
Carnegie Mellon

How to Write Fast Code
SIMD Vectorization
18-645, spring 2008
13th and 14th Lecture

Instructor: Markus Püschel
Guest Instructor: Franz Franchetti
TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred)

Carnegie Mellon

Organization
Overview

Idea, benefits, reasons, restrictions
History and state-of-the-art floating-point SIMD extensions
How to use it: compiler vectorization, class library, intrinsics, inline assembly

Writing code for Intel’s SSE
Compiler vectorization
Intrinsics: instructions
Intrinsics: common building blocks

Selected topics
SSE integer instructions
Other SIMD extensions: AltiVec/VMX, Cell SPU

Conclusion: How to write good vector code

Carnegie Mellon

Organization
Overview

Idea, benefits, reasons, restrictions
History and state-of-the-art floating-point SIMD extensions
How to use it: compiler vectorization, class library, intrinsics, inline assembly

Writing code for Intel’s SSE
Compiler vectorization
Intrinsics: instructions
Intrinsics: common building blocks

Selected topics
SSE integer instructions
Other SIMD extensions: AltiVec/VMX, Cell SPU

Conclusion: How to write good vector code

Carnegie Mellon

SIMD (Signal Instruction Multiple Data)
vector instructions in a nutshell

What are these instructions?
Extension of the ISA. Data types and instructions for parallel computation on short
(2-16) vectors of integers and floats

Why are they here?
Useful: Many applications (e.g.,multi media) feature the required fine grain
parallelism – code potentially faster
Doable: Chip designers have enough transistors available, easy to implement

+ x 4-way

Carnegie Mellon

Evolution of Intel Vector Instructions
MMX (1996, Pentium)

CPU-based MPEG decoding
Integers only, 64-bit divided into 2 x 32 to 8 x 8
Phased out with SSE4

SSE (1999, Pentium III)
CPU-based 3D graphics
4-way float operations, single precision
8 new 128 bit Register, 100+ instructions

SSE2 (2001, Pentium 4)
High-performance computing
Adds 2-way float ops, double-precision; same registers as 4-way single-precision
Integer SSE instructions make MMX obsolete

SSE3 (2004, Pentium 4E Prescott)
Scientific computing
New 2-way and 4-way vector instructions for complex arithmetic

SSSE3 (2006, Core Duo)
Minor advancement over SSE3

SSE4 (2007, Core2 Duo Penryn)
Modern codecs, cryptography
New integer instructions
Better support for unaligned data, super shuffle engine

More details at http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

http://en.wikipedia.org/wiki/Streaming_SIMD_Extensions

Carnegie Mellon

Overview Floating-Point Vector ISAs

Within a extension family, newer generations add features to older ones
Convergence: 3DNow! Professional = 3DNow! + SSE; VMX = AltiVec; SPU⊃VMX

Carnegie Mellon

Related Technologies
Original SIMD machines (CM-2,…)

Don’t really have anything in common with SIMD vector extension
Vector Computers (NEC SX6, Earth simulator)

Vector lengths of up to 128
High bandwidth memory, no memory hierarchy
Pipelined vector operations
Support strided memory access

Very long instruction word (VLIW) architectures (Itanium,…)
Explicit parallelism
More flexible
No data reorganization necessary

Superscalar processors (x86, …)
No explicit parallelism
Memory hierarchy

SIMD vector extensions borrow multiple concepts

Carnegie Mellon

How to use SIMD Vector Extensions?

Prerequisite: fine grain parallelism

Helpful: regular algorithm structure

Easiest way: use existing libraries
Intel MKL and IPP, Apple vDSP, AMD ACML,
Atlas, FFTW, Spiral

Do it yourself:
Use compiler vectorization: write vectorizable code
Use language extensions to explicitly issue the instructions
Vector data types and intrinsic/builtin functions
Intel C++ compiler, GNU C compiler, IBM VisualAge for BG/L,…
Implement kernels using assembly (inline or coding of full modules)

Carnegie Mellon

Characterization of Available Methods
Interface used

Portable high-level language (possibly with pragmas)
Proprietary language extension (builtin functions and data types)
C++ Class interface
Assembly language

Who vectorizes
Programmer or code generator expresses parallelism
Vectorizing compiler extracts parallelism

Structures vectorized
Vectorization of independent loops
Instruction-level parallelism extraction

Generality of approach
General purpose (e.g., for complex code or for loops)
Problem specific (for FFTs or for matrix products)

Carnegie Mellon

limitations of compiler vectorization
C99 _Complex and #pragma help, but still slower than hand-vectorized code

