
Large-Scale Electronic Structure Calculations of High-Z
Metals on the BlueGene/L Platform

Francois Gygi

Department of Applied Science
University of California, Davis

Davis, CA 95616
530-752-4042

fgygi@ucdavis.edu

Erik W. Draeger, Martin Schulz,
Bronis R. de Supinski

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94551
{draeger1,schulz6,bronis}@llnl.gov

John A.Gunnels, Vernon Austel,

James C. Sexton
IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10598

{gunnels,austel,sextonjc}@us.ibm.com

Franz Franchetti
Department of Electrical and Computer Engineering

Carnegie Mellon University

Pittsburgh, PA 15213

franzf@ece.cmu.edu

Stefan Kral, Christoph W. Ueberhuber, Juergen Lorenz

Institute of Analysis and Scientific Computing

Vienna University of Technology, Vienna, Austria

skral@mips.complang.tuwien.ac.at, c.ueberhuber@tuwien.ac.at
juergen.lorenz@aurora.anum.tuwien.ac.at

ABSTRACT
First-principles simulations of high-Z metallic systems using the
Qbox code on the BlueGene/L supercomputer demonstrate
unprecedented performance and scaling for a quantum simulation
code. Specifically designed to take advantage of massively-
parallel systems like BlueGene/L, Qbox demonstrates excellent
parallel efficiency and peak performance. A sustained peak
performance of 207.3 TFlop/s was measured on 65,536 nodes,
corresponding to 56.5% of the theoretical full machine peak using
all 128k CPUs.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]:– Chemistry, Physics.

General Terms
Algorithms, Measurement, Performance.

Keywords
Electronic structure. First-principles Molecular Dynamics. Ab
initio simulations. Parallel computing. BlueGene/L, Qbox.

1. INTRODUCTION
First-Principles Molecular Dynamics (FPMD) is an accurate
atomistic simulation approach that is routinely applied to a variety
of areas including solid-state physics, chemistry, biochemistry
and nanotechnology [1]. It includes a quantum mechanical
description of electrons, and a classical description of atomic
nuclei. FPMD simulations integrate the Newton equations of
motion for all nuclei in order to simulate dynamical properties of
physical systems at finite temperature. At each discrete time step
of the trajectory, the forces acting on the nuclei are derived from a
calculation of the electronic properties of the system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
0-7695-2700-0/06 $20.00 ©2006 IEEE

mailto:fgygi@ucdavis.edu
mailto:skral@mips.complang.tuwien.ac.at
mailto:c.ueberhuber@tuwien.ac.at
mailto:juergen.lorenz@aurora.anum.tuwien.ac.at

In this paper, we consider the case of FPMD simulations of heavy
(or “high-Z”) metals such as molybdenum or tantalum. In
particular, we focus on high-accuracy electronic structure
calculations needed to evaluate the energy of isolated defects.
Such calculations are especially challenging since they require the
inclusion of a large number of atoms in a periodic simulation cell.
This in turn implies that a large number of valence electrons must
be included in the calculation. Furthermore, high-accuracy
calculations often require the use of additional tightly bound
electrons (known as semi-core electrons) in the simulation.

The electronic structure calculation is the most time-consuming
part of an FPMD simulation. It consists in solving the Kohn-Sham
(KS) equations [2]. The KS equations are one-particle, non-linear
PDEs that approximate the many-particle Schroedinger equation.
The solutions of the KS equations describe electrons in the
presence of an average effective potential that mimics the
complex many-body interactions between electrons. In periodic
solids the KS equations take the form

