Program Generation
and Optimization

CS 860
summer 2005
July 26, 2005

Instructor: Jeremy Johnson
Guest instructor: Franz Franchettl

2

SPIRAL

Organization

m Short Vector SIMD Extensions
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m Writing code for Intel’s SSE
= [nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics
= BlueGene/L

= Complex arithmetic and instruction-level parallelism
% = Things that don't work as expected

e @ Conclusion: How to write good vector code

IIIIIIIIII

Organization

m Overview
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m \Writing code for Intel’s SSE
= [nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics
= BlueGenel/lL

= Complex arithmetic and instruction-level parallelism
g = Things that don't work as expected

SPIRAL

m Conclusion: How to write good vector code

Drexel

SIMD (Signal Instruction Multiple Data)
vector instructions in a nutshell

m \What are these instructions?

= Extension of the ISA. Data types and instructions for parallel computation on short
(2-16) vectors of integers and floats

(M [(e < (e A-way

m Why are they here?

= Useful: Many applications (e.g.,multi media) feature the required fine grain
parallelism — code potentially faster

= Doable: Chip designers have enough transistors available, easy to implement

2

SPIRAL

Overview Vector ISAS

2

SPIRAL

1IITNIVFESITY

rd
Q)
3
(O]

wn
wn
m

wn
n
M
N

0))
wn
[Tl
W

U
I

7
-
>
~

&
<
<

2510

S5
)
O
)
o

P
o

U0 5|0 =

wlw M w

Z

U
-~
O
(D
wn
"

4-\wWav
J
2-way

4-way

4-way

2-way

N NS A R T

MPC 74xx G4
MNaAavasm~MNr— N7
Fovwelrrce 9/

PowerPC 440 FP2

Evolution of Intel Vector Instructions
m MMX (1996, Pentium)

= |ntegers only, 64-bit divided into 2 x 32to 8 x 8
= MMX register = Float register
= | ost importance due to SSE2 and modern graphics cards

m SSE (1999, Pentium lII)
= Superset of MMX
= 4-way float operations, single precision
= 8 new 128 Bit Register
= 100+ instructions

m SSE2 (2001, Pentium 4)
= Superset of SSE
= “MMX” operating on SSE registers, 2 x 64
= 2-way float ops, double-precision, same registers as 4-way single-precision
‘> m SSE3 (2004, Pentium 4E Prescott)
SPIRAL = Superset of SSE2
= New 2-way and 4-way vector instructions for complex arithmetic

Related Technologies

2

SPIRAL

m Original SIMD machines (CM-2,...)
= Don't really have anything in common with SIMD vector extension

m Vector Computers (NEC SX6, Earth simulator)

= Vector lengths of up to 128

= High bandwidth memory, no memory hierarchy
= Pipelined vector operations

= Support strided memory access

m Very long instruction word (VLIW) architectures (Itanium,...)

= Explicit parallelism
= More flexible
= No data reorganization necessary

m Superscalar processors (x86, ...)

= No explicit parallelism
= Memory hierarchy

SIMD vector extensions borrow multiple concepts

How to use SIMD Vector Extensions?

m Prerequisite: fine grain parallelism
m Helpful: regular algorithm structure

m Easiest way: use existing libraries
Intel MKL and IPP, Apple vDSP, AMD ACML,
Atlas, FFTW, Spiral

m Do it yourself:
= Use compiler vectorization: write vectorizable code

= Use language extensions to explicitly issue the instructions
Vector data types and intrinsic/builtin functions
Intel C++ compiler, GNU C compiler, IBM VisualAge for BGIL,...

% = |mplement kernels using assembly (inline or coding of full modules)

SPIRAL

Characterization of Available Methods

m Interface used
= Portable high-level language (possibly with pragmas)
= Proprietary language extension (builtin functions and data types)
= Assembly language

m Who vectorizes
= Programmer or code generator expresses parallelism
= Vectorizing compiler extracts parallelism
m Structures vectorized
= Vectorization of independent loops
= |nstruction-level parallelism extraction
m Generality of approach

= General purpose (€.g., for complex code or for loops)
% = Problem specific (for FFTs or for matrix products)

SPIRAL

Benchmark: DFT, 2-powers P4, 3.0 GHz,

icc 8.0
Vendor code:

/ CETW 3.0.1 hand-tuned
8000 —— 0.
—~—FFTW30.1SSE | assembly?