0

2

4

6

8

10

12

14

16

4 5 6 7 8 9 10 11 12 13 14 15 16
log2(input size)

Short vector Cooley-Tukey FFT, Intel intrinsics
Intel C99 complex, pragmas, auto-vectorized
Intel C, real, pragmas, auto-vectorized
ANSI C, real, auto-vectorized
ANSI C, real, x87 (scalar)

Spiral-generated FFT on 2.66 GHz Core2 (4-way SSE)
performance [Gflop/s], single-precision, Intel C++ 9.1, SSSE, Windows XP 32-bit

Carnegie Mellon

Problems

Correct data alignment paramount

Reordering data kills runtime

Algorithms must be adapted to suit machine needs

Adaptation and optimization is machine/extension dependent

Thorough understanding of ISA + Micro architecture required

One can easily slow down a program by vectorizing it

Carnegie Mellon

Organization
Overview

Idea, benefits, reasons, restrictions
History and state-of-the-art floating-point SIMD extensions
How to use it: compiler vectorization, class library, intrinsics, inline assembly

Writing code for Intel’s SSE
Compiler vectorization
Intrinsics: instructions
Intrinsics: common building blocks

Selected topics
SSE integer instructions
Other SIMD extensions: AltiVec/VMX, Cell SPU

Conclusion: How to write good vector code

Carnegie Mellon

Intel Streaming SIMD Extension (SSE)

Instruction classes
Memory access (explicit and implicit)
Basic arithmetic (+, -, *)
Expensive arithmetic (1/x, sqrt(x), min, max, /, 1/sqrt)
Logic (and, or, xor, nand)
Comparison (+, <, >, …)
Data reorder (shuffling)

Data types
float: __m128 (SSE)
double: __m128d (SSE2)
Integer: __m128i (8 bit – 128 bit)

Intel C++ Compiler Manual
http://www.intel.com/cd/software/products/asmo-na/eng/347618.htm
http://www.intel.com/cd/software/products/asmo-na/eng/346158.htm
http://msdn2.microsoft.com/en-us/library/26td21ds.aspx

http://www.intel.com/cd/software/products/asmo-na/eng/347618.htm
http://www.intel.com/cd/software/products/asmo-na/eng/346158.htm
http://msdn2.microsoft.com/en-us/library/26td21ds.aspx

Carnegie Mellon

Intel C++ Compiler: Automatic Vectorization
Example program: pointwise vector multiplication
void func(float *c, float *a, float *b, int n) {

for (int i=0; i<n; i++)
c[i] = a[i] * b[i];

}

Compiler invocation
C:\>iclvars > NUL

C:\>C>icl /Qc99 /Qrestrict /O3 /QxW /Qvec-report3 /FAs /c
test.c

Intel(R) C++ Compiler for 32-bit applications, Version 9.1
Copyright (C) 1985-2006 Intel Corporation. All rights

reserved.

test.c
test.c(2) : (col. 5) remark: LOOP WAS VECTORIZED.

Carnegie Mellon

Intel C++ Compiler: Auto Vectorizer Manual

Carnegie Mellon

Intel C++ Compiler: Options and Output
On Windows Intel C++ compiler requires VisualStudio
On command line iclvars.cmd initializes the environment

Compiler Options
C99 syntax: /Qc99 /Qrestrict
Full optimization: /O3
Vectorization target: SSE2 /QxW
other targets: /QxK (SSE) , /QxP (SSE3), /QxT (SSSE), /QxS (SSE4)
Vectorization report: /Qvec-report3
Assembly output (source + assembly): /FAs

Check vectorization quality: Checking output assembly
$B1$17: ; Preds $B1$17 $B1$16

movups xmm0, XMMWORD PTR [ecx+edi*4] ;3.16
mulps xmm0, XMMWORD PTR [edx+edi*4] ;3.23
movaps XMMWORD PTR [esi+edi*4], xmm0 ;3.9
movups xmm1, XMMWORD PTR [ecx+edi*4+16] ;3.16
mulps xmm1, XMMWORD PTR [edx+edi*4+16] ;3.23
movaps XMMWORD PTR [esi+edi*4+16], xmm1 ;3.9
add edi, 8 ;2.5

Carnegie Mellon

Intel C++ Compiler: Language Extension
Language extension

C99 “restrict” keyword
Aligned C library functions: _mm_malloc(), _mm_free()
_assume_aligned()
__declspec(__align())
Pragmas
#pragma vector aligned | unaligned | always
#pragma ivdep
#pragma novector

Example using language extension
void func(float *restrict c, float *restrict a,

float *restrict b, int n) {
#pragma vector always

for (int i=0; i<n; i++)
c[i] = a[i] * b[i];