() ()k nk nk nkH r rψ ε ψ=

where kH is the Hamiltonian, solutions ()nk rψ are Bloch
waves, n is a band index and k is a wave vector (also called k-
point) confined to the first Brillouin zone of the crystal. The one-
particle KS Hamiltonian kH depends non-linearly on the

electronic density ()rρ which in turn depends on the solutions

()nk rψ through the relation

2() ()nk
nk

r rρ ψ=∑

The KS equations can therefore be solved independently for each
value of k, which leads to a natural division of the computational
work on a parallel computer. However, the dependence of the
electronic charge density ()rρ on the solutions at all values of k
introduces a coupling between solutions at different k values. This
coupling appears in the dependence of the effective one-particle
potential on the total electronic charge distribution ()rρ through
the electrostatic and exchange-correlation potentials. In the
systems considered here (metals in large supercells), the number
of k-points needed is of the order of four to eight. Solutions of the
KS equations are real if k=0 and complex otherwise. For this
reason electronic structure computations involving multiple k-
points are more costly than computations performed with a single
k-point (if k=0) since they involve complex arithmetic.

Thus the electronic structure problem can be solved efficiently on
a parallel computer if i) a one-particle (single k-point) KS
problem can be solved efficiently on one fourth to one eighth of
the machine, and ii) the solutions for all k-points can be combined
efficiently to compute the total charge density. We show in this
paper that both these conditions can be met and lead to efficient
electronic structure calculations on the BlueGene/L platform.

We have used the Qbox code to perform electronic structure
calculations of molybdenum on the BlueGene/L (BG/L) computer
installed at Lawrence Livermore National Laboratory. Qbox is a
C++ implementation of the FPMD method [3]. It uses the MPI
message-passing paradigm and solves the KS equations [2] within
the pseudopotential, plane wave formalism. The solution of the
KS equations has been extensively discussed by various authors
[1] and requires the capability to perform three-dimensional
Fourier transforms and dense linear algebra efficiently. The
implementation of these two operations will be discussed in detail
below. Qbox was designed specifically for large parallel
platforms, including BlueGene/L. The design of Qbox yields
good load balance through an efficient data layout and a careful
management of the data flow during the most time consuming
operations.

The sample chosen for the present performance study contains
1000 molybdenum atoms, and includes a highly accurate
treatment of electron-ion interactions. Norm-conserving semi-
local pseudopotentials were used to represent the electron-ion
interactions. A total of 64 projectors were used (8 radial
quadrature points for p and d channels) on each atom to represent
the semi-local potentials. A plane wave energy cutoff of 112 Ry
was used to describe the electronic wave functions. Semi-core p
electrons were included in the valence shell. Calculations
including 1, 4 and 8 k-points were performed.

Simulations were performed using up to 65,536 nodes.
Performance measurements were carried out by counting floating-
point operations using hardware counters. Qbox realizes a 41%
parallel efficiency between 2k and 64k CPUs for single k-point
calculations. When using multiple k-points, we show that 56.5%
of peak performance, or 207.3 TFlop/s, can be achieved on the
full machine (65,536 nodes, 131,072 CPUs).

This kind of simulation is considerably larger that any previously
feasible FPMD simulation. Our demonstration that BG/L’s large
computing power makes such large simulations feasible opens the
way to accurate simulations of the properties of metals, including
the calculation of melting temperatures, defect energies and defect
migration processes, studying the effects of aging on the
structural and electronic properties of heavy metals and the
properties of materials subjected to extreme conditions[4].

2. KEY ASPECTS OF THE BLUEGENE/L
ARCHITECTURE FOR FPMD
BlueGene/L (BG/L) presents several opportunities for efficient
implementation of FPMD simulations. Details of the tightly-
integrated large-scale system architecture are covered elsewhere
[5], including aspects of it that are particularly relevant to Qbox
[6]. Overall, LLNL’s BG/L platform has 65,536 compute nodes
and a total peak performance of 367TFlop/s.We briefly cover its
general architectural aspects here, focusing on those related to
recent or planned optimizations in Qbox.

