Power System Probabilistic and Security Analysis on
Commodity High Performance Computing Systems

Tao Cui
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213

tao.cui@ieee.org

ABSTRACT

Large scale integration of stochastic energy resources in power
systems requires probabilistic analysis approaches for com-
prehensive system analysis. The large-varying grid condi-
tion on the aging and stressed power system infrastructures
also requires merging of offline security analyses into on-
line operation. Meanwhile in computing, the recent rapid
hardware performance growth comes from the more and
more complicated architecture. Fully utilizing the compu-
tation power for specific applications becomes very diffi-
cult. Given the challenges and opportunities in both the
power system and computing fields, this paper present the
unique high performance commodity computing system so-
lution to the following fundamental tools for power system
probabilistic and security analysis: 1) a high performance
Monte Carlo simulation (MCS) based distribution proba-
bilistic load flow solver for real time distribution feeder prob-
abilistic solution. 2) A high performance MCS based trans-
mission probabilistic load flow solver for transmission grid
analysis. 3) A SIMD accelerated AC contingency calcula-
tion solver based on Woodbury matrix identity on multi-
core CPUs. By aggressive algorithm level and computer
architecture level performance optimizations including op-
timized data structures, optimization for superscalar out-
of-order execution, SIMDization, and multi-core scheduling,
our software fully utilizes the modern commodity comput-
ing systems, makes the critical and computational intensive
power system probabilistic and security analysis problems
solvable in real time on commodity computing systems.

Categories and Subject Descriptors

G.4 [Mathematical Software]: Parallel and vector imple-
mentations; 1.6.8 [Simulation and Modeling]: Types of
Simulation—Monte Carlo, Parallel

Keywords
Code optimization, performance tuning, power system com-
putation, SIMD, multi-core

Prepared for HIPCNA-PG’13 Denver, CO, USA

Franz Franchetti
Carnegie Mellon University
5000 Forbes Ave.
Pittsburgh, PA 15213

franzf@ece.cmu.edu

1. INTRODUCTION

The electric power system has been experiencing significant
transition in the past decades. The large scale integration of
stochastic and variable renewable energy resources such as
wind and solar energy as well as plug-in of new loads with
large variance such as electrical vehicles introduce significant
uncertainties in the power grids. Most of the new power in-
jections are stochastic and non-dispatchable in nature, large
penetration level results in significant impacts on almost ev-
ery aspects of the power grids. Moreover, the more active
and increasing loads and generations drive today’s aged and
stretched power grid closer and closer to its limits, thus re-
sult in higher possibility of component failures as well as
more serious consequences of any contingencies.

In response to the new challenges in uncertainties and secu-
rity analysis requirements, North-American Electric Relia-
bility Corporation (NERC) has suggested using new proba-
bilistic analysis approach for power grid analysis from dis-
tribution feeders to bulk power grids [18]. NERC also sug-
gests applying N-1 contingency to N-k contingency analysis
for even real time operation [17]. Given the large uncer-
tainties and more strict security assessment requirements,
an efficient and generally applicable computational analysis
framework that can analyze and monitors the power grid us-
ing probabilistic approaches and assess system security com-
prehensively in real time would be an critical important tool
for the efficient and reliable operation of the power grids.

On the computing side, the last decades have seen an enor-
mous growth in the performance capabilities of computing
platforms. A current Intel server processor has a double
precision peak performance of more than 200 Gflop/s (10°
additions/subtractions/multiplications per second) thanks
to an 8-core CPUs with AVX vector instructions [13]. In
term of this value, the single chip desktop CPU has similar
peak performance comparing to the No.1 fastest supercom-
puter (Fujitsu NWT, 280 Gflop/s) in 1995 and to the No.500
fastest supercomputer (Cray T3E1200, 138 Gflop/s) in just
2001 [16]. However, the recent advances in computing per-
formance are mainly thanks to the more and more compli-
cated hardware architecture such as deep memory hierarchy,
multiple levels of parallelism (data level, instruction level,
task level, etc). Without the awareness of hardware archi-
tecture, most software can only utilize a very small fraction
of the CPU’s computing power and cannot benefit from the
current and future growth of computer hardware capabil-
ity. To fully exact the computing power out of the modern

hardware architecture becomes very difficult. It requires the
knowledge and efforts from both the application domain and
the computer architecture domain, including but not limited
to algorithm level optimization, data structure optimization,
special hardware instructions and parallel programming, etc.
In most cases, the specific numerical application may need to
be carefully redesigned and tuned to fully utilize the modern
hardware capability.

This paper targets on the fundamental computational ker-
nels for above power system challenges, specifically consist-
ing of the followings: 1) a high performance Monte Carlo
simulation (MCS) based three phase distribution probabilis-
tic load flow (DPLF) solver for real time feeder probabilis-
tic analysis and monitoring. MCS methods for probabilis-
tic load flow (PLF) are considered to be robust, generally-
applicable and can be accurate in theory, therefore are of-
ten used as accuracy reference for other method. However,
MCS methods are also believed to be computational inten-
sive and impractical for real time application. With aggres-
sive code optimization, multi-level parallelization and task-
decomposition for real time application, we are pushing the
computing speed to the machine peak on commodity multi-
core CPUs, building the highly optimized solver with order-
of-magnitude speedup comparing to the baseline software.
2) a high performance Monte Carlo simulation based trans-
mission probabilistic load flow (TPLF) solver. Based on fast
decoupled load flow algorithm, we investigated and devel-
oped efficient linear solver and related elementary functions
for parallel massive amount load flow computations specifi-
cally for real time MCS solution of TPLF. 3) An accelerated
AC contingency calculation (ACCC) is also proposed and
developed for fast and comprehensive steady state security
assessment. Based on Woodbury matrix identity, different
contingency cases can be transformed into the SIMD (sin-
gle instruction multiple data) computation model, together
with a thread pool scheduler, our implementation fully uti-
lizes the computing power of commodity system, making
comprehensive ACCC efficient and feasible for real time ap-
plication on commodity computing systems.

This paper is organized as following: the background of com-
modity hardware is reviewed in Section 2, the DPLF solver
is presented in Section 3, the TPLF solver is presented in
Section 4, the ACCC solver is presented in Section 5, Sec-
tion 6 concludes the paper.