}

Carnegie Mellon

Intel SSE Intrinsics Interface

Data types
__m128 f; // ={float f3, f2, f1, f0}
__m128d d; // ={double d1, d0}

Intrinsics
Native instructions: _mm_add_ps(), _mm_mul_ps(),…
Multi-instruction: _mm_setr_ps(), _mm_set1_ps, …

Macros
Transpose: _MM_TRANSPOSE4_PS(),…
Helper: _MM_SHUFFLE()

Carnegie Mellon

Intel SSE: Load Instructions

Carnegie Mellon

Intel SSE: Vector Arithmetic

Carnegie Mellon

Intel SSE: SSE3 Horizontal Add and SUB

Carnegie Mellon

Intel SSE: Reorder Instructions

Carnegie Mellon

Organization
Overview

Idea, benefits, reasons, restrictions
History and state-of-the-art floating-point SIMD extensions
How to use it: compiler vectorization, class library, intrinsics, inline assembly

Writing code for Intel’s SSE
Compiler vectorization
Intrinsics: instructions
Intrinsics: common building blocks

Selected topics
SSE integer instructions
Other SIMD extensions: AltiVec/VMX, Cell SPU

Conclusion: How to write good vector code

Carnegie Mellon

Intel SSE: Transpose Macro

Carnegie Mellon

Example: Complex Multiplication SSE3

a b c d

a b

b a

d dc c

bd ad

ac bc

ac-bd ad+bc

ac-bd ad+bc

Memory

Memory

load load load

swap

addsub

mult

mult

store

Result:
4 load/stores
3 arithm. ops.
1 reorder op

Not available
in SSE2

Carnegie Mellon

Looking a t the Assembly
SSE3:

movapd xmm0, XMMWORD PTR A
movddup xmm2, QWORD PTR B
mulpd xmm2, xmm0
movddup xmm1, QWORD PTR B+8
shufpd xmm0, xmm0, 1
mulpd xmm1, xmm0
addsubpd xmm2, xmm1
movapd XMMWORD PTR C, xmm2

SSE2:

movsd xmm3, QWORD PTR A
movapd xmm4, xmm3
movsd xmm5, QWORD PTR A+8
movapd xmm0, xmm5
movsd xmm1, QWORD PTR B
mulsd xmm4, xmm1
mulsd xmm5, xmm1
movsd xmm2, QWORD PTR B+8
mulsd xmm0, xmm2
mulsd xmm3, xmm2
subsd xmm4, xmm0
movsd QWORD PTR C, xmm4
addsd xmm5, xmm3
movsd QWORD PTR C, xmm5

In SSE2 Intel C++ generates
scalar code (better?)

Carnegie Mellon

Organization
Overview

Idea, benefits, reasons, restrictions
History and state-of-the-art floating-point SIMD extensions
How to use it: compiler vectorization, class library, intrinsics, inline assembly

Writing code for Intel’s SSE
Compiler vectorization
Intrinsics: instructions
Intrinsics: common building blocks

Selected topics
SSE integer instructions
Other SIMD extensions: AltiVec/VMX, Cell SPU

Conclusion: How to write good vector code

Carnegie Mellon

Intel SSE: Integer Modes

Carnegie Mellon

SSE Integer Modes (1)
SSE generations

Introduced with SSE2
Functionality extended drastically with SSSE3 and SSE4

Modes
1x128 bit, 2x64 bit, 4x32 bit 8x 16 bit, 16x8 bit
Signed and unsigned
Saturating and non-saturating

Operations
Arithmetic, logic, and shift, mullo/hi
Compare, test; min, max, and average
Conversion from/to floating-point, across precisions
Load/store/set
Shuffle, insert, extract, blend

Carnegie Mellon

SSE Integer Modes (2)
Interoperability

Integer operations can be used with floating-point data
Typecast support

Problems
Only subset of operations available in each mode
Sometimes need to “build” operation yourself
Gathers and scatters even more expensive (8- and 16-way)

// right-shift for signed __int8 16-way
__forceinline __m128i _mm_srli_epi8(__m128i x, int sh) {

__m128i signs = _mm_and_si128(x, _mm_set1_epi32(0x80808080));
__m128i z = _mm_srli_epi16(x, 1);
z = _mm_and_si128(z, _mm_set1_epi32(0x7f7f7f7f));
return _mm_or_si128(z, signs);