Each compute node is built from a single compute node ASIC and
a set of memory chips. The compute ASIC features two 32-bit
superscalar 700 MHz PowerPC 440 cores, with two copies of the
PPC floating point unit associated with each core that function as

a SIMD-like double FPU [7]. Achieving high performance
requires the use of an extensive set of parallel instructions for
which the double precision operands can come from the register
file of either unit and that include a variety of paired multiply-add
operations, resulting in a peak of four floating point operations
(Flop) per cycle per core. Later in this paper, we discuss the
DGEMM, ZGEMM and FFT implementations that allow Qbox to
use these instructions and, thus, to achieve a high percentage of
peak performance.

BG/L includes five networks; we focus on the 3-D torus, the
broadcast/reduction tree and the global interrupt for Qbox
optimizations. Integration of the network registers into the
compute ASIC not only provides fast inter-processor
communication but also direct access to network-related hardware
performance monitor data. Due to limitations on deadlock-free
communication, the MPI implementation uses the tree networks
only for global (full-partition) collective operations. The torus
network also includes broadcast support; however, currently only
MPI communicators that consist of nodes that exactly form a
rectangular and compact sub-prism can use it. Since Qbox MPI
communication primarily occurs in library routines that use
derived subset communicators, we can only make limited use of
the tree network and hence torus performance dominates its
communication costs in the absence of special optimizations.

3. COMPUTATIONAL KERNELS
When using the plane-wave representation, an efficient solution
of the KS equations depends critically on two computational
kernels: dense linear algebra and 3D complex Fourier transforms
(FT). In the following section, we describe the optimized
implementations of these kernels used in Qbox.

3.1 Linear Algebra
Dense linear algebra is implemented through the ScaLAPACK
library [8]. ScaLAPACK performs a wide variety of matrix
operations on large, distributed, dense matrices. It places some
constraints on the data layout. ScaLAPACK is built upon the
BLACS communication library, which itself invokes MPI
functions. The performance of ScaLAPACK depends critically on
the availability of efficient BLAS subroutines. In particular, the
ScaLAPACK matrix multiplication function pzgemm makes
extensive use of the BLAS3 zgemm kernel. We used a hand-
optimized version of the zgemm kernel that we describe in more
detail below.

3.1.1 Optimized ZGEMM library
While the performance of the zgemm routine is dependent upon
taking advantage of the hardware features at each level of the
memory hierarchy, missteps at the lower-levels have a greater
impact than analogously suboptimal decisions that involve higher
levels of memory. Similarly, the design and implementation of the
optimized zgemm routine on BG/L is most easily understood
when described from the bottom up.

3.1.2 Mathematical and Memory-based Operations:
SIMD Vector Units
The peak computational flop rate of a BG/L processor is based
upon the assumption that a SIMD FMA can execute during every
cycle. If computationally intensive routines cannot take advantage
of SIMD instructions (or FMAs), they will not evince more than

50% of the theoretical peak rate of the processor. Fortunately,
general matrix-multiplication (C op= A*B) is dominated by
FMAs and BG/L’s relatively rich instruction set allows one to
utilize the SIMD FMA instructions for all of the computations
involved in zgemm. The only prerequisite to taking advantage of
these instructions is to load the registers utilized for computations
with useful data (i.e. not pad them or throw away half of their
result). Because the input data, complex double-precision values
in this case, is assumed to be aligned on 16-byte boundaries, the
loads and stores of the C matrix are strictly SIMD. If this
assumption regarding alignment were not made, the load-primary
and load-secondary instructions would allow one to load the
registers in the prescribed pattern. Further, since the number of
computations involved in zgemm is an order of magnitude greater
than the number of data moves (loads and stores), data
reformatting, again using only SIMD instructions, can be
employed on the A and B matrices. Data reformatting is standard
practice in the area as it makes the matrices more cache-friendly,
not simply appropriately aligned.