2. COMMODITY COMPUTING SYSTEMS

The main architecture we are targeting is the new Intel CPU
with Sandy Bridge (or later generation) micro-architecture
with deep memory hierarchy, superscalar out-of-order sched-
uler, AVX (Advanced Vector eXtension) instruction set ex-
tensions and multiple CPU cores.

Fig. 1 shows the block diagram of an example Sandy Bridge
CPU (Core i7 2670QM) topology. It has 4 CPU cores (Core
P#0 to P#3), each core has two logical processing units
(PU) due to Hyper-Threading (Intel’s term for simultaneous
multithreading or SMT). The CPU system has three levels
of cache memories (L1, L2 and L3). Multi-core and deep
memory hierarchy (three level of cache memories) are the

most relevant features in this figure at the CPU core level.

Machine (7931MB)

Socket P#0

‘ L3 (6144K B) ‘

‘ L2(256KB)‘ ‘ L2 (256KB)‘ ‘ L2(256KB)‘ ‘ L2(256KB)‘

‘ L1(32KB) ‘ ‘ L1(32KB) ‘ ‘ L1(32KB) ‘ ‘ L1(32KB) ‘

Core P#0 Core P#1 Core P#2 Core P#3
PU P#O PU P#2 PU P#4 PU P#6
PU P#1 PU P#3 PU P#5 PU P#7

Figure 1: Core i7 2670QM: 4 physical cores, 3 levels
cache (L1-L3), 8 GB memory

Fig. 2 shows the architecture inside each core (Core P#0 to
P#3 in Fig. 1). This figure is taken from “Intel®64 and TA-
32 Architectures Optimization Reference Manual” [12]. It
shows an out-of-order superscalar scheduler in the middle,
such scheduler is able to issue multiple independent instruc-
tions to independent arithmetic, floating point, or load/store
functional units to exploit the instruction level parallelism.

[32K L1 Instruction Cache j»[Pre-decode |»[Instr Queue
{[Decoders |
Branch Predictor
1.5K uOP Cache

Load Store [| Reorder
Buffers Buffers Buffers Allocate/Rename/Retire

AL ALU
V-Mul V-Add StAddr

256- FP Shuf

[V-Shuffid V-Shuffld
Fdiv [256-
256- FP MUL

256- FP Blend

256- FP Bool
256- FP Blend

\

Memory Control

48 bytesicycle

Line Fill
== 256K L2 Cache (Unified) Buffers
4 32K L1 Data Cache

Figure 2-1. Intel microarchitecture code name Sandy Bridge Pipeline Functionality

Figure 2: Intel Sandy Bridge micro-architecture in-
side each core

If we further look into the floating point functional units
in each core on a Sandy Bridge CPU (e.g. 256-FP Add in
Fig. 2). The floating point unit is capable of processing
multiple data by a single instruction. The so called Single
Instruction Multiple Data units (or SIMD unit) exploit data
level parallelism. As showed in Fig. 3, for example, we con-
sider working on 32-bit single precision floating point data.
On the 256-FP Add unit, it can execute the scalar version
ADD instruction FADD which adds one floating point to an-
other at a time. It is also capably of execute SSE version
ADD instruction ADDPS which can add an array of 4 floating
point data to another array of 4 at a time. It also supports
the new AVX version ADD instruction VADDPS, which can
add an array of up to 8 floating point data (256-bit in total)
to another array of 8 floating point data at the same time.

alls

LlafsTs] [T]s]
¥ ¥

[+ faaa | [“4+7: addps |
|i| [[3]5]7]
Scalar add SSE float add

since Pentium Ill

(lzfefelofo]efs] [s[afefs]s[ef 5]
“+7: vaddps
[s[s]s[z]s[s]s]7]

AVX float add
since Sandy Bridge

Figure 3: Illustration of SIMD operation

The clock frequency of Core i7 2670QM in is 2.2 GHz. By
taking the above computing capabilities of the CPU in to
consideration, the single floating point theoretical peak per-
formance of this chip is 2.2 G x (1 floating ADD + 1 floating
MUL) x 8 single floats in AVX x 4 cores = 140.8 Gflop/s.
This is the theoretical single precision peak performance of
this chip [13]. In terms of this value, this CPU in 2012
has the similar performance as the fastest supercomputer in
the world in just year 2001 (Cray T3E1200, 138 Gflop/s on
Top500 List) [16]. The rapid growth of computing capabil-
ity implies Moore’s law still applies on the modern hardware
architectures [15].

However, from the description of the architecture and the
calculation of hardware theoretical peak performance, to
benefit from the high peak hardware performance, the ap-
plication software has to fully utilize all the performance
enhance features of the CPU. Given the more and more com-
plicated hardware, fully utilizing the computation power for
specific applications becomes very difficult on modern CPU.
In this paper, from the hardware perspective, we are par-
ticularly looking into the following aspects to improve the
computational performance of our proposed power system
probabilistic and security analysis applications.

Memory hierarchy. Memory hierarchy includes main mem-
ory and multiple levels of caches. The cache is a small but
fast memory that automatically keeps and manages copies of
the most recently used and the most adjacent data from the
main memory locations in order to bridge the speed gap be-
tween fast processor and slow main memories. There could
be multiple levels of caches (such as L1,L.2,L3 in Fig. 1), the
levels closer to CPU cores are faster in speed but smaller
in size. An optimized data access pattern is important to
utilize the cache functions to increase the performance.

Multi-level parallelism. Utilization of multilevel paral-
lelism inside each CPU core and among CPU cores can have
significant impact on computational performance. We are
looking into the following aspects that are relevant to our
applications.

1. Instruction level: Superscalar and out-of-order archi-
tecture exploits the instruction level parallelism. Within
a single CPU core, superscalar processor executes more

than one instruction during a clock cycle by simulta-
neously dispatching multiple instructions to multiple
functional units on the processor (as showed in the
middle of Fig. 2). Out-of-order execution re-order the
instructions according to their dependency, and in-
dependent instructions within a instruction dispatch
window can be executed simultaneously on multiple
functional units. Code optimization techniques such
as loop unrolling, mixture of independent instructions,
using bigger un-branched code blocks, etc. can be used
to exploit the instruction level parallelism on super-
scalar hardware architectures [4] [6].