}

Carnegie Mellon

Extending Floating-Point Functionality
Sign change

No sign-change instruction for vector elements exist
Integer exclusive-or helps

// sign-change of second vector element
__forceinline __m128 _mm_chsgn2_ps(__m128 f) {

return _castsi128_ps(_mm_xor_si128(
_mm_castps_si128(f),
_mm_castps_si128(_mm_set_ps(0.0,0.0,-0.0,0.0))));

}

Align instruction
alignr only exists for signed 8-bit integer

// alignr 4-way float variant
__forceinline __m128 _mm_alignr_ps(__m128 f1, __m128 f2, int sh) {

return _castsi128_ps(_mm_alignr_epi8(
_mm_castps_si128(f1), _mm_castps_si128(f2), sh));

}

Carnegie Mellon

Organization
Overview

Idea, benefits, reasons, restrictions
History and state-of-the-art floating-point SIMD extensions
How to use it: compiler vectorization, class library, intrinsics, inline assembly

Writing code for Intel’s SSE
Compiler vectorization
Intrinsics: instructions
Intrinsics: common building blocks

Selected topics
SSE integer instructions
Other SIMD extensions: AltiVec/VMX, Cell SPU

Conclusion: How to write good vector code

Carnegie Mellon

AltiVec, VMX, Cell BE PPU and SPU,…
AltiVec: 4-way float, 4-, 8-, and 16-way integer

Introduced with Motorola MPC 7400 G4
(direct competitor to Intel SSE and Pentium III)
Gave big boost to Apple multi media applications
Still available in Freescale PowerPC processors
Supported by GNU C builtin functions (2.95, 3.X)

AltiVec became IBM VMX
PowerPC 970 G5 (G4 successor) and POWER6
Cell BE PPU (PowerPC)
VMX128 version for Xbox 360 (Xenon processor)

Cell SPU: closely aligned with VMX
Double-precision instructions (very slow at this point)

Carnegie Mellon

AltiVec vs. SSE
AltiVec: PowerPC is 3-operand RISC

Fused multiply-add
Powerful general shuffle instruction
More registers (32 – 128)

Problem: non-vector memory access
Unaligned load/store
Subvector load/store

AltiVec/VMX is not changing as quickly as SSE
Variants: AltiVec/VMX, VMX128, SPU
AltiVec important in embedded computing
SSE is closer to the consumer market, permanently updated

Carnegie Mellon

Organization
Overview

Idea, benefits, reasons, restrictions
History and state-of-the-art floating-point SIMD extensions
How to use it: compiler vectorization, class library, intrinsics, inline assembly

Writing code for Intel’s SSE
Compiler vectorization
Intrinsics: instructions
Intrinsics: common building blocks

Selected topics
SSE integer instructions
Other SIMD extensions: AltiVec/VMX, Cell SPU

Conclusion: How to write good vector code

Carnegie Mellon

How to Write Good Vector Code?

Take the “right” algorithm and the “right” data structures
Fine grain parallelism
Correct alignment in memory
Contiguous arrays

Use a good compiler (e. g., vendor compiler)
First: Try compiler vectorization

Right options, pragmas and dynamic memory functions
(Inform compiler about data alignment, loop independence,…)
Check generated assembly code and runtime

If necessary: Write vector code yourself
Most expensive subroutine first
Use intrinsics, no (inline) assembly
Important: Understand the ISA

Carnegie Mellon

Remaining time: Discussion

	How to Write Fast Code�SIMD Vectorization�18-645, spring 2008�13th and 14th Lecture
	Organization
	Organization
	SIMD (Signal Instruction Multiple Data) �vector instructions in a nutshell
	Evolution of Intel Vector Instructions
	Overview Floating-Point Vector ISAs
	Related Technologies
	How to use SIMD Vector Extensions?
	Characterization of Available Methods
	Problems
	Organization
	Intel Streaming SIMD Extension (SSE)
	Intel C++ Compiler: Automatic Vectorization
	Intel C++ Compiler: Auto Vectorizer Manual
	Intel C++ Compiler: Options and Output
	Intel C++ Compiler: Language Extension
	Intel SSE Intrinsics Interface
	Intel SSE: Load Instructions
	Intel SSE: Vector Arithmetic
	Intel SSE: SSE3 Horizontal Add and SUB
	Intel SSE: Reorder Instructions
	Organization
	Intel SSE: Transpose Macro
	Example: Complex Multiplication SSE3
	Looking a t the Assembly
	Organization
	Intel SSE: Integer Modes
	SSE Integer Modes (1)
	SSE Integer Modes (2)
	Extending Floating-Point Functionality
	Organization
	AltiVec, VMX, Cell BE PPU and SPU,…
	AltiVec vs. SSE
	Organization
	How to Write Good Vector Code?
	Remaining time: Discussion