3.1.3 The Computational Kernel: Register-Based
View
Traditionally, the matrix-multiplication computational core, or
“kernel routine,” is carefully written so as to respect intricacies of
the architecture of the machine under consideration. Typically,
and on BG/L, the most important considerations are: 1) the
number of architected registers, 2) the latency of the levels of the
memory hierarchy that are being targeted and, somewhat less
importantly, 3) the bandwidth between the register file and the
level of the memory hierarchy being targeted.

BG/L’s cores each have 32 architected SIMD (length 2) floating-
point registers. We used these registers to target a 4x4xK matrix
multiplication kernel as our main computational workhorse. Our
register blocking uses all 32 SIMD registers: eight for A
operands, eight for B operands, and 16 for elements of the C
matrix. The computation is composed as two rank-1 updates of
the C-registers, yielding, simplistically, a 32-cycle latency
between outer products.

3.1.4 L1 Cache Considerations
BG/L’s L1 caches are 16-way, 64-set associative and use a round-
robin replacement policy [5]. Because of the excellent latency and
bandwidth characteristics of its L3/L2 cache, we considered the
L1 cache optimizations secondary in the construction of the
zgemm routine; we do not cover them in this paper due to space
constraints. It is noted, however, that it is important to block
correctly for the L1 cache in order to approach optimal
performance for small matrix multiplications.

3.1.5 The L2 Cache and Pre-fetching
BG/L’s L2 cache is considerably smaller than the L1 cache (2KB
vs. 32KB). The L2 cache acts as a prefetch buffer for data that is
streaming from higher levels of memory to the L1 cache. For
sequential data accesses, this prefetch mechanism yields a latency
that is less than that needed by our register kernel. In order to use
this prefetch buffer effectively, algorithms should not use more
streams than it can handle optimally. Since it can efficiently
handle seven streams in normal mode, we can safely use one

stream for the reformatted A matrix and one stream for the
reformatted B matrix.

3.1.6 L3 Interface
The theoretical peak bandwidth from the L3 cache is 5.33
bytes/cycle, which equates to fetching a quadword every 3 cycles
(or an L1 cache line every 6 cycles). In our SIMD 4x4x2 register
kernel, the inner loop of the code (the part that is neither loading
nor storing C) requires exactly one SIMD (quadword) load every
four cycles. Thus, it is not surprising that the inner loop of this
routine executes at a rate between 95% and 100% of the peak rate
of the machine once the data is in L3 and the L2 prefetch
mechanism is engaged.

3.1.7 DDR Bandwidth
Since we have blocked the computation to run out of L3, BG/L’s
DDR bandwidth and latency might seem unimportant. However,
they do impact the performance of matrix multiplication,
especially for relatively small matrices. BG/L’s DDR bandwidth
is, at approximately 4 bytes/cycle, comparable to that of its L3
cache and is of great value in achieving high performance for this
routine in some cases.

While the zgemm routine is blocked to take advantage of the L3
cache, a preliminary step copies and reformats the data in the A
and B matrices. This step, typically, copies data from DDR to
DDR or from DDR to L3. Although this is a negligible start-up
cost with large matrices, this overhead may be a sizeable fraction
of compute time with small matrices. Further, computation
occasionally requires bringing data from DDR and keeping it in
the L3 (or L1 in the case of small matrices) cache even for large
matrices.

3.2 Fourier Transforms
Qbox takes advantage of the fact that many 3D FTs must be
performed simultaneously (one for each electronic state), which
eases the scalability requirements on individual 3D FT
calculations. For the large systems of interest to this paper
scaling of individual FT’s beyond 512 tasks is unnecessary, since
a sufficient number of transforms can occur simultaneously to
utilize the entire machine fully. A custom parallel
implementation of 3D FT was developed and optimized for BG/L
and shows excellent scaling properties on up to 512 tasks.

3.2.1 FFTW-GEL for BlueGene/L
Qbox calls one-dimensional single-processor FFT kernel routines
within its computation. Among other libraries, it can use the
portable open-source library FFTW 2.1.5 [9]. FFTW-GEL for
BG/L [10] is an FFTW 2.1.5 replacement for BG/L based on the
SIMD FFTW replacement provided by FFTW-GEL [11].