2. Data level: Single Instruction Multiple Data (SIMD):
The Streaming SIMD Extensions (SSE) or the Ad-
vanced Vector eXtensions (AVX) instruction sets on
Intel or AMD’s x86 CPUs can perform floating point
arithmetic operations on 4 single precision floating point
(SSE) or 8 single precision floating point (AVX) data
packed in vector register at the same time. Besides
SSE and AVX which are already available on com-
modity systems, many new or under-developing micro-
architectures such as Intel’s new Larrabee architecture
are further expanding the processing width of SIMD
units (to 16 single precision floating point data).

3. Task-level: Multicore CPUs enables multiple threads
to be executed simultaneously and independently on
different CPU cores while communicate via shared mem-
ories. A proper scheduling and synchronization strat-
egy is necessary for real time applications. And bal-
ancing the work load among the cores is one the most
important consideration for parallel programming.

3. MCS SOLVER DISTRIBUTION PLF

In this section, we present a high performance parallel Monte
Carlo simulation (MCS) framework for distribution PLF on
multicore CPUs [7] [8] [9]. We use forward backward sweep
based load flow algorithm for distribution network load flow
solutions [14]. We applied aggressive code optimization in-
cluding data structure optimization that transforms forward
backward sweep into array access for better memory hierar-
chy utilization, algorithm level optimization and code gener-
ation considering the sparse property of equipment models,
multi-level parallelism including Single Instruction Multiple
Data (SIMD) model and task-decomposition based schedul-
ing on multicore CPUs for real time Monte Carlo simulation
applications. For the proposed MCS type applications, our
optimized load flow solver is able to achieve more than 50%
of a CPU’s theoretical peak performance. That is about 50x
speedup comparing to the best compiler-optimized baseline
code on a quad-core CPU. The optimized MCS solver is
able to solve millions of load flow of IEEE 37 Test Feed-
ers [11] within a second on a quadcore Sandy Bridge CPU,
therefore enabling MCS as real-time, high-accuracy and gen-
erally applicable solution for the real time PLF analysis on
distribution feeders. Most of the work in this part has been
discussed in [8] [9]. In this section we briefly highlight the
key approaches and results.

3.1 Code Optimization

The forward backward sweep (FBS) load flow method solves
the radial distribution load flow by traversing over the ra-
dial distribution network (tree) from substation (root) to

each the loads (leaves) using (2) to update voltages, and tra-
verses back from leaves to root using (1) to update branch
currents until voltages converges. The basic computation is
the complex 3x3 matrix and 3x1 vector multiplication in
following equation (1) (2) [14].

Mavelaxt = [€laxa [Vabelaxt + [l Tabelsxa (1)

[VZIL?C]sxl = [A]BXS[2b6]3><1 - [B]SXS[Z;?C]le (2)

Forward Backward Consecutive
in Data Array
Sweep Sweep

Pointer
Array

Pointer

N5 Data:

Parameters
Current
Voltage

N4 Data:

Parameters
Current
Voltage

STL Tree Structure

Array Access

Figure 4: Data structure optimization

Data structure optimization. The baseline implemen-
tation model the tree using C++ object oriented program-
ming. Starting from the baseline, the major data struc-
ture optimization is to flatten the tree object into an 1D
array (Fig. 4). In this way, the tree traversals with object
data access through member functions are converted into
streaming memory accesses to a raw data array. The sweeps
are turned into linearly (upwards) or almost linearly (down-
wards) traversals on the data array. Thus, the optimized
FBS computation preserves temporal and spatial locality of
the data streams. The data structure optimized code takes
advantages of the memory hierarchy and yield much better
performance than the baseline C++ code.

Matrix Pattern: Pseudo-code for Matrix-Vector Multiplication:

T 0 0 // input[0~2]: vector real part;
// input[3~5]: vector imaginary part;
0 r |0 // constant: parameters (r or c on left).
0 0 T switch (matrix pattern) {
case real diagonal equal matrix:
output [0] constant * input[0];
i [0 |0
- output[5] = *constant * input[5];
0 |ri |0 break;
0 10 |n [L case imag_diagona 1_matrix:
output[0] = - ant * input[3];
N output [1] nstant * input[4];
output [2] nstant * input(5];
- output [3] nstant * input[0];
Ci | Ci2 | Ci3 output[4] = *constant * input[1];
e e output [5] = *constant * input[2];
21 |G | G break;
C31 | C3n | C33 //cases for other frequent matrix patterns
! b default: //default full 3x3 complex matrix
r:real number, .
c: complex number

Figure 5: Pattern-based optimized sparse matrix-
vector multiplication.

Specialization through code synthesis. The main per-
node or per-branch operations in the FBS are small matrix-
vector multiplications in (1) (2). The A, B, ¢, d matrices are
constant matrices. Due to the link model’s physical proper-
ties, most of these matrices are symmetric, diagonal or even
identity matrices, and there is a limited number of sparsity
pattern. These patterns are fixed once the system’s physi-
cal elements are given. We synthesize special matrix-vector
multiplication kernels that inline the matrix structure into
the kernel as showed in Fig 5: we generate one specialized
kernel per matrix pattern and use a jump-table dispatch
mechanism (switch-case) that invokes the correct kernel for
each pattern. The savings can be considerable as small 3 x 3

matrix-vector product kernels can be fully unrolled. Bigger
code blocks and unrolled loop exploit instruction level par-
allelism of modern CPUs. Our approach is similar to [3],
which introduces a pattern-based sparse matrix multiplica-
tion kernel. We also compress the 3 x 3 matrix by its pattern
and its non-zero elements.

