
Automatically Tuned FFTs
for BlueGene/L’s Double FPU

Franz Franchetti†, Stefan Kral†, Juergen Lorenz†, Markus Püschel‡, and
Christoph W. Ueberhuber†

† Institute for Analysis and Scientific Computing,
Vienna University of Technology,

Wiedner Hauptstrasse 8–10, A-1040 Wien, Austria
franz.franchetti@tuwien.ac.at,

WWW home page: http://www.math.tuwien.ac.at/ascot

‡ Dept. of Electrical and Computer Engineering,
Carnegie Mellon University,

5000 Forbes Avenue, Pittsburgh, PA 15213
pueschel@ece.cmu.edu,

WWW home page: http://www.ece.cmu.edu/∼pueschel

Abstract. IBM is currently developing the new line of BlueGene/L su-
percomputers. The top-of-the-line installation is planned to be a 65,536
processors system featuring a peak performance of 360 Tflop/s. This sys-
tem is supposed to lead the Top 500 list when being installed in 2005 at
the Lawrence Livermore National Laboratory. This paper presents one
of the first numerical kernels run on a prototype BlueGene/L machine.
We tuned our formal vectorization approach as well as the Vienna MAP
vectorizer to support BlueGene/L’s custom two-way short vector SIMD
“double” floating-point unit and connected the resulting methods to the
automatic performance tuning systems Spiral and Fftw. Our approach
produces automatically tuned high-performance FFT kernels for Blue-
Gene/L that are up to 45% faster than the best scalar Spiral generated
code and up to 75% faster than Fftw when run on a single BlueGene/L
processor.

1 Introduction

IBM’s BlueGene/L supercomputers [1] are a new class of massively parallel sys-
tems that focus not only on performance but also on lower power consumption,
smaller footprint, and lower cost compared to current supercomputer systems.
Although several computing centers plan to install smaller versions of Blue-
Gene/L, the most impressive system will be the originally proposed system at
Lawrence Livermore National Laboratory (LLNL), planned to be in operation
in 2005. It will be an order of magnitude faster than the Earth Simulator, which
currently is the number one on the Top 500 list. This system will feature eight
times more processors than current massively parallel systems, providing 64k



2

processors for solving new classes of problems. To tame this vast parallelism,
new approaches and tools have to be developed. However, tuning software for
this machine starts by optimizing computational kernels for its processors. And
BlueGene/L systems come with a twist on this level as well. Their processors fea-
ture a custom floating-point unit—called “double” FPU—that provides support
for complex arithmetic.

Efficient computation of fast Fourier transforms (FFTs) is required in many
applications planned to be run on BlueGene/L systems. In most of these ap-
plications, very fast one-dimensional FFT routines for relatively small problem
sizes (in the region of 2048 data points) running on a single processor are re-
quired as major building blocks for large scientific codes. In contrast to tedious
hand-optimization, the library generator Spiral [23], as well as the state-of-
the-art FFT libraries Fftw [12] and Uhfft [22], use empirical approaches to
automatically optimize code for a given platform.

Floating-point support for complex arithmetic can speed up large scientific
codes significantly, but the utilization of non-standard FPUs in computational
kernels like FFTs is not straightforward. Optimization of these kernels leads to
complicated data dependencies that cannot be mapped directly to BlueGene/L’s
custom FPU. This complicacy becomes a governing factor when applying au-
tomatic performance tuning techniques and needs to be addressed to obtain
high-performance FFT implementations.

Contributions of this Paper. In this paper we introduce and describe an
FFT library and experimental FFT kernels (Fftw no-twiddle codelets) that
take full advantage of BlueGene/L’s double FPU by means of short vector SIMD
vectorization. The library was automatically generated and tuned using Spiral
in combination with formal vectorization [8] as well as by connecting Spiral
to the Vienna MAP vectorizer [15, 16]. The resulting codes provide up to 45 %
speed-up over the best Spiral generated code not utilizing the double FPU, and
they are up to 75 % faster than off-the-shelf Fftw 2.1.5 ported to BlueGene/L
without specific optimization for the double FPU.

We obtained Fftw no-twiddle codelets for BlueGene/L by connecting Fftw
to the Vienna MAP vectorizer. The resulting double FPU no-twiddle codelets
are considerably faster than their scalar counterparts and strongly encourage
the adaptation of Fftw 2.1.5 to BlueGene/L [20]. Experiments show that our
approach provides satisfactory speed-up while the vectorization facility of IBM’s
XL C compiler does not speed up FFT computations. Our FFT codes were the
first numerical codes developed outside IBM that were run on the first Blue-
Gene/L prototype systems DD1 and DD2.