Several BG/L specific optimizations were required to achieve
good floating-point performance. FFTW-GEL for BG/L achieves
good utilization of the two-way vector instructions for the double
FPU by replacing the original scalar FFTW codelets with
explicitly vectorized double FPU codelets. For BG/L, these vector
codelets are generated using intrinsic functions and the C99
complex data type provided by the IBM XL C compiler for BG/L.
Additionally, the Vienna MAP vectorizer [12] two-way vectorizes
large computational basic blocks by a depth-first search with
chronological backtracking to produce explicitly vectorized

FFTW codelets with solely two-way vector instructions and a
minimum of data reorganization instructions. MAP’s
vectorization rules that describe the variable and operation pairing
encode machine characteristics such as the double FPU’s special
fused multiply-add instructions. SIMD instructions provide a
large performance increase in FFTW-GEL (near two-fold
speedup) when measured on a hot L1 cache (e.g. by transforming
the same data multiple times). The increase that we observe in
Qbox is smaller, since the data to be transformed far exceeds the
size of the L1 cache, and memory bandwidth limits performance.
A speedup of 20-25% was measured when comparing the FFTW-
GEL library with the conventional FFTW 2.1.5 implementation in
that case

4. NODE MAPPING STRATEGIES
Unlike many applications for which a simple 3D domain
decomposition naturally maps to a 3D torus architecture, the KS
equations do no exhibit any obvious way to map parts of the
calculation to a torus. For this reason, we have explored various
node mappings in order to optimize performance. This
optimization must be carried out for each partition size, since the
shape of a partition depends on its size. For example, a 4k-node
partition consists of an 8x16x32 block of nodes, whereas a 16k
partition is a 16x32x32 block. As a consequence, the optimal map
for one partition size can differ substantially from the optimal
map for another partition. This process is facilitated by the
capability to specify a node mapping at run time.
The Qbox data layout distributes the degrees of freedom
describing electronic wave functions on a two-dimensional
process grid similar to the BLACS process grids [8]. Collective
communications over MPI communicators that correspond to
rows and columns of the process grid form the bulk of Qbox
communication costs. Table 1, which provides Qbox
communication timings, indicates that MPI_Bcasts and
MPI_Allreduces over these communicators dominate those costs.

Experience shows that Qbox communication costs vary
significantly with the mapping of MPI tasks to BG/L’s torus
topology. Good connectivity between communicators requires
more complex node maps than the default XYZ, YZX or ZXY
orderings. Figure 1 shows examples of four node mappings used
on the full machine 64k-node partition. For a 64k-node
calculation of 1000 molybdenum atoms with a single k-point, i.e.
a single set of KS equations, we found that the mapping
dramatically affected performance. The default mapping (shown
in Figure 1a) resulted in a sustained floating-point performance of
39.5 TFlop/s. Attempts to minimize intra-column communication
via a compact scheme (Figure 1b) did not improve performance,
yielding 38.2 TFlop/s. Distributing each process column over a
torus slice in a bipartite (Figure 1c) or quadpartite (Figure 1d)
arrangement provided the highest overall performance: 64.0
TFlop/s and 64.7 TFlop/s. The fact that a 1.64 speedup can be
achieved over the default node layout illustrates the critical
importance of proper task layout on a machine like BG/L. The
bipartite mapping was found to be the optimal mapping for
partition sizes of 8k, 16k and 32k nodes.