3.2 Explicit Parallelization

Scalar Register: -
1 float Scalar Instructions
Scalar Solver: ‘ Sample H

Vector Register.
4 floats in SSE

FBS Load Flow

H Result ‘

Result I

Vectorized Solver: ‘ Sample [

Figure 6: Vectorization of load flow solver for MCS

SIMD vectorization. SIMD exploits the fine-grained data
level parallelism. The repeat load flow computation in MCS
is same load flow algorithm (same instruction sequence) op-
erates on different sample values (multiple data). We vec-
torize the solver for x86 Streaming SIMD Extentions (SSE)
or Advanced Vector eXtention (AVX). These instruction set
extensions use vector registers to hold 4 or 8 single precision
floating point data and use SIMD instructions to process
same arithmetic operations on these multiple data at the
same time. As show in Fig. 6 we pack multiple samples
into SIMD vector registers, and convert scalar instructions
to SIMD instructions. In this way, multiple load flows can
be solved at the same time.

rSwilch Buffer A, B

RNG & VLF in Buffer A RNG & VLF in Buffer B, |

C ing Thread N

RNG & VLF in Buffer A, RNG & VLF in Buffer B, \

Computing Thread 2

RNG & VLF in Buffer A RNG & VLF in Buffer B, \

Computing Thread 1

Scheduling Thread 0 || KPE inAlIBBuﬂc:s‘ Result Out ‘g,g;iﬁm KDE inAllABuﬂcls‘ Result Out ‘\

@—— Real Time Interval ——|
RNG: Random Number Generator

VLF: Vectorized Load Flow Solver Sync Signal
KDE: Kernel Density Estimation

Figure 7: Real time multi-thread MCS on multicore

Multi-threading for real time MCS application. In
particular for Monte Carlo simulation the exact number of
problems to be solved is not of utmost importance as long
as the accuracy is maintained. Thus we can run multi-
ple Monte Carlo simulations independently on the different
cores and collect Monte Carlo results after a pre-specified
(long enough) time without having to ensure that all thread
perform the exactly given number of simulations. We im-
plemented a light-weight worker thread infrastructure that
allows for fast buffer switching, shown in Fig. 7. A master
scheduling thread orchestrates the computation on multi-
ple computing threads and collects and post-processes the
results. At the end of every real-time interval, the master
thread sends a sync signal to all worker threads, so that all
worker threads switch to new buffers. Once they signal back

that they switched the master thread collects the results
from the old buffers of all computing threads to post pro-
cess. The remaining cores are saturated with worker threads
running the SIMD vector load flow solver in parallel on in-
dependent problems. In this way, the real time scheduler
exploit the task level parallelism, the speed for solving large
amount of load flows is only limited by the number of cores
present in the CPU. In another words, the MCS implemen-
tation fully utilizes the computing power of the hardware.

3.3 Performance Results

We show the performance results measured in Gflop/s (float-
ing point operations divided by runtime). The detail of per-
formance results on the solver on quadcore Core-i7 CPU
with AVX are shown in Fig. 8. We duplicate multiple IEEE
4-bus test feeder and interconnect them at the root to build
a bigger case for benchmarking the computing speed. The
highest curve is the speed of fully optimized solver using op-
timized data structure, AVX, multithread and pattern based
matrix vector product. The peak speed of the solver reaches
80 Gflop/s, which is around 65% of the machine’s theoreti-
cal peak [13]. When the system becomes bigger, the perfor-
mance drops mainly because the data cannot be completely
fitted into the CPU caches.

Performance on Core i7 2670QM 2.2GHz Quadcore

Performance
[Gflop/s] —+0p
90

80
70
60

-=-0pi VX with Pattern
with Pattern ~8=Mu X

4 8 16 32 64 128 256 512 1024 2048
Bus Number

Figure 8: Performance on different network sizes

Table 1: Approximate Runtime of MCS DPLF
1M Load Flow Optimized Code Baseline

Core 2 Core i7 C++(03)

IEEE 37 =~ 60G <2 <1s > 60s
IEEE 123~ 200G <10s < 3.5s > 200s

System Flops

To solve 1 million load flow cases of IEEE 37-bus test system
and TEEE-123 bus test system, the approximate runtime of
MCS is showed in Table 1. We can see that on new Intel
Sandy Bridge CPU (Core-i7) with quad-core and AVX, 1
million load flows can be solved within 4 seconds, which is
less than the update time interval of most SCADA system.
For most PLF cases, 1 millions load flow samples can achieve
accurate enough MCS results. The baseline runtime results
including fully-compiler-optimized C++ code (-03) are also
showed for reference. Clearly, the baseline programs with-
out hardware-aware optimization fail to produce the similar
performance results under real time constraint.

We also tested the MCS solver on IEEE 37-bus test feeder
on different machines [11]. As show in Fig. 9, the perfor-

Performance on Different Machines for IEEE37

Performance [Gflop/s|
120

100
80
60

40

Core2Extreme Xeon X5680 Corei7-2670QM 2 Xeon7560
2.2GH:

2.66GHz 333GHz 2GHz 227GHz
(4-core, SSE) (6-core, SSE) (4-core, AVX) (16-core, SSE)

Figure 9: Performance on different platforms.

mance increases with the increase of SIMD width (SSE to
AVX), and with the increase of number of CPU cores. This
figure implies that optimized MCS solver is a well fitted
application for modern computer architecture. It sees an
almost linear speedup with the increase of hardware parallel
capacity. Therefore, with the trend of increasing parallelism
on modern CPUs, further performance increase can be ex-
pected by using new CPU hardware (e.g. Intel’s Larrabee
and MIC architecture).

4. MCS SOLVER TRANSMISSION PLF

Based on the similar MCS framework, in this part, we focus
on MCS based probabilistic load flow for transmission net-
work using fast decoupled power flow (FDPF) algorithms.
We present an algorithmically and architecturally optimized
MCS based transmission PLF solver on commodity system.
At algorithm level, we optimized the fast decoupled power
flow implementation with highly optimized math functions
(e.g. sparse LU factorization, efficient math functions im-
plementation and utilization). At the architecture level, we
apply aggressive code optimization techniques including op-
timized sparse data structure for better cache performance,
loop unrolling for sparse kernel to exploit the supersaclar
out-of-order architecture, Single Instruction Multiple Data
(SIMD), multithreading on multiple CPU cores and task-
decomposition scheduling for real time MCS application. As
a result of our optimization, we show our solver is able to
solve up to 1 million load flow sample cases of the IEEE 118-
bus system and ~50K sample cases of the Polish 2383-bus
system within 5 seconds on an Intel Sandy Bridge quadcore
CPU. Our work shows a fast, accurate, reliable and gener-
ally applicable MCS solver as the transmission PLF solution
on inexpensive commodity computing system.