2 The BlueGene/L Supercomputer

The currently largest prototype of IBM’s supercomputer line BlueGene/L [1]
is DD1, a machine equipped with 8192 custom-made IBM PowerPC 440 FP2
processors (4096 two-way SMP chips), which achieves a Linpack performance of
Rmax = 11.68 Tflop/s, i. e., 71% of its theoretical peak performance of Rpeak =



3

16.38 Tflop/s. This performance ranks the prototype machine on position 4 of
the Top 500 list (in June 2004). The BlueGene/L prototype machine is roughly
1/20th the physical size of machines of comparable compute power that exist
today.

The largest BlueGene/L machine, which is being built for Lawrence Liver-
more National Laboratory (LLNL) in California, will be 8 times larger and will
occupy 64 full racks. When completed in 2005, the Blue Gene/L supercomputer
is expected to lead the Top 500 list. Compared with today’s fastest supercom-
puters, it will be an order of magnitude faster, consume 1/15th of the power
and, be 10 times more compact than today’s fastest supercomputers.

The BlueGene/L machine at LLNL will be built from 65,536 PowerPC 440
FP2 processors connected by a 3D torus network leading to 360 Tflop/s peak
performance. BlueGene/L’s processors will run at 700 MHz, whereas the current
prototype BlueGene/L DD1 runs at 500 MHz. As a comparison, the Earth Simu-
lator which is currently leading the Top 500 list achieves a Linpack performance
of Rmax = 36 Tflop/s.

2.1 BlueGene/L’s Floating-Point Unit

Dedicated hardware support for complex arithmetic has the potential to accel-
erate many applications in scientific computing.

BlueGene/L’s floating-point “double” FPU was obtained by replicating the
PowerPC 440’s standard FPU and adding crossover data paths and sign change
capabilities to support complex multiplication. The resulting PowerPC 440 CPU
with its new custom FPU is called PowerPC 440 FP2. Up to four real floating-
point operations (one two-way vector fused multiply-add operation) can be is-
sued every cycle. This double FPU has many similarities to industry-standard
two-way short vector SIMD extensions like AMD’s 3DNow! or Intel’s SSE 3. In
particular, data to be processed by the double FPU has to be alignend on 16-byte
boundaries in memory.

However, the PowerPC 440 FP2 features some characteristics that are differ-
ent from standard short vector SIMD architectures; namely (i) non-standard
fused multiply-add (FMA) operations required for complex multiplications;
(ii) computationally expensive data reorganization within two-way registers; and
(iii) efficient support for mixing of scalar and vector operations.

Mapping Code to BlueGene/L’s Double FPU. BlueGene/L’s double FPU
can be regarded either as a complex FPU or as a real two-way vector FPU
depending on the techniques used for utilizing the relevant hardware features.

Programs using complex arithmetic can be mapped to BlueGene/L’s custom
FPU in a straight forward manner. Problems arise when the usage of real code
is unavoidable. However, even for purely complex code it may be beneficial to
express complex arithmetics in terms of real arithmetic. In particular, switching
to real arithmetic allows to apply common subexpression elimination, constant
folding, and copy propagation on the real and imaginary parts of complex num-
bers separately. For FFT implementations this saves a significant number of
arithmetic operations, leading to improved performance.



4

Since the double FPU supports all classical short vector SIMD style (inter-
operand, parallel) instructions (e. g., as supported by Intel SSE 2), it can be
used to accelerate real computations if the targeted algorithm exhibits fine-grain
parallelism. Short vector SIMD vectorization techniques can be applied to speed
up real codes.

The main challenge when vectorizing for the double FPU is that one data re-
order operation within the two-way register file is as expensive as one arithmetic
two-way FMA operation (i. e., four floating-point operations). In addition, every
cycle either one floating-point two-way FMA operation or one data reorganiza-
tion instruction can be issued. On other two-way short vector SIMD architectures
like SSE 3 and 3DNow! data shuffle operations are much more efficient. Thus,
the double FPU requires tailoring of vectorization techniques to these features
in order to produce high-performance code.