We have explored how BG/L’s MPI implementation maps
collective operations to the torus network through hardware
performance counts of torus network events. We focus on the

performance of MPI_Bcast, since this dominates communication
costs in Qbox (see Table 1). Figure 2 shows the communication
pattern of a single broadcast on a 4x4 plane of BG/L nodes using
three eight-node communicators. Broadcasts over a compact
rectangle of nodes (left panel), which use the torus network’s
broadcast functionality, have the most balanced packet counts as
well as the lowest maximum count. When we split the nodes

across multiple lines resulting in disjoint sets of nodes (middle
panel), the communication requires significantly more
communication packets with less balanced link utilization. The
node mappings in Figure 1c) and 1d), on the other hand, lead to a
more balanced link utilization (as illustrated in Figure 2, right
panel) and hence to higher overall performance.

(a) (b)

 (c) (d)

Figure 1. Illustration of different node mappings for a 64k-node partition. Each color represents the nodes belonging to one 512-
node column of the process grid.
This analysis of Qbox communication led to several node
mapping optimizations. In particular, our initial mappings did
not optimize the placement of tasks within communicators. We
have refined the bipartite mapping shown in Figure 1c to map
tasks with a variant of Z ordering within a plane. This
modification effectively isolates the subtree of a binomial
software tree broadcast within subplanes of the torus. In
addition, we observed that substantial time was spent in

MPI_Type_commit calls in the BLACS library. The types being
created were in many cases just contiguous native types, which
allowed us to hand-optimize BLACS to eliminate calls in these
cases. We are investigating other possible optimizations,
including multi-level collective operations [13] that could
substantially improve the performance of the middle
configuration in Figure 2.

Table 1 Top 5 communication routines in Qbox measured using libmpitrace on 8k nodes, running 5 steepest descent iterations for
1000 molybdenum atoms with 1 (non-zero) k-point (complex arithmetic). The total run time was 2774.7 s, of which 571.4 s was
spent in communication. Averages include the MPI_Bcast operations which take place once on startup and account for
approximately 128 s of the total communication time.

calls avg. msg size (bytes) time (s) % MPI % total
MPI_Bcast 4048 950681.5 401.0 70.2% 14.5%
MPI_Allreduce 54256 35446.1 103.6 18.1% 3.7%
MPI_Alltoallv 5635 399.1 41.8 7.3% 1.5%
MPI_Reduce 940 186007.1 15.2 2.7% 0.5%
MPI_Barrier 2352 0.0 8.8 1.5% 0.3%

Figure 2: Communication pattern of a 4000 Byte MPI broadcast on an eight node communicator within a 4x4 node plane. The
node labels indicate the coordinates of the node within the grid. Nodes in grey are part of the communicator (the rank is indicated
in parenthesis), the node in black is the broadcast initiator, and nodes in white do not participate in the broadcast. Edges mark
communication as measured using BG/L’s hardware counters for torus traffic with the number showing the number of packets
observed and the color indicating the direction of the traffic[14].

5. PERFORMANCE MEASUREMENTS

5.1 FPU Operations Count
Floating point operations were counted using the APC
performance counter library. This library accesses the compute
node ASIC’s hardware performance counters to tracks several
events including FPU, some SIMD and load and store operations.
Counting can be limited to selected sections of the code by calling
ApcStart()at the beginning and ApcStop()at the end of
each section. In Qbox, these calls were placed around the main
iteration loop, in order to get an accurate measure of sustained
performance. Operation counts and total number of cycles used
for each task are saved to individual files (one per task), and a
cumulative report generated using the post-processing tool
apc_scan.

BG/L’s hardware counters do not include events for SIMD
add/subtract, or multiply operations (although the fused multiply-
add operations can be counted). Thus, some SIMD operations are
not included in the count. For this reason, the floating-point
performance cannot be extracted from a single measurement of
the operation count. Instead, the number of cycles and the
number of operations must be obtained from separate
measurements using the following procedure:

1) Compile the code without SIMD instructions (i.e., use –
qarch=440 with the xlC compiler), using unoptimized
(non-SIMD) versions of the FFTW, DGEMM and
ZGEMM libraries. Measure the total FPU operation
count with this executable.