7000 - —e— MKL 6.1 DFTI
== |PP 4.0 inplace
o 2 6000 SPIRAL
S5 5000 SPIRAL w/vect C
== —— SPIRAL SSE
o > 4000 —— Numerical Recipies
So
o 2 3000/
0 5 A Higher is better
2000]
1000 : -
0 — A |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Id N

% Single precision code

SPIRAL

 limitations of compiler vectorization
e Spiral code competitive with the best

1IITNIVFESITY

Problems

m Correct data alignment paramount

m Reordering data kills runtime
m Algorithms must be adapted to suit machine needs
m Adaptation and optimization is machine/extension dependent

m Thorough understanding of ISA + Micro architecture required

% One can easily slow down a program by vectorizing it

SPIRAL

Organization

m Overview
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m Writing code for Intel’'s SSE
= |nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics

= BlueGenel/lL

= Complex arithmetic and instruction-level parallelism
g = Things that don't work as expected

= B Conclusion: How to write good vector code

Drexel

Intel Streaming SIMD Extension (SSE)

m Used syntax: Intel C++ compiler
= Datatype: m128 d; // ={float d3, d2, dl, dO}
= Intrinsics: _mm_add_ps(), _mm_mul _ps(),..
= Dynamic memory: _mm_malloc(), _mm free()

m Instruction classes
= Memory access (explicit and implicit)
= Basic arithmetic (+, -, *)
= Expensive arithmetic (1/x, sqrt(x), min, max, /, 1/sqrt)
= |ogic (and, or, xor, nand)
= Comparison (+, <, >, ...)
= Data reorder (shuffling)

2

SPIRAL

Blackboard

=

SPIRAL

Organization

m Overview
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m Writing code for Intel’'s SSE
= |nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics

= BlueGenel/lL

= Complex arithmetic and instruction-level parallelism
g = Things that don't work as expected

= B Conclusion: How to write good vector code

Drexel

Blackboard

=

SPIRAL

Organization

m Overview
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m \Writing code for Intel’s SSE
= [nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics
= BlueGene/L

= Complex arithmetic and instruction-level parallelism
g = Things that don't work as expected

SPIRAL

m Conclusion: How to write good vector code

Drexel

2

SPIRAL

BlueGene/L Supercomputer

System at Lawrence Livermore National Laboratory (LLNL)

= Aims at #1 in Top 500 list of supercomputers

= 65,536 processors
PowerPC 440 FP2 @ 700 MHz

= 360 Tflop/s peak performance
= 16 TByte RAM
= |n operation by end of 2005

Smaller systems will be commercially available
= QOther national labs, universities, Japan, Germany,...
= BlueGene/L consortium: open to everybody, community effort

The BlueGene/L System at LLNL

System
(64 cabinets, 64x32x32)

Cabinet
(32 Node boards, 8x8x16)

Node Board

(32 chips, 4x4x2)
16 Compute Cards

"1'1'\‘1"!11_‘
ﬁ

Compute Card

(2 chips, 2x1x1) 180/360 TF/s

16 TB DDR
Chip
(2 processors)

— 256 GB DDR
4 90/180 GF/s

8 GB DDR

5.6/11.2 GF/s

2.8/5.6 GF/s 0.5 GB DDR

4 MB © 2004 IBM Corporation

=

SPIRAL

One CPU

T

Drexel

1IITNIVFESITY

BlueGene/L CPU: PowerPC 440 FP2

PLB (4:1)

One CPU

V- N

/ 32k/32K L1

2

SPIRAL

1IITNIVFESITY

SIMD unit: Double FPU

256
aefetch
440 CPU Buffers 4MB
Shared EDRAM
256 .
) L3 directory
Multiported for EDRAM 1024+ L3 Cache
SRAM 144 ECC
32k/32k L1 Buffer ¥ Multibank
Locks
128 Prefetch |- i
440 CPU ’i_. Buffers | 256 Includes ECC
“Double FPU™ < 256
| !
h 4
L Link buffers DDR
Ethernet JTAG and Control
Ghit Access Routing with ECC
Ghit 6 Bi-directional