Tools for Programming BlueGene/L’s Double FPU. To utilize Blue-
Gene/L’s double FPU within a numerical library, three approaches can be pur-
sued: (i) The implementation of the numerical kernels in C such that IBM’s
VisualAge XL C compiler for BlueGene/L is able to vectorize these kernels.
(ii) Directly implement the numerical kernels in assembly language using dou-
ble FPU instructions. (iii) Explicitly vectorize the numerical kernels utilizing
XL C’s proprietary language extension to C99 that provides access to the dou-
ble FPU on source level by means of data types and intrinsic functions.

The Gnu C compiler port for BlueGene/L supports the utilization of no
more than 32 temporary variables when accessing the double FPU. This con-
straint prevents automatic performance tuning on BlueGene/L using the Gnu C
compiler.

In this paper, we provide vectorization techniques for FFT kernels tailored to
the needs of BlueGene/L. All codes are generated automatically and utilize the
XL C compiler’s vector data types and intrinsic functions to access the double
FPU to avoid utilizing assembly language. Thus, register allocation and instruc-
tion scheduling is left to the compiler, while vectorization (i. e., floating point
SIMD instruction selection) is done at the source code level by our approach.

3 Automatic Performance Tuning of Numerical Software

Discrete Fourier transforms (DFTs) are, together with linear algebra algorithms,
the most ubiquitously used kernels in scientific computing.

The applications of DFTs range from small scale problems with stringent
time constraints (for instance, in real time signal processing) to large scale sim-
ulations and PDE programs running on the world’s largest supercomputers.
Therefore, the best possible performance of DFT software is of crucial impor-
tance. However, algorithms for DFTs have complicated structure, which makes
their efficient implementation a difficult problem, even on standard platforms. It
is an even harder problem to efficiently map these algorithms to special hardware
like BlueGene/L’s double FPU.



5

The traditional method for achieving highly optimized numerical code is
hand coding, often in assembly language. However, this approach requires a lot
of expertise and the resulting code is error-prone and non-portable.

Automatic Performance Tuning. Recently, a new paradigm for software
creation has emerged: the automatic generation and optimization of numerical
libraries. Examples include Atlas [27] in the field of numerical linear algebra,
and Fftw [12] which introduced automatic performance tuning in FFT libraries.
In the field of digital signal processing (DSP), Spiral [23] automatically gener-
ates tuned codes for large classes of DSP transforms by utilizing state-of-the-art
coding and optimization techniques. All these systems feature code generators
that generate ANSI C code to maintain portability. The generated kernels consist
of up to thousands of lines of code.

To achieve top performance in connection with such codes, the exploitation
of special processor features such as short vector SIMD or FMA instruction
set architecture extensions (like the double FPU) is a must. Unfortunately, ap-
proaches used by vectorizing compilers to vectorize loops [2, 3, 24, 29] or basic
blocks [18, 19, 21] lead to inefficient code when applied to automatically gen-
erated codes for DSP transforms. In case of these algorithms, the vectorization
techniques entail large overhead for data reordering operations on the result-
ing short vector code as they do not have domain specific knowledge about the
codes’ inherent parallelism. The cost of this overhead becomes prohibitive on an
architecture like BlueGene/L’s double FPU where data reorganization is very
expensive compared to floating-point operations. This implies that vectorization
techniques have to be adapted to BlueGene/L’s FPU architecture.

FFTW. Fftw implements the Cooley-Tukey FFT algorithm [26] recursively.
This allows for flexible problem decomposition that is the key for Fftw’s adapt-
ability to a wide range of different computer systems.

In an initialization step Fftw’s planner applies dynamic programming to find
a problem decomposition that leads to fast FFT computation for a given size on
the target machine. Whenever FFTs of planned sizes are to be computed, the
executor applies these problem decompositions to perform the FFT computation.
At the leafs of the recursion the actual work is done in code blocks called codelets.
These codelets come in two flavors (twiddle codelets and no-twiddle codelets)
and are automatically generated by a program generator named genfft [10, 11].

SPIRAL. Spiral [23] is a generator for high performance code for discrete sig-
nal transforms including the discrete Fourier transform (DFT), the discrete co-
sine transforms (DCTs), and many others. Spiral uses a mathematical approach
that translates the implementation and optimization problem into a search prob-
lem in the space of structurally different algorithms and their possible implemen-
tations for the best match to a given computing platform.

Spiral represents the different algorithms for a signal transform as formu-
las in a concise mathematical language, called SPL, that is an extension of
the Kronecker product formalism [14, 28]. The SPL formulas expressed in SPL
are automatically generated by Spiral’s formula generator and automatically



6

translated into code by Spiral’s special purpose SPL compiler. Performance
evaluation feeds back runtime information into Spiral’s search engine which
closes the feedback loop enabling automated search for good implementations.

