
Quantum Circuit Optimization with SPIRAL:
A First Look

Scott Mionis
Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, Pennsylvania
smionis@andrew.cmu.edu

Franz Franchetti
Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, Pennsylvania
franzf@andrew.cmu.edu

Jason Larkin
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania

jmlarkin@sei.cmu.edu

Abstract—Compilation and optimization of quantum circuits
is an integral part of the quantum computing toolchain. In
many Noisy Intermediate-Scale Quantum (NISQ) devices, only
loose connectivity between qubits is maintained, meaning a
valid quantum circuit often requires swapping physical qubits
in order to satisfy adjacency requirements. Optimizing circuits
to minimize such swaps, as well as additional metrics like gate
count and circuit depth, is imperative towards utilizing the
quantum hardware of both today and the near future. In this
work, we leverage SPIRAL, a code generation system for linear
transforms built on GAP’s computer algebra system, and present
an application of such a system towards optimizing quantum
circuits. SPIRAL natively understands tensor products, complex
matrices and symbolic matrices, and the proven decomposition
and rewriting capabilities are uniquely predisposed to optimize
quantum circuits. Specifically, by defining the optimization prob-
lem in terms of SPIRAL’s breakdown and rewriting system, we
construct a search problem that can be solved with techniquies
like dynamic programming. The optimal circuit can then trans-
lated to QASM code, where it is executable on a real quantum
device. We demonstrate that the power of SPIRAL could provide
a valuable tool for future software frameworks.

Index Terms—quantum, SPIRAL, optimization, quantum cir-
cuit, future quantum frameworks

Introduction. SPIRAL, built on the GAP computer algebra
system, starts with a formal framework that expresses algo-
rithms and hardware architecture specifications in an internal
representation [1]. Using architectural directives, SPIRAL then
finds efficient computational kernels for a specified algorithm
by running a search task. To achieve this goal, SPIRAL cap-
tures mathematical identities for each object in it’s high-level
algorithm syntax, expressing them in the form of breakdown
rules. During the process of decomposing algorithms into
more basic components, these breakdown rules are applied
recursively; a specific sequence of rule applications, or rule
tree, is only one of many paths from high-level representa-
tion to lower-level implementation. To simplify these lower-
level expressions, an extensive rewriting system also exists to
perform substitutions. For the application of SPIRAL to the
quantum domain that is explored in this work, we leverage a
subset of this existing framework in order to similarly convert
high-level algorithm descriptions into compositions of gates.
These expressions can then in turn be unparsed as QASM [6]
and executed on a real quantum device.

Defining quantum notation. Quantum circuits are tradi-

tionally expressed as a matrix and tensor product of unitary
matrices which represent the basic gates in the quantum sys-
tem. Additionally, The matrix definitions of most gates can be
viewed as complex rotation or permutation matrices. SPIRAL
internally supports this notation, and many rules for these
mathematical objects can be immediately transferred from
SPIRAL’s other domains, such as in signal processing [2]. To
capture quantum formulas in this framework, we define both
high-level transform objects and low-level gate objects, with
breakdown rules to translate downwards. Transform objects
represent logical operations that may comprise of multiple
basic gates, such as the n-qubit hadamard transform qHT(n).
Gate objects are the set of basic implementable gates for the
target hardware, such as the hadamard gate qH, CNOT gate
CNOT(i, j), or identity I. Defining the decomposition of a
transform such as the qHT(n) into basic qH blocks can be
done via the following rules expressed in SPIRAL, Where ⊗
is the tensor or kronecker product:

qHT(nm) = qHT(n)⊗ qHT(m) (1)
qHT(1) = qH (2)

Capturing Quantum Circuits. Given the quantum
notation implemented in SPIRAL, a circuit can be expressed
as a series of transform objects applied to specific qubits.
Mathematically, this translates to a matrix product of 2n × 2n

matrices, n being the number of qubits, and each matrix
representing a single layer of the circuit. To express this in a
format that can be expanded by SPIRAL’s breakdown rules,
we proceed to define a qEmbed(`, arch, t) transform object
to represent the 2n×2n matrix formed by applying transform
object t to the qubits in list `, given qubit connectivity graph
arch. Decomposing this object can be done many different
ways. Given the connectivity requirements that t imposes
on `, we can position the qubits in any physical orientation
satisfying those constraints. Therefore, using arch, we can
find any viably-connected subcomponent of the physical
toplogy. We then position our logical qubits into the chosen
orientation before applying t. Finding the globally optimal
orientation is nontrivial, and can be found by performing an
intelligent search. If t is recursively defined as the matrix
product of multiple qEmbed(`, arch, t) objects, the same
process is followed over the sub-topology; arch is now the



original topology graph pruned of any physical qubits outside
of its scope.

Fig. 1. Decomposition of Transform Objects

To string together the matrix product of several
qEmbed(`, arch, t) objects we define a wrapper object,
qCirc, which is the top-level input to SPIRAL.