4.1 Code and Algorithm Optimization
In this section we discuss the code optimization of MCS
solver for transmission PLF on multicore CPUs.

LU Factorization In fast decoupled power flow algorithm,
we need to solve two linear systems (3) (4) in each iteration:

-B'A0 = AP/V (3)
~-B"AV AQ/V (4)

These matrices are factorized as the product of lower L', L”

and upper U’, U” triangle matrices as following:
PBQ =LU (5)
P//B//Q// — L//U// (6)

P’,P” are partial pivoting permutation matrices. Q’, Q"
are column reordering permutation matrices. During the
iteration, solving the linear equation becomes two forward
and backward substitutions using B’ and B”’s LU factors.

Both B’ and B” are sparse matrices originating from a cir-
cuit matrix, a proper ordering schemes can result in sparse
LU factors and can significantly reduce the floating point
operations in the forward and backward substitution steps.
This is particularly important for our MCS application using
FDPF algorithm.

Original L' Original U
0 0
20t © 20
al T M 40
cofe ’;— L] 60 “
80 80 |

100 i | 100

0 50 100 0 50 100
nz = 1276 nz =1276
Sparse L' by AMD Sparse U’ by AMD

20 20
a0} 40
60 .= 60
80 80
100 ' 100

P ™

[P
0 50 100 50 100
nz =371 nz =371

o

Figure 10: LU of IEEE118’s B’: LU used in Mat-
power (top) and sparse LU using AMD (bottom)

T
[fdpf with sparse LU
0.2 | [tdpf in Matpower 4.1

0.1f

= L L L " i
14 30 39 57 118 300 2383 2736 2737 2746 3012 3120

system size

Figure 11: Improve performance by sparse LU

Fig. 10 shows the sparsity of factors L and U of the IEEE
118-bus system’s B’ matrix using different ordering schemes:
e.g. approximated minimal degree (AMD) for circuit ma-
trix [2], the factors L and U can be very sparse. Fig. 11
shows the overall runtime comparison of original FDPF im-
plementation in Matpower 4.1 [20] and improved FDPF us-
ing sparse LU factorization (both coded in Matlab). The
algorithm level optimization using sparse factors results in
up to 4-5x overall speedup. Starting from here, our baseline
code is built upon this AMD based sparse LU factorization.

Optimizing Data Storage During the mismatch compu-
tation, the trigonometric functions of angle differences (e.g.
sin(0; — 60;), cos(0; — 0;)) participate in the actual compu-
tation. On modern CPU, sin and cos operations can cost
hundreds of CPU cycles, while mul and add usually cost
less than 1 cycle. We use trigonometric identities to reduce
the number of expensive sin and cos computations. For ex-
ample, using sin(a — b) = sin(a) cos(b) — cos(a) sin(b) and
cos(a — b) = cos(a) cos(b) + sin(a) sin(b) reduces the number
of sin and cos operations from the number of branches to the

number of buses. We store the sin(6),cos(6) values adjacent
to the 0 to exploit the data locality for better cache perfor-
mance (as shown in upper part of Fig. 4). For the actual
sin and cos computation, instead of using these functions
in libm, we use an alternative high performance implemen-
tation in [19], which is especially suitable for extending to
SIMD instructions for our MCS applications.

In the baseline code, the sparse L and U factors are stored
in compressed column storage (CCS) format. During the
substitution step of linear solver computation on CCS for-
mat sparse matrix, each data value and its row index are
accessed at the same time. Storing the data value and row
index consecutively as shown in the lower part of Fig. 4: the
new mixed CCS format can exploit the data locality and
improve the cache performance.

Original 6 array:

0,

sind; | coso, sind | cosd; sindy | cosOy

‘ On

Mixed 0 array: ‘ 0,

col plfi‘ cl|c2]|ce3 ‘

Original CCS: row idx:‘ rl (2|13 | r4 | 5 ‘

col ptr:‘ cl[c2|c3 ‘
Mixed CCS:

mixcd:‘vl r v2|r2|v3|r3|v4|r4|v5|r5‘,..

Figure 12: Optimizing data structure (upper: new
0 array, lower: new CCS)

Unrolling Sparse Solver. In the most sparse solvers, the
traversal over the sparse matrix is guided by nested loops,
for example, the upper part of Fig. 13 shows the traver-
sal on sparse matrix of compressed column storage format.
The nested loops with only a few operations in the body
result in unpredictable branches and limit the out-of-order
execution and instruction reordering, hamper efficient reg-
ister allocation and instruction scheduling [4]. In order to
optimize the performance of sparse solver at the instruction
level, we employ aggressive loop unrolling to combine con-
secutive columns into a bigger non-looping, non-branching
code blocks. Since we use CCS format, the code for unrolled
column is determined by the column size. We pre-generate
multiple unrolled code blocks to cover various most com-
mon combinations of consecutive column sizes in sparse ker-
nel computation, and use a switch/case statement to build
a jump table dispatching instructions to different cases of
these unrolled non-branching blocks. A similar technique
for an accelerated SAT solver is in [6].

For example in Fig. 13, assume column ¢ with 2 nonzeros
is followed by column ¢ + 1 with 3 nonzeros. Instead of
branching on every nonzero in the nested for-loops, we can
pre-generate a bigger non-branching code block for the two
columns of size 2 and 3 and place the code block in a case
statement dispatched by the case_pattern 2 by 3. Based
on this principle, we can generate different code blocks to
unroll 1, 2 (this example in Fig. 13) or even more consecutive
columns used in the sparse kernel computation.

for (col = 0; col < n; col++){
for (row = col ptr[col]; row < col ptr[col+l]; rowt++) {
.. access & compute on nonzero at (row, col)
}

}

l, Unrolling

do{
switch (case_pattern for 2 consecutive columns) {

case pattern(2,3): {
...// access & compute on nonzero at (1
...// access & compute on nonzero at (2,
...// access & compute on nonzero at (1, i+1)
...// access & compute on nonzero at (2)
...// access & compute on nonzero at (3
break; }

case ...