2) Recompile the code, enabling the SIMD instructions
(using –qarch=440d). Obtain the total number of cycles
and, thus, the total time with this executable. The FP
operation count in this case is potentially inaccurate and
should be discarded.

3) Divide the total FP operation count by the total time to
compute the performance.

While this procedure requires running two simulations to get a
single measurement, it uses BG/L’s hardware counters to measure
floating-point performance rigorously.

5.2 Results
Although many first-principles calculations require multiple
simultaneous solutions of the KS equations, each representing
different electronic spin states, k-points in the Brillouin zone, or
imaginary-time slices in a path integral, the parallel efficiency of
a calculation with a single set of KS equations is the most general
measure of how successfully a FPMD code has been parallelized.

Thus, we first present results of calculations using a single k-point
(k=0) before showing results with the multiple k-points needed
for high-Z metals.
Table 2 shows strong-scaling results of Qbox for a simulation of
1000 molybdenum atoms and 12,000 electrons, for a single k-
point. Simulations were performed on partitions of increasing
size on the 64k-node LLNL BG/L machine. The problem size

was kept constant for all partition sizes. The time per iteration
reported is the wall-clock time needed to perform a single
steepest-descent iteration on electronic states. Times are reported
for the best node mapping at each partition size. All calculations
were run in co-processor mode, although it should be noted that
the DGEMM library was written to utilize both CPUs on a node
even in coprocessor mode as discussed above.

Table 2. Qbox performance data for a molybdenum simulation including 1000 atoms and 12000 electrons with a plane-wave cutoff
of 112 Ry, for a single k-point (k=0). The fractional speedup represents the fraction of ideal speedup obtained with respect to the
2048-node partition. The aggregate FP rate is measured with the APC performance counters as described in the text.

nodes time/iteration (s) speedup frac speedup agg. FP rate (TFlop/s)
2048 725.3 1.00 1.00 4.76
4096 348.6 2.08 1.04 9.86
8192 190.8 3.80 0.95 18.20

16384 108.2 6.70 0.84 32.63
32768 73.9 9.81 0.61 47.80
65536 55.3 13.12 0.41 64.70

 Figure 3. Strong scaling results for 1000 molybdenum atoms
with 1 (non-zero) k-point. Also shown is the sustained
performance on the full machine (64k nodes) with multiple k-
points. Dashed lines indicate perfect scaling between the
measured full machine result and the equivalent individual k-
point calculations.

Calculations over a single k-point are often sped up by choosing
the high-symmetry k=0 point (Γ-point) for which the imaginary
part of the complex wave function is known to be zero by
symmetry. In addition to decreasing the dimension of the wave
function matrices by a factor of two, the linear algebra routines
for matrices of doubles can be used, including DGEMM. In the
case of multiple (non-zero) k-points, this symmetry does not hold,
and complex linear algebra routines, including zgemm, are
required. Performance results for simulations of 1000
molybdenum atoms with multiple k-points are shown in Figure 3
and Table 3. Excellent floating-point performance is achieved,
primarily due to the highly optimized ZGEMM library used for
single-node matrix multiplication and the fact that each k-point
calculation takes place on 8k and 16k nodes where parallel
efficiency per k-point is still quite high. A sustained performance
of 207.3 TFlop/s was observed when 8 k-points were used, which
corresponds to 56.5% of the theoretical full machine peak
perfomance. This level of performance indicates an extremely
efficient use of BG/L’s computational resources, especially in
view of the fact that these calculations were run in coprocessor
mode with only the ZGEMM library making use of the second
processor.