4 Generating Vector Code for BlueGene/L

In this section we present two approaches to vectorizing FFT kernels generated
by Spiral and Fftw targeted for BlueGene/L’s double FPU.

– Formal vectorization exploits structural information about a given FFT al-
gorithm and extends Spiral’s formula generator and special-purpose SPL
compiler.

– The Vienna MAP vectorizer extracts two-way parallelism out of straight-line
code generated by Spiral or Fftw’s codelet generator genfft.

Both methods are tailored to the specific requirements of BlueGene/L’s dou-
ble FPU. We explain the methods in the following.

4.1 Formal Vectorization

In previous work, we developed a formal vectorization approach [6] and applied
it successfully across a wide range of short vector SIMD platforms for vector
lengths of two and four both to Fftw [4, 5] and Spiral [7, 8, 9]. We showed
that neither original vector computer FFT algorithms [17, 25] nor vectorizing
compilers [13, 18] are capable of producing high-performance FFT implemen-
tations for short vector SIMD architectures, even in tandem with automatic
performance tuning [9].

In this work we adapt the formal vectorization approach to the specific fea-
tures of BlueGene/L’s double FPU and the BlueGene/L system environment,
and implement it within the Spiral system.

Short Vector Cooley Tukey FFT. Our DFT specific formal vectorization
approach is the short vector Cooley-Tukey recursion [9]. For m and n being
multiples of the machine’s vector length ν, the short vector Cooley-Tukey FFT
recursion translates a DFTmn recursively into DFTm and DFTn such that any
further decomposition of the smaller DFTs yields vector code for vector lengths
ν. It adapts the Cooley-Tukey FFT recursion [26] to short vector SIMD ar-
chitectures with memory hierarchies while resembling the Cooley-Tukey FFT
recursion’s data flow as close as possible to keep its favorable memory access
structure.

In contrast to the standard Cooley-Tukey FFT recursion, all permutations
in the short vector Cooley-Tukey FFT algorithm are either block permutations
shuffling vectors of length ν or operate on kν consecutive data items with k
being small. For all current short vector SIMD architectures, the short vector
Cooley-Tukey FFT algorithm can be implemented using solely vector memory
access operations, vector arithmetic operations and data shuffling within vector
registers.



7

Algorithm 1 (Short Vector Cooley-Tukey FFT)

ShortVectorFFT (mn, ν, y ← x)
BlockStridePermutation(t0 ← y, mn/ν, m/ν, ν)
for i = 0 . . . m/ν − 1 do

VectorFFT(ν ×DFTn, t1 ← t0[iνn . . . (i + 1)νn− 1])
StridePermutationWithinBlocks(t2 ← t1, n/ν, ν2, ν)
BlockStridePermutation(t3[iνn . . . (i + 1)νn− 1] ← t2, n, ν, ν)

endfor
ApplyTwiddleFactors(t4 ← t3)
for i = 0 . . . n/ν − 1 do

VectorFFT(ν ×DFTm, y[iνm . . . (i + 1)νm− 1] ← t4[iνm . . . (i + 1)νm− 1])
endfor

Algorithm 1 describes the short vector Cooley-Tukey FFT algorithm in
pseudo code. It computes a DFTmn by recursively calling VectorFFT() to
compute vectors of ν×DFTm and ν×DFTn, respectively. BlockStridePermu-
tation() applies a coarse-grain block stride permutation 1 to reorder blocks of ν
elements. StridePermutationWithinBlocks() applies n/ν fine-grain stride
permutations to shuffle elements within blocks of ν2 elements. ApplyTwiddle-
Factors() multiplies a data vector by complex roots of unity called twiddle
factors. In our implementation the functions BlockStridePermutation(),
StridePermutationWithinBlocks(), and ApplyTwiddleFactors() are
combined with the functions VectorFFT() to avoid multiple passes through
the data.

We extended Spiral’s formula generator and SPL compiler to implement the
short vector Cooley-Tukey recursion. For a given DFTmn, Spiral’s search engine
searches for the best choice of m and n as well as for the best decomposition of
DFTm and DFTn.

Adaptation to BlueGene/L. The short vector Cooley-Tukey FFT algorithm
was designed to support all short vector SIMD architectures currently available.
It is built on top of a set of C macros called the portable SIMD API that ab-
stracts the details of a given short vector SIMD architecture. To adapt Spiral’s
implementation of the short vector Cooley-Tukey FFT algorithm to BlueGene/L
we had to (i) implement the portable SIMD API for BlueGene/L’s double FPU
(with ν = 2), and (ii) utilize the double FPU’s fused multiply-add instructions
whenever possible.