}while(!all columns visited)

Figure 13: Pseudo-code illustrating the loop un-
rolling in sparse matrix solver

Note all the case statements are pre-generated into source
file. It increases the code size and the compiling time. In
the runtime, only an extra sparse matrix analysis function
which prepares the case_pattern for consecutive matrix col-
umn block is invoked once for each sparse matrix before all
computation, the time is negligible comparing to MCS power
flow computations. During the sparse kernel computation,
instructions are dispatched to the bigger non-branching code
blocks in the compiled case statements, which results in
much better performance on modern superscalar out-of-order
CPUs comparing to the code using nested loops.

4.2 Multilevel Explicit Parallelism

In this part, we directly use the SIMD approach and multi-
core scheduler in Section 3.2 to exploit the data level and
task level parallelism for real time MCS application for trans-
mission PLF. The parallelism stcuture and implementations
are similar to Fig. 6 and Fig. 7.

4.3 Runtime Performance Results

Baseline Optimized Scalar
= Optimized SSE ® Optimized AVX
® Optimized SSE 4-core B Optimized AVX 4-core

AL

2383

Speed:
Gflop/s

2
8

B

System Size (No. of Buses)
Figure 14: Optimization impact on computational
speed (on Core i7 2670QM)

The performance results on a quadcore Core i7 2670QM is
shown in Fig. 14, the Baseline code is the single thread
scalar code using sparse LU factors and standard solver in
SuiteSparse [10]. The Optimized Scalar code employs the
data structure optimization and code unrolling. The SSE
and AVX code are based on optimized scalar code and use
SSE or AVX instructions. The 4-Core versions run the SSE
or AVX code on all CPU cores. All the codes are compiled by
Intel C Compiler (icc) with optimization flag O3. The fully
optimized code can achieve almost 50x speedup comparing
to the compiler optimized baseline.

Table 2: Approximate Speed: Load Flow Cases
Solved per Second on Core i7 2670QM

Test Cases Approx. Speed [cases/s]
Bus No. Flops/Iteration Bascline® AVX 4-Core
14 1,034 39,000 2,270,000
24 1,788 23,000 1,340,000
30 2,242 19,000 1,010,000
39 2,715 23,000 805,000
57 4,467 15,000 495,000
118 9,130 7,000 261,000
300 23,370 3,000 92,900
2,383 175,365 340 9,960

1. Baseline is compiler optimized (icc & 03).

In terms of load flow cases solved per second, we fixed the it-
eration number to 10 to estimate a lower bound of the speed.
Actual load flow cases in MCS would require less iterations
since previous result can be used as the new initial guess.
In Table 2, with the optimized MCS solver (AVX 4-Core),
200K load flow cases of the IEEE 118-bus system can be
solved within a second on a Core i7 2670QM. 200K samples
can achieve accurate converged PDF results for most PLF
applications. Therefore, our optimized MCS solver enables
real time, generally applicable, robust and accurate PLF so-
lution for mid-size transmission grid.

S. SIMD ACCELERATED ACCC

In this part, we presented an accelerated AC contingency
calculation (ACCC) solver. At algorithm level, we use Wood-
bury matrix identity within fast decoupled power flow algo-
rithm to formulate a fine grain data parallel implementa-
tion of ACCC, which is especially suitable to be deployed
onto modern CPU with SIMD instruction extension. At
the architecture level, we applies aggressive code optimiza-
tion for memory hierarchy, parallelization and thread pool
based task scheduling. As results, we show our solver is able
to solve the full contingency screening of a Polish 3120-bus
system around 1 second on a quadcore Sandy Bridge CPU.
It enables real time AC contingency analysis on commodity
computing system.

5.1 Code Optimization

We use the fast decoupled power flow (FDPF) algorithm as
the base load flow algorithm for ACCC screening. We ap-
plied the same optimization for the basic computing kernel
showed in Section 4.1. Starting from the optimized FDPF
computing kernel, in the following paragraph, we investi-
gated and implemented the special transformation and opti-
mization of ACCC to transform network outages into multi-
level parallel program model to fully utilize the computing
capability of modern CPUs.

5.2 Network Outages in FDPF Algorithm

The main difference between transmission PLF in Section 4
and the AC contingency calculation (ACCC) is that the
ACCC need to consider the outages. In the power flow equa-
tions, the outage will change the structure of the network

and the structure of the power flow equations. However,
we can still decompose the FDPF algorithm in to different
steps, and use compensation based method to enable fine
grain data level parallelism for most computations. The fol-
lowing paragraph shows an example of line outages:

Line outage cases. In the line outage cases, suppose the
failed line section from bus 7 to bus j is taken out of the
system. As a result, a 2 X 2 matrix Ay is added to corre-
sponding slot of original admittance matrix Y to form the
new admittance matrix Y. We use a M matrix to indicate
the location of the outage line in the Y matrix.

0,..,1,0...0,0, ..., 0
M=1o..,0,0.0,1,..,0 (7)
J

Y=Y +MAyM" (8)

g t0ij i }
Ay = |Yid J J 9
v { —Yij Yig T bij ©)

In FDPF computation, this will affect the mismatch compu-
tation which use the admittance matrix in the matrix vector
product. One can simply compensate the Y to Y to com-
pute the mismatch.

It will also affect the linear solver for (3) and (4) with
similar modification on B’ and B” matrix:
B = B +MAYMT (10)
B// _ B// + M//Ab//M//T (11)

5.3 Data Parallelism of ACCC

Given the modifications on the FDPF algorithm for ACCC,
transform FDPF based ACCC into data level parallelism is
based on the Woodbury matriz identity (also called Com-
pensation method in circuit simulation). Suppose:

A=A+ MaNT (12)
The inverse of A is
A=A AT "M@+ NTAT M) TINT AT (13)

Based on above formula, we can compute the contingency
using the base case LU factors with minimal extra computa-
tion. Take B’ in (3) as example, suppose B’ is pre-factorized:

B =L'U (14)

Handling line outage: In the base case, we need to solve
x for B’z = b in each iteration. While in the line outage
cases, we need to solve x for modified B’:

(B'+ M AYM Yz =b (15)

Based on Woodbury matriz identity, the solution for (15)
can be formulated as following steps:

Forward substitution:

7—1

F=L"" (16)

Compensate:

W=L""M (17)
WT = Tyt (18)
c= (A +WTw) ! (19)
AF = -WeW'F (20)
F=F+AF (21)

Backward substitution:
i=U"'F (22)

Note in compensation steps (17) to (20), the parameters
and matrices can be determined by the new system topology,
therefore, these compensation matrices can be pre-computed
before the ACCC. Also W and WT which have same dimen-
sion as M’ and M'", and with a proper ordering scheme,
these two matrices can be sparse with small floating-point
operation numbers and memory footprint.