Table 3. Qbox performance data for a molybdenum simulation including 1000 atoms and 12000 electrons with a plane-wave cutoff
of 112 Ry, as a function of number of k-points. Note that the single k-point calculations presented here are not calculated at k=0, as
in Table 2, but instead use the same complex treatment as multiple k-points for the sake of accurate comparison.

nodes # of k-points time/iteration (s) agg. FP rate (TFlop/s)
65536 1 127.13 108.8
65536 4 289.43 187.7
65536 8 526.91 207.3

6. CONCLUSION
We have demonstrated the feasibility of unprecedented large-
scale First-Principles Molecular Dynamics, and the excellent
scalability of the Qbox code on the BlueGene/L platform on up to
64k nodes. Our experiments indicate that a careful choice of node
mapping is essential in order to obtain good performance for this
type of application. Strong scalability of Qbox for a Materials
Science problem involving 1000 molybdenum atoms, with 12000
electrons is excellent. The use of hand-optimized libraries for
linear algebra and Fourier transform operations dramatically
improves the effective floating point performance. This early
application of First-Principles Molecular Dynamics demonstrates
that the exceptional computing power provided by the
BlueGene/L computer can be efficiently utilized and will have an
important impact in the area of first-principles prediction of
materials properties in the near future.

7. ACKNOWLEDGMENTS
UCRL-PROC-220592. Work performed under the auspices of the
U. S. Department of Energy by University of California Lawrence
Livermore National Laboratory under Contract W-7405-Eng-48.

8. REFERENCES
[1] R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

For a review, see e.g. M. Parrinello, “From Silicon to RNA:
the Coming of Age of First-Principles Molecular Dynamics”
Sol. St. Comm. 103, 107 (1997).

[2] W. Kohn and L.J.Sham, Phys. Rev. A140, 1133 (1965).
[3] F. Gygi, “Qbox: a large-scale parallel implementation of

First-Principles Molecular Dynamics”
(http://eslab.ucdavis.edu).

[4] For a review, see e.g. F. Gygi and G. Galli, "Ab initio
simulations in extreme conditions", Materials Today 8, 26-32
(2005).

[5] N. R. Adiga et al., “An overview of the BlueGene/L
supercomputer” SC2002 – High Performance Networking
and Computing, 2002.

[6] F. Gygi, E.W. Draeger, B.R. de Supinski, R.K. Yates, F.
Franchetti, S. Kral, J. Lorenz, C.W. Ueberhuber, J.A.
Gunnels, J.C. Sexton, "Large-Scale First-Principles
Molecular Dynamics Simulations on the BlueGene/L
Platform using the Qbox Code," SC2005, 2005.

[7] L. Bachega, S. Chatterjee, K. Dockser, J. Gunnels, M. Gupta,
F. Gustavson, C. Lapkowski, G. Liu, M. Mendell, C. Wait,
T.J.C. Ward, “A High-Performance SIMD Floating Point
Unit Design for BlueGene/L: Architecture, Compilation, and
Algorithm Design” PACT, 2004.

[8] L.S.Blackford, J.Choi, A.Cleary, E.D’Azevedo, J.Demmel,
I.Dhillon, J.Dongarra, S.Hammarling, G.Henry, A.Petitet,
K.Stanley, D.Walker, R.C.Whaley, “ScaLAPACK Users’
Guide” SIAM, Philadelphia, (1997).

[9] M. Frigo and S. G. Johnson: FFTW: an adaptive software
architecture for the FFT, Proceedings of ICASSP 1998,
Vol.3, pages 1381-1384

[10] J. Lorenz, S. Kral, F. Franchetti, C. W. Ueberhuber:
Vectorization techniques for the BlueGene/L double FPU,
IBM Journal of Research and Development, Vol. 49, No.
2/3, 2005, pages 437-446

[11] S. Kral: FFTW-GEL Homepage:
http://www.complang.tuwien.ac.at/skral/fftwgel.html

[12] Franchetti, S. Kral, J. Lorenz, C. W. Ueberhuber: Efficient
Utilization of SIMD Extensions, Proceedings of the IEEE
Special Issue on "Program Generation, Optimization, and
Adaptation," Vol. 93, No. 2, 2005, pages