necessary.

One of the extra advantages of embedded inodes
is the elimination of one sequencing constraint when
creating and deleting files. There are several more
direct and more comprehensive approaches to reduc-
ing the performance cost of maintaining metadata in-
tegrity, including write-ahead logging [Hagmann87,
Chutani92, Journal92, Sweeney96], shadow-paging
[Chamberlin81, Stonebraker87, Chao92, Seltzer93] and
soft updates [Ganger95]. As shown in Section 4, our
work complements such approaches.

Of course, there is a variety of other work that has
improved file system performance via better caching,
prefetching, write-back, indexing, scheduling and disk
array mechanisms. We view our work as complementary
to these.

6 Discussion

The C-FFS implementation described and evaluated in
this paper is part of the experimental exokernel OS
[Engler95]. We have found the exokernel to be an ex-
cellent platform for systems research of this kind. In
particular, our first proof-of-concept prototype was ex-
tremely easy to build and test, because it did not have
to deal with complex OS internals and it did not have
to pay high overheads for being outside of the operating
system.

However, the system-related design challenges for file
systems in an exokernel OS (which focuses on distribut-
ing control of resources among applications) are differ-
ent from those in a more conventional OS. An imple-
mentation of C-FFS for OpenBSD is underway, both to
allow us to better understand how it interacts with an
existing FFS and to allow us to more easily transfer it to
existing systems. Early experience suggests that C-FFS
changes some of the locking and buffer management as-
sumptions made in OpenBSD, but there seem to be no
fundamental roadblocks.

In this paper, we have compared C-FFS to an FFS-like
file system, both with and without additional support for
eliminating the cost of metadata integrity maintenance.
Although we have not yet performed measurements, it is
also interesting to compare C-FFS to other file systems



(in particular, the log-structured file system). We believe
that C-FFS can match the write performance of LFS,
so long as the name space correctly indicates logical
relationships between files. For read performance, the
comparison is more interesting. C-FFS will perform best
when read access patterns correspond to relationships in
the name space. LFS will perform best when read access
patterns exactly match write access patterns. Although
experiments is needed, we believe that C-FFS is likely to
outperform LFS in many cases, especially when multiple
applications are active concurrently.

In this paper, we investigate co-locating files based on
the name space; other approaches based on application-
specific knowledge are worth investigating. For exam-
ple, one application-specific approach is to group files
that make up a single hypertext document [Kaashoek96].
We are investigating extensions to the file system inter-
face to allow this information to be passed to the file
system. The result will be a file system that groups files
based on application hints when they are available and
name space relationships when they are not.

Our experience with allocation for small file grouping
is preliminary, and there are a variety of open questions.
For example, although the current C-FFS implementa-
tion allows only one block from a file to belong to a
group, we suspect that performance will be enhanced
and fragmentation will be reduced by allowing more
than one. Also, C-FFS currently allows a group to be
extended to include a new block even if it must also in-
clude an unrelated block that had (by misfortune) been
allocated at the current group’s boundary. We believe,
based on our underlying assumption that reading an extra
block incurs a small incremental cost, that this choice is
appropriate. However, measurements that demonstrate
this and indicate a maximum size for such holes are
needed. Finally, allocation algorithms that reduce and
compensate for the fragmentation of free space caused
by aging will improve performance significantly (by 40–
60%, according to the measurements in Section 4.3).

7 Conclusions

C-FFS combines embedded inodes and explicit group-
ing of files with traditionalFFS techniques to obtain high
performance for both small and large file I/O (both reads
and writes). Measurements of our C-FFS implementa-
tion show that the new techniques reduce the number
of disk requests by an order of magnitude for standard
small file activity benchmarks. For the system under
test, this translates into performance improvements of
a factor of 5–7. The new techniques have no negative
impact on large file I/O; the FFS clustering still de-
livers maximal performance. Preliminary experiments

with real applications show performance improvements
of 10–300 percent.
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