Based on similar idea, other types of contingency such as
PV bus outage can also be solved in the same way. The
details are in [1] and [5].

From above compensation method, the contingency cases
can be decomposed into following types of operation:

1) Pre-computation of LU factors for base case and com-
pensation matrices for different contingencies

2) Fixed mismatch calculation using slightly changed ad-
mittance matrix

3) Fixed forward / backward substitution for all cases

4) Compensation steps for different contingencies

The fixed mismatch calculation in step 2 uses same instruc-
tion sequence but may use slightly different value in admit-
tance matrix if there is line outage. The fixed forward /
backward substitutions in step 3 use same L and U factors
therefore are the same instruction sequence all contingency
cases. Only the compensation steps are different for different
contingency cases. With above decomposition of computing
procedure, we can see most part of the different contingency
calculation cases can be transformed into program model
that uses the same instructions sequences, therefore, ACCC
be well mapped on to finer grain parallelism: the original
scalar operations in step 2) and step 3) can be transformed
into SIMD instruction allowing forward/backward substitu-
tion and mismatch computation to be performance on mul-
tiple cases simultaneously, with the step 4) compensates the
effects of different contingency cases. Step 1) can be pre-
computed before all online contingency analysis since it only
relates to the topologies.

The SIMD model for different contingency calculation is
showed in Fig. 15. The upper part of the figure shows orig-
inal the scalar version code on CPU’s floating-point unit:
the contingency cases are evaluated sequentially. The lower
part shows the SIMD version code using CPU’s SIMD units:

the forward /backward substitution parts of linear solver, the
mismatch computation are vectorized and 4 cases (on SSE)
or 8 cases (on AVX) cases are processed simultaneously on
SIMD units, while the compensation for different cases are
evaluated using pre-computed compensation matrices and
then are plugged into the corresponding slots in SIMD units.

On FP Unit: ‘ L solve Compensate U solve Compensate ‘ Mismatch | One zowerﬂow
ase
L solve U solve Mismatch 8 (single)
3 or 4 (double)
SIMD Unit: L solve U solve Compensate | Mismatch Powerflow
’ R Cases of
L solve U solve Mismatch Different
) Topologies
L solve U solve Mismatch
SIMD Inst. for SIMD lInst. for SIMD Inst. for

Multiple Cases
in SIMD Register

Multiple Cases
in SIMD Register

Multiple Cases
in SIMD Register

Figure 15: Scalar (upper) and SIMD (lower) model.

5.4 Load Balance via Thread Pool Scheduler

Load balancing is one of the most important considerations
for parallel programming. In our ACCC application, we
deal with the load balancing at the core level in a shared
memory system: distributing and balancing the workload
among multiple CPU cores to fully utilize the computing
resources for ACCC computation.

Task Queue

Post
Processing

Dispatch Thd 0

Core 0 Core 1 Core 2 Core N
Figure 16: Thread pool scheduler on multi-core

We implemented a thread pool based scheduler for our ACCC
application. As showed in Fig. 16, a pool of worker threads
(Worker Thd 1 to N) are created and pinned to Core 1 to
Core N to process the SIMD packed AC contingency com-
putation tasks. One dispatch thread (Dispatch Thd 0) is
created and pinned to Core 0 to manage the task queue
and dispatch the work tasks into the thread pool, as well as
post processing the ACCC results. Worker threads wait if
the queue is empty, otherwise pop the task from the task
queue to process using the SIMD data parallel solver in Sec-
tion 5.3. Dispatch thread keeps dispatches the task into the
task queue, once all tasks are dispatched, wait on the queue
status. When the queue is empty, finish and clean up.

In this way, whenever any worker thread finishes the tasks
and the queue is not empty, the worker will get new task
from the queue. In our ACCC application, there are usually
a large amount of small tasks, the loads can be dynamically
balanced among worker threads on different physical cores
by this thread pool design.

5.5 Results: Data Parallel on Single Core
Fig. 17 shows the performance breakdown of the data par-
allel implementation of ACCC solver on a single CPU core

for different test systems (include IEEE standard test sys-
tem from 14-bus to 300-bus and Polish grid of 2383 buses
and 3120 buses). The performance results are showed in
terms of floating point per seconds. The base algorithm is
the FDPF load flow algorithm with AMD based sparse LU
factors. The lowest bar is the baseline implementations di-
rectly using sparse kernel from CXSparse package in SuiteS-
parse [10]. The second lowest bar is the optimized scalar
implementation with the optimization techniques on sparse
kernel and math functions discussed in Section 4.1. Based
on the optimized scalar implementation, the third bar shows
the speed results of SIMD implementation using SSE in-
struction extensions which are available on most x86 CPUs.
Using SSE, our accelerated implementation processes packed
4 single precision floating point data at a same time, a close
to linear speedup can be observed. The highest bar is SIMD
implementation using AVX instruction extensions available
on Intel Sandy Bridge CPU since 2012. Using AVX, we
pack 8 single precision floating point data and process the
packed data using AVX instruction. Another speedup can
be observed. Also we observed that the speedup increases
with the increase of system size. Since the compensation
steps in the middle are sparse vector / matrix with the size
determined by the outage parts. For bigger system, the per-
centage of computation on compensation parts is smaller,
more computation can be transformed onto SIMD model, a

1o 1 1

Speed of ACCC Iterations (Scalar v.s. SIMD)

Speed: OBaseline
Gflop/s OOptimized SSE
6

B Optimized Scalar
B Optimizaed AVX

5

4

14 24 30 39 57 118
System Size

300 2383 3120

Figure 17: Speedup result by SIMD transformation

5.6 Results: Task Parallel on Multiple Cores

In this section, we show the results of thread pool scheduler
on multiple cores for the accelerated ACCC application.