Spiral’s implementation of the portable SIMD API mandates the definition
of vector memory operations and vector arithmetic operations. These operations
were implemented using the intrinsic and C99 interface provided by IBM’s XL
C compiler for BlueGene/L. Fig. 1 shows a part of the portable SIMD API for
BlueGene/L.

A detailed description of our formal vectorization method and its application
to a wide range of short vector SIMD architectures can be found in [6, 7, 9].

1 A stride permutations can be seen as a transposition of a rectangular two-dimensional
array [14].



8

/* Vector arithmetic operations and declarations*/

#define VECT_ADD(c,a,b) (c) = __fpadd(a,b)

#define VECT_MSUB(d,a,b,c) (d) = __fpmsub(c,a,b)

#define DECLARE_VECT(vec) _Complex double vec

/* Data shuffling */

#define C99_TRANSPOSE(d1, d2, s1, s2) {\

d1 = __cmplx (__creal(s1), __creal(s2));\

d2 = __cmplx (__cimag(s1), __cimag(s2)); }

/* Memory access operations */

#define LOAD_VECT(trg, src) (trg) = __lfpd((double *)(src))

#define LOAD_INTERL_USTRIDE(re, im, in) {\

DECLARE_VECT(in1); DECLARE_VECT(in2);\

LOAD_VECT(in1, in); LOAD_VECT(in2, (in) + 2);\

C99_TRANSPOSE(re, im, in1, in2); }

Fig. 1. Macros included in Spiral’s implementation of the portable SIMD API for
IBM’s XL C compiler for BlueGene/L.

4.2 The Vienna MAP Vectorizer

This section introduces the Vienna MAP vectorizer [6, 15, 16] that automatically
extracts two-way SIMD parallelism out of given numerical straight-line code. A
peephole optimizer directly following the MAP vectorizer additionally supports
the extraction of SIMD fused multiply-add instructions.

Vectorization of Straight-Line Code. Existing approaches to vectorizing
basic blocks originate from very long instruction word (VLIW) or from SIMD
digital signal processors (DSP) compiler research [3, 18, 19], and try to find
either an efficient mix of SIMD and scalar instructions to do the required com-
putation or insert data shuffling operations to allow for parallel computation.
Due to the fact that SIMD data reordering operations are very expensive on
IBM BlueGene/L’s double FPU and FFT kernels have complicated data flow,
these approaches are rendered suboptimal for the vectorization of FFT kernels
for the double FPU.

MAP’s vectorization requires that all computation is performed by SIMD
instructions, while attempting to keep the SIMD reordering overhead reasonably
small. The only explicit data shuffling operations allowed are swapping the two
entries of a two-way vector register. In addition, MAP requires inter- and intra-
operand arithmetic operations. On short vector extensions not supporting intra-
operand arithmetic operations, additional shuffle operations may be required.
When vectorizing complex FFT kernels for the double FPU, no data shuffle
operations are required at all.



9

The Vectorization Algorithm. The MAP vectorizer uses depth-first search
with chronological backtracking to discover SIMD style parallelism in a scalar
code block. MAP’s input is scalar straight-line codes that may contain array
accesses, index computation, and arithmetic operations. Its output is vector
straight-line code containing vector arithmetic and vector data shuffling opera-
tions, vector array accesses, and index computation. MAP describes its input as
scalar directed acyclic graph (DAG) and its output as vector DAG.

In the vectorization process, pairs of scalar variables s, t are combined, i. e.,
fused, to form SIMD variables st = (s,t) or ts = (t,s). The arithmetic in-
structions operating on s and t are combined, i. e., paired, to a sequence of SIMD
instructions. This vectorization process translates nodes of the scalar DAG into
nodes of the vector DAG. Table 1 shows an example of fusing two additions into
a vector addition.

⇒

add(A,B,C) ⇒ vadd(AD,BE,CF)
add(D,E,F)

Table 1. Two-way Vectorization. Two scalar add instructions are transformed into
one vector vadd instruction.

As initialization of the vectorization algorithm, store instructions are com-
bined non-deterministically by fusing their respective source operands. The ac-
tual vectorization algorithm consists of two steps.

(i) Pick I1 = (op1,s1,t1,d1) and I2 = (op2,s2,t2,d2), two scalar in-
structions that have not been vectorized, with (d1,d2) or (d2,d1) being an
existing fusion.