Embedding a Transform. Recursively decomposing a
qEmbed is done in three nested stages. Given a desired logical
to physical qubit layout, A Reorder step implicitly represents
the swaps needed to create that mapping. A Junction step then
freely reorders the logical argument qubits into canonically-
ordered positions 0 through n− 1, where n is the size of the
embedded transform. We can then apply the given transform
to the upper n qubits and the identity to all others, before
reversing the Junction and Reorder steps. Reorder objects are
kept adjacent so that they can be cancelled in the rewrite stage.

Fig. 2. Embedding a circuit, circuit view

Quantum Circuit Reduction. After an expression is com-
pletely simplified to gate objects, we can further reduce the
circuit using SPIRAL’s rewriting system [5]. These rewrite
rules can perform direct or conditional substitutions over
associative operators such as matrix products or tensor prod-
ucts. We specifically combine any adjacent Reorder stages
and simplify them before converting them to CNOT ob-
jects. For example, Reorder([0, 2, 3, 1]) ◦Reorder([0, 3, 2, 1])
can be reduced to a cheaper Reorder([0, 1, 3, 2]), and a
Reorder([0, 2, 3, 1]) ◦ Reorder([0, 3, 1, 2]) yields an Identity
transformation. Architecture-induced SWAPs can be mini-

mized by finding valid Reorder steps that cancel the most
effectively.

Circuit Optimization. Finding the optimal circuit is now
a search problem over the space of possible circuits using
a defined cost function. It can be summarized symbolically as:

rtopt(arch) = argmin
rt,arch

Cost(Rewrite(Breakdown(rt, circ, arch)))

Where Breakdown(rt, circ, arch) applies rule tree rt to cir-
cuit transform object circ using the qubit adjacency matrix
arch, Rewrite(c) applies rewrite rules to simplify the expres-
sion c, and Cost(t) is the cost function. With this formulation,
SPIRAL’s DP [3] function can perform a Dynamic Program-
ming search over the circuit space, and return the optimal cir-
cuit defined as Rewrite(Breakdown(rtopt, circ, arch)). This
optimal circuit maps directly to executable QASM code, with
only a slight difference in syntax. We can either fix the arch
parameter, or search over row and column permutations to
explore global qubit reorderings.

Results. We tested SPIRAL against IBM’s Quiskit opti-
mizer [4] for several small test circuits, with cost defined as
the number of CNOT gates in the final circuit. To verify our
results, we transferred SPIRAL-generated circuits to QASM
code and executed on IBM’s Tenerife and Bogota devices.
As seen below, SPIRAL can compete on CNOT count with
level 1 and 2 optimization for these test circuits despite
running an unstructured search, and without incorporation
of advanced gate-cancellation rules [7]. We believe this is
a strong indication that taking the system beyond proof-of-
concept could empower a valuable tool, given the historically
strong scalability of the SPIRAL system in other transform
applications.

Fig. 3. Comparison of SPIRAL with Quiskit Optimization on several trial
circuits and IBM Tenerife Topology

Future Work. For larger numbers of qubits, the space is
far too large for naı̈ve search. However, having an implicit
representation for all possible circuits is powerful when
multiple permutations are non-trivial. For large qubit sizes we
plan to further structure the search problem with breakdown-
rule heuristics, pruning unpromising branches early in the
rule tree. By also capturing additional gate simplification
techniques as rewrite rules, we are confident that SPIRAL’s
capabilites could prove valuable as a future supplement to the
existing taxonomy of quantum optimization software.



REFERENCES

[1] F. Franchetti, et al. SPIRAL: Extreme Performance Portability, Proceed-
ings of the IEEE, Vol. 106, No. 11, 2018. Special Issue on From High
Level Specification to High Performance Code

[2] M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J.
Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson,
N. Rizzolo SPIRAL: Code Generation for DSP Transforms Proceedings
of the IEEE Special Issue on ”Program Generation, Optimization, and
Adaptation,” Vol. 93, No. 2, 2005, pages 232-275.

[3] F. Franchetti and M. Püschel Generating SIMD Vectorized Permutations
Proceedings of International Conference on Compiler Construction (CC)
2008

[4] Gadi Aleksandrowicz, Thomas Alexander, et al. Qiskit: An Open-source
Framework for Quantum Computing, 2019.

[5] F. Franchetti, Y. Voronenko, M. Püschel A Rewriting System for
the Vectorization of Signal Transforms Proceedings High Performance
Computing for Computational Science (VECPAR) 2006, LNCS 4395,
pages 363-377

[6] Andrew W. Cross, Lev S. Bishop et al, ”Open Quantum Assembly
Language,” arXiv preprint arXiv:1707.03429, 2017.

[7] E. Reiffel and W. Polak, Quantum Computing A Gentle Introduction.
Cambridge, MA: MIT Press, 2011