In order to show the benefit of thread pool for practical
applications, we test a mid-sized power system case: the
Polish grid 2383-bus system. The test cases are available
in Matpower test cases [20]. We test the N-1 cases with
rotating indexes, that is, the ACCC keeps running, whenever
it solves the last contingency cases, it immediately begin to
solve the first case again. In this way, the ACCC is assessing
the security and taking the immediate varying grid condition
into consideration.

Fig. 18 shows the results in terms of how many contingency
cases can be solved every second for the Polish Grid. We
show the test results on two machines, the darker bars are

Polish Grid 2382-bus Winter Peak Case

Solved Cases/
Second

4000
3500
3000
2500

2000
1500
1000
4

0
lcore 2cores 3cores 4cores 5cores 6cores 7cores
CPU Cores Utilized

[O8-core SSE Xeon X7650 B 4-core AVX Core i7 2670QM |

S

Figure 18: Thread pool performance of Polish 2383-
bus system on different machines

the results on a quadcore 2.2GHz Intel Core i7 2670QM
Sandy Bridge CPU supporting AVX instructions. The lighter
bars are the results of a 8-core 2.26GHz Intel Xeon X7560
Nehalem CPU supporting SSE 4.1 instructions. On each
CPU, one thread (one core) is reserved for scheduler and
post-processing, therefore, the maximal available core num-
ber on these two machines are 3 and 7. In both tests on
both machines, we observed a linear speedup for ACCC with
the increased core numbers, thanks to the dynamic balance
of thread pool design. Also, the 4-core machine is able to
achieve higher performance thanks to the AVX capability
with wider SIMD processing capability. From Fig. 18, our
ACCC is able to complete a complete N-1 screen for the Pol-
ish grid on these two CPUs around a second. Therefore, it
enables ACCC as an real time application for the real world
mid-sized national level power grid to accommodate the fast
varying grid conditions and help ensure the system security
for the future smart power grid.

6. CONCLUSION

Given the new challenges and opportunities in both power
system and computing performance engineering fields, this
paper presented the contributions targeting the most funda-
mental and critical applications for power system probabilis-
tic and security analysis including distribution probabilistic
load flow, transmission probabilistic load flow and AC con-
tingency calculation on commodity computing systems. By
fully utilizing the computing power of commodity high per-
formance computing system, we presented several unique
solutions the new power grid challenges.

7. REFERENCES

[1] O. Alsac, B. Stott, and W. Tinney. Sparsity-oriented
compensation methods for modified network solutions.
Power Apparatus and Systems, IEEE Transactions on,
(5):1050-1060, 1983.

[2] P. Amestoy, T. Davis, and I. Duff. Algorithm 837:
AMD, an approximate minimum degree ordering
algorithm. ACM Transactions on Mathematical
Software (TOMS), 30(3):381-388, 2004.

[3] M. Belgin, G. Back, and C. J. Ribbens. Pattern-based
sparse matrix representation for memory-efficient
smvm kernels. In Proceedings of the 23rd international

[4]

[5]

(6]

[9]

(10]

(11]

(12]

(13]

[14]
[15]
[16]
7]
18]

(19]

(20]

conference on Supercomputing, ICS ’09, pages
100-109, New York, NY, USA, 2009. ACM.

S. Chellappa, F. Franchetti, and M. Piischel. How to
write fast numerical code: A small introduction.
Generative and Transformational Techniques in
Software Engineering II, pages 196-259, 2008.

T. Cui. Power System Probabilistic and Security
Analysis on Commodity High Performance Computing
Systems. PhD thesis, Carnegie Mellon University,
2013.

T. Cui and F. Franchetti. Autotuning a random walk
boolean satisfiability solver. Procedia Computer
Science, 4:2176-2185, 2011.

T. Cui and F. Franchetti. A multi-core high
performance computing framework for distribution
power flow. In North American Power Symposium
(NAPS), 2011, pages 1-5. IEEE, 2011.

T. Cui and F. Franchetti. A multi-core high
performance computing framework for probabilistic
solutions of distribution systems. In Power and Energy
Society General Meeting, 2012 IEEE, pages 1-6, 2012.
T. Cui and F. Franchetti. Optimized parallel
distribution load flow solver on commodity multi-core
cpu. In High Performance Extreme Computing
(HPEC), 2012 IEEE Conference on, pages 1-6. IEEE,
2012.

T. Davis, I. Duff, P. Amestoy, J. Gilbert, S. Larimore,
E. P. Natarajan, Y. Chen, W. Hager, and

S. Rajamanickam. Suite Sparse: a suite of sparse
matrix packages.

IEEE PES Distribution System Analysis
Subcommittee. Distribution test feeders. http://ewh.
ieee.org/soc/pes/dsacom/testfeeders/index.html.
Intel Corporation. Intel®64 and ia-32 architectures
optimization reference manual.
http://www.intel.com/content/www/us/en/
architecture-and-technology/
64-ia-32-architectures-optimization-manual.
html.

Intel Corporation. Intel®microprocessor export
compliance metrics. http://www.intel.com/support/
processors/sb/cs-017346.htm.

W. Kersting. Distribution system modeling and
analysis. CRC, 2006.

J. Larus. Spending Moore’s dividend. Commun. ACM,
52:62-69, May 2009.

H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon.
Top 500 list. http://www.top500.org.

NERC. Transmission System Standards — Normal and
Emergency Conditions.

NERC. Special report: Accommodating high levels of
variable generation, 2009.

N. Shibata. Efficient evaluation methods of elementary
functions suitable for simd computation. Computer
Science-Research and Development, 25(1-2):25-32,
2010.

R. D. Zimmerman, C. E. Murillo-Séanchez, and R. J.
Thomas. Matpower: Steady-state operations,
planning, and analysis tools for power systems
research and education. Power Systems, IEEE
Transactions on, 26(1):12-19, 2011.