(ii) Non-deterministically pair the two scalar operations op1 and op2 into
one SIMD operation. This step may produce new fusions or reuse a existing
fusion, possibly requiring a data shuffle operation.

The vectorizer alternatingly applies these two steps until either the vector-
ization succeeds, i. e., thereafter all scalar variables are part of at most one fusion
and all scalar operations have been paired, or the vectorization fails. If the vec-
torizer succeeds, MAP commits to the first solution of the search process.

Non-determinism in vectorization arises due to different vectorization choices.
For a fusion (d1,d2) there may be several ways of fusing the source operands
s1,t1,s2,t2, depending on the pairing (op1,op2).



10

Peephole Based Optimization. After the vectorization, a local rewriting sys-
tem is used to implement peephole optimization on the obtained vector DAG.
The rewriting rules are divided into three groups. The first group of rewriting
rules aims at (i) minimizing the number of instructions, (ii) eliminating redun-
dancies and dead code, (iii) reducing the number of source operands, (iv) copy
propagation, and (v) constant folding. The second group of rules is used to ex-
tract SIMD-FMA instructions. The third group of rules rewrites unsupported
SIMD instructions into sequences of SIMD instructions that are available on the
target architecture.

Connecting MAP to SPIRAL and FFTW. MAP was adapted to support
BlueGene/L’s double FPU and connected to the Spiral system as backend to
provide BlueGene/L specific vectorization of Spiral generated code. Spiral’s
SPL compiler was used to translate formulas generated by the formula generator
into fully unrolled implementations leading to large straight-line codes. These
codes were subsequently vectorized by MAP. In addition, MAP was connected to
Fftw’s code generator genfft to vectorize no-twiddle codelets. MAP’s output
uses the intrinsic interface provided by IBM’s XL C compiler for BlueGene/L.
This allows MAP to vectorize computational kernels but leaves register allocation
and instruction scheduling to the compiler.

5 Experimental Results

We evaluated both the formal vectorization approach and the Vienna MAP
vectorizer in combination with Spiral, as well as the Vienna MAP vectorizer as
backend to Fftw’s genfft. We evaluated 1D FFTs with problem sizes N = 22,
23, . . . , 210 using Spiral, and FFT kernels (Fftw’s no-twiddle codelets) of sizes
N = 2, 3, 4, . . . , 16, 32, 64. All experiments were performed on one PowerPC
440 FP2 processor of the BlueGene/L DD1 prototype running at 500 MHz.
Performance data is given in pseudo Gflop/s (5N log2(N)/runtime) or as speed-
up with respect to the best code without double FPU support (scalar code).

For vector lengths N = 22, . . . , 210, we compared the following FFT imple-
mentations: (i) The best vectorized code found by Spiral utilizing formal vec-
torization; (ii) the best vectorized code found by Spiral utilizing the Vienna
MAP vectorizer; (iii) the best scalar FFT implementation found by Spiral (XL
C’s vectorizer and FMA extraction turned off); (iv) the best vectorizer FFT im-
plementation found by Spiral using the XL C compiler’s vectorizer and FMA
extraction; and (v) Fftw 2.1.5 ported to BlueGene/L (without double FPU
support).

In the following we discuss the results summarized in Fig. 2. The best scalar
code generated by Spiral without compiler vectorization (thin line, crosses)
serves as baseline, as it is the fastest scalar code we obtained. Turning on the
vectorization and FMA extraction provided by IBM’s XL C compiler for Blue-
Gene/L (dashed line, x) actually slows down Spiral generated FFT code by
up to 15 %. Fftw 2.1.5 (thin line, asterisk) runs at approximately 80 % of the
performance provided by the best scalar Spiral generated code. Utilizing the



11

Vienna MAP vectorizer as backend for Spiral (bold dashed line, hollow squares)
produces the fastest code for problem sizes N = 22, 23, 24, for which it yields
speed-ups of up to 55%. For larger sizes MAP suffers from problems with the XL
C compiler’s register allocation; for problem sizes larger than 27, straight-line
code becomes unfeasible. Formal vectorization (bold line, full squares) produces
the fastest code for N = 25, . . . , 29, speeding up the computation by up to up to
45%. Smaller problem sizes are slower due to the overhead produced by formal
vectorization; for N = 210 we again experienced problems with the XL C com-
piler. In addition, all codes slow down at N = 210 considerably due to limited
data-cache capacity.