Ethernet

1.4 Gbhis links
+ 2.8 Gh/s tree

144 bit wide
DDR (256MB)
5.6 GB/s _
© 2004 IBM Corporation

2

SPIRAL

Drexel

1IITNIVFESITY

The Double FPU

BlueGene/L Double FPU: Two coupled FPUs
= Scalar and two-way vector FPU instructions

= Percycle: Either two-way FMA or two-way move,
and one two-way load or store

= Double precision

Supports complex arithmetic and two-way SIMD
= 20 instructions supporting complex multiply-add

= |mplicit parallel, cross and copy operations

= Vector sign changes and cross moves

re re re re re re

*

y
re re re

Parallel add =1 instr. Parallel mul = 1 instr. Complex mul = 2 instr.
Complex add (6 flops)

1IITNIVFESITY

Vectorization Overhead

Complex arithmetic

= Native mode for BlueGene/L Double FPU
= However, many codes use real arithmetic
= Real codes require vectorization

Real vector code = faster computation but overhead
= QOverhead: prepare data for parallel computation
= Goal: minimize or eliminate these reorder operations

BlueGene/L: Expensive data reorganization

re re = Work in parallel on real and imaginary parts
= One copy and two cross-copies
On BlueGene/L: 3 cycles = 12 flops

rejre

Benchmark: DFT, 2-powers, BlueGene/L

== SPIRAL C99 complex (440d)
1600 == FFTW 2.1.5

1400 - —e—SP|RAL C real (440)
—o— SP|RAL C real (440d)
Q qE) 1200 =¢==GNU GSL mixed radix
Q.= Two times faster
© = 1000 1
S -
o —~ 800
==
o = 600 - _
n 2 Three times faster
O .5 400
1/
O T T T

4 8 16 32 64 128 256 512 1024 2048 4096 8192

Vector length N

BlueGene/L DD2 prototype at IBM T.J. Watson Research Center
Single BlueGene/L CPU at 700 MHz (one Double FPU), IBM XL C compiler

=

SPIRAL o Utilization of complex FPU via C99 Complex double
» Factor 2 over real code with compiler vectorization (IBM XL C)

1IITNIVFESITY

Organization

m Overview
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m \Writing code for Intel’s SSE
= [nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics
= BlueGenel/lL

= Complex arithmetic and instruction-level parallelism
g = Things that don't work as expected

SPIRAL

m Conclusion: How to write good vector code

Drexel

Example: Complex Multiplication SSE3

Complex C99 code + compiler vectorization
works reasonably well

Complex code features intrinsic
2-way vector parallelism

=

SPIRAL

The Corresponding Assembly Code

SSE3:

movapd
movddup
mulpd
movddup
shufpd
mulpd
addsubpd
movapd

2

SPIRAL

Drexel

1IITNIVFESITY

XMMWORD PTR A
QWORD PTR B
XmmO
QWORD PTR
xmmO, 1

XxmmO,
xmm2,
xmmz2,
xmml,
xmmO,
xmml, XxXmmO

xmm2, xXmml

XMMWORD PTR C, xmm2

B+8

SSE?2:

movsd
movapd
movsd
movapd
movsd
mulsd
mulsd
movsd
mulsd
mulsd
subsd
movsd
addsd
movsd

xmm3,
xmm4,
xmm5,
xmmO,
xmml,
xmm4,
xmmb,
xmmz2,
xmmO,
xmm3,
xmm4,
QWORD
xmmb,
QWORD

QWORD PTR A
xmm3

QWORD PTR A+8
Xxmm5

QWORD PTR B
xmml

xmml

QWORD PTR B+8
Xxmm2

Xxmm2

xXmmO

PTR C, xmm4
xmm3

PTR C, xmmb5

In SSE2 scalar code is better

Example: 3DNow! Basic Block Vectorization

m Utilizing instruction-level parallelism
m Inter-operand and intra-operand vector instructions