Fftw 2.1.5 (Scalar Code)
Spiral (with Vectorizing XL C Compiler)

Spiral (Scalar Code)
Spiral with Vienna MAP Vectorizer

Spiral with Formal Vectorization

Floating-Point Performance

Vector Length N

Gflop/s

2102928272625242322

1.0

0.5

0

Fig. 2. Performance comparison of generated FFT scalar code and generated FFT
vector code obtained with the MAP vectorizer and formal vectorization compared
to the best scalar code and the best vectorized code (utilizing the VisualAge XLC
for BG/L vectorizing compiler) found by Spiral. Performance is displayed in pseudo
Gflop/s (5N log2(N)/runtime with N being the problem size).

In a second group of experiments summarized in Fig. 3 we applied the Vienna
MAP vectorizer to Fftw’s no-twiddle codelets. We again compared the perfor-
mance of scalar code, code vectorized by IBM’s XL C compiler for BlueGene/L,
and code vectorized by the Vienna MAP vectorizer. The vectorization provided
by IBM’s XL C compiler speeds up Fftw no-twiddle codelets for certain sizes
but yields slowdowns for others. Codelets vectorized by the Vienna MAP vec-
torizer are faster than both the scalar codelets and the XL C vectorized. For
N = 64 we again experienced problems with IBM’s XL C compiler.



12

IBM XL C scalar
IBM XL C Vect. Comp. FMA

Vienna MAP Vect. FMA

Speed-up of Vectorized FFTW No-Twiddle Codelets on BlueGene/L

Codelet Size

64321615141312111098765432

2.0

1.5

1

0.5

Fig. 3. Speed-up of the vectorization techniques applied by the MAP vectorizer com-
pared to scalar code and code vectorized by IBM’s VisualAge XL C compiler.

6 Conclusions and Outlook

FFTs are important tools in practically all fields of scientific computing. Both
methods presented in this paper—formal vectorization techniques and the Vi-
enna MAP vectorizer—can be used in conjunction with advanced automatic
performance tuning software such as Spiral and Fftw helping to develop high
performance implementations of FFT kernels on the most advanced computer
systems.

Performance experiments carried out on a BlueGene/L prototype show that
our two vectorization techniques are able to speed up FFT code considerably.

Nevertheless, even better performance results will be yielded by improving
the current BlueGene/L version of the Vienna MAP vectorizer. An integral part
of our future work will be to fully fold any SIMD data reorganization into spe-
cial fused multiply add instructions (FMA) provided by BlueGene/L’s double
FPU. In addition, we are developing a compiler backend particularly suited for
numerical straight-line code as output by /fftw and /spiral.

Acknowledgements. Special thanks to Manish Gupta, José Moreira, and their
group at IBM T. J. Watson Research Center (Yorktown Heights, N.Y.) for mak-
ing it possible to work on the BlueGene/L prototype and for a very pleasant and
fruitful cooperation.

The Center for Applied Scientific Computing at Lawrence Livermore National
Laboratory (LLNL) in California deserves particular appreciation for ongoing
support.

Finally, we would like to acknowledge the financial support of the Austrian
science fund FWF and the National Science Foundation (NSF awards 0234293
and 0325687).



References

[1] G. Almasi et al., “An overview of the BlueGene/L system software organi-
zation,” Proceedings of the Euro-Par ’03 Conference on Parallel and Dis-
tributed Computing LNCS 2790, pp. 543–555, 2003.

[2] R. J. Fisher and H. G. Dietz, “The Scc Compiler: SWARing at MMX and
3DNow,” in Languages and Compilers for Parallel Computing (LCPC99),
LNCS 1863, pp.399–414, 2000.

[3] ——, “Compiling for SIMD within a register,” in Languages and Compilers
for Parallel Computing, LNCS 1656, pp. 290–304, 1998.

[4] F. Franchetti, “A portable short vector version of fftw,” in Proc. Fourth
IMACS Symposium on Mathematical Modelling (MATHMOD 2003), vol. 2,
pp. 1539–1548, 2003.

[5] F. Franchetti, H. Karner, S. Kral, and C. W. Ueberhuber, “Architecture in-
dependent short vector FFTs,” in Proc. ICASSP, vol. 2, pp. 1109–1112, 2001.

[6] F. Franchetti, S. Kral, J. Lorenz, and C. W. Ueberhuber, “Efficient Utiliza-
tion of SIMD Extensions,” IEEE Proceedings Special Issue on Program Gen-
eration, Optimization, and Platform Adaption, to appear.

[7] F. Franchetti and M. Püschel, “A SIMD Vectorizing Compiler for Digital
Signal Processing Algorithms,” in Proc. IPDPS, pp. 20–26, 2002.

[8] ——, “Short vector code generation and adaptation for DSP algorithms.” in
Proceedings of the International Conerence on Acoustics, Speech, and Signal
Processing. Conference Proceedings (ICASSP’03), vol. 2, pp. 537–540, 2003.

[9] ——, “Short vector code generation for the discrete Fourier transform.” in
Proceedings of the 17th International Parallel and Distributed Processing
Symposium (IPDPS’03), pp. 58–67, 2003.

[10] M. Frigo, “A fast Fourier transform compiler,” in Proceedings of the ACM
SIGPLAN ’99 Conference on Programming Language Design and Implemen-
tation. New York: ACM Press, pp. 169–180, 1999.

[11] M. Frigo and S. Kral, “The Advanced FFT Program Generator Genfft,”
in Aurora Technical Report TR2001-03, vol. 3, 2001.

[12] M. Frigo and S. G. Johnson, “Fftw: An Adaptive Software Architecture
for the FFT,” in ICASSP 98, vol. 3, pp. 1381–1384, 1998.

[13] Intel Corporation, “Intel C/C++ compiler user’s guide,” 2002.
[14] J. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, “A methodol-

ogy for designing, modifying, and implementing Fourier transform algorithms
on various architectures,” IEEE Trans. on Circuits and Systems, vol. 9, pp.
449–500, 1990.

[15] S. Kral, F. Franchetti, J. Lorenz, and C. Ueberhuber, “SIMD vectorization
of straight line FFT code,” Proceedings of the Euro-Par ’03 Conference on
Parallel and Distributed Computing LNCS 2790, pp. 251–260, 2003.

[16] ——, “FFT compiler techniques,” Proceedings of the 13th International
Conference on Compiler Construction LNCS 2790, pp. 217–231, 2004.



14

[17] S. Lamson, “Sciport,” 1995. [Online]. Available:
http://www.netlib.org/scilib/

[18] S. Larsen and S. Amarasinghe, “Exploiting superword level parallelism with
multimedia instruction sets,” ACM SIGPLAN Notices, vol. 35, no. 5, pp.
145–156, 2000.

[19] R. Leupers and S. Bashford, “Graph-based code selection techniques for em-
bedded processors,” ACM Transactions on Design Automation of Electronic
Systems., vol. 5, no. 4, pp. 794–814, 2000.

[20] J. Lorenz, S. Kral, F. Franchetti, and C. W. Ueberhuber, “Vectorization
Techniques for BlueGene/L’s Double FPU,” IBM Journal of Research and
Development, to appear.

[21] M. Lorenz, L. Wehmeyer, and T. Draeger, “Energy aware compilation
for DSPs with SIMD instructions,” Proceedings of the 2002 Joint Confer-
ence on Languages, Compilers, and Tools for Embedded Systems & Software
and Compilers for Embedded Systems (LCTES’02-SCOPES’02)., pp. 94–101,
2002.

[22] D. Mirkovic and S. L. Johnsson, “Automatic Performance Tuning in the
UHFFT Library,” in Proc. ICCS 01, pp. 71–80, 2001.

[23] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D. Padua,
M. Veloso, and R. W. Johnson, “Spiral: A generator for platform-adapted li-
braries of signal processing algorithms,” Journal on High Performance Com-
puting and Applications, special issue on Automatic Performance Tuning,
Vol. 18, pp. 21–45, 2004.

[24] N. Sreraman and R. Govindarajan, “A vectorizing compiler for multimedia
extensions,” International Journal of Parallel Programming, vol. 28, no. 4,
pp. 363–400, 2000.

[25] P. N. Swarztrauber, “FFT algorithms for vector computers,” Parallel Com-
put., vol. 1, pp. 45–63, 1984.

[26] C. F. Van Loan, Computational Frameworks for the Fast Fourier Trans-
form, ser. Frontiers in Applied Mathematics. Philadelphia: Society for In-
dustrial and Applied Mathematics, 1992, vol. 10.

[27] R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical opti-
mizations of software and the atlas project,” Parallel Comput., vol. 27, pp.
3–35, 2001.

[28] J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL: A Language and
Compiler for DSP Algorithms,” in Proceedings of the Conference on Program-
ming Languages Design and Implementation (PLDI), pp. 298–308, 2001.

[29] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Comput-
ers. New York: ACM Press, 1991.