Scalar operations Vector operations
add+sub npacc+swap vadd+chshi vsub+chslo
[l] ,
s2[12] [s1]T1]| E] 1|12
S | | S
— _|_ .
= = L[] (s | Bsus2) L]]
D] D2
G < e 99
|
% [D1p2] [D1p2]
SPIRAL T

Drexel

1IITNIVFESITY

Organization

m Overview
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m \Writing code for Intel’s SSE
= [nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics
= BlueGenel/lL

= Complex arithmetic and instruction-level parallelism
Q = Things that don’t work as expected

SPIRAL

m Conclusion: How to write good vector code

Drexel

Things that don’t work as expected

m Intel SSE/SSE2/SSE3
= SSE2 can't do complex arithmetic well
= Early application notes showed really bad code examples (split radix FFT)
= |ntel Compiler doesn't vectorize despite pragmas,...

m Intel Itanium processor family (IPF)
= No intrinsic interface to IPF native vector instruction
= Can only use 4-way SSE intrinsics to program 2-way IPF
= With Itanium 2, no vectorization speed-up possible any more

m AMD 3DNow! and AMD64
= AMDG64 can do 3DNow! and SSEZ2 in parallel — have fun!
= For along time they had no compiler support
% = K7: One intra operand instruction is just missing (++,+-, --; -+??)

SPIRAL

Things that don’t work as expected (2)

2

SPIRAL

m Motorola/IBM AltiVec

No unaligned memory access (raises exception)

Subvector access: the actually read/written vector element depends on the
memory address referenced (!!)

A general shuffle requires a 128 bit register “howto” operand

Only fused-multiply-add (FMA) instruction — have to add explicitly (0,0,0,0)
for multiplication only

For a while, the GNU C compiler was buggy and the only compiler available

m |IBM Double FPU (BlueGene/L)

One shuffle or one vector FMA per cycle

= Data reorganization prohibitively expensive
= Have to fold that into special FMAs and multiply by one

Organization

m Overview
= |dea, benefits, reasons, restrictions
= State-of-the-art floating-point SIMD extensions
= History and related technologies
= How to use it

m \Writing code for Intel’s SSE
= [nstructions
= Common building blocks
= Examples: WHT, matrix multiplication, FFT

m Selected topics
= BlueGenel/lL

= Complex arithmetic and instruction-level parallelism
g = Things that don't work as expected

SPIRAL

m Conclusion: How to write good vector code

Drexel

How to Write Good Vector Code?

m Take the “right” algorithm and the “right” data structures
= Fine grain parallelism
= Correct alignment in memory
= Contiguous arrays

m Use a good compiler (e. g., vendor compiler)

m First: Try compiler vectorization

= Right options, pragmas and dynamic memory functions
(Inform compiler about data alignment, loop independence,...)

= Check generated assembly code and runtime

m |f necessary: Write vector code yourself

= Most expensive subroutine first
% = Use intrinsics, no (inline) assembly
= |mportant: Understand the ISA

SPIRAL

Remaining time: Discussion

=

SPIRAL

	Program Generation �and Optimization��CS 860�summer 2005�July 26, 2005��Instructor: Jeremy Johnson�Guest instructor: Franz Fra
	Organization
	Organization
	SIMD (Signal Instruction Multiple Data) �vector instructions in a nutshell
	Overview Vector ISAs
	Evolution of Intel Vector Instructions
	Related Technologies
	How to use SIMD Vector Extensions?
	Characterization of Available Methods
	Benchmark: DFT, 2-powers
	Problems
	Organization
	Intel Streaming SIMD Extension (SSE)
	Blackboard
	Organization
	Blackboard
	Organization
	BlueGene/L Supercomputer
	Vectorization Overhead
	Benchmark: DFT, 2-powers, BlueGene/L
	Organization
	Example: Complex Multiplication SSE3
	The Corresponding Assembly Code
	Example: 3DNow! Basic Block Vectorization
	Organization
	Things that don’t work as expected
	Things that don’t work as expected (2)
	Organization
	How to Write Good Vector Code?
	Remaining time: Discussion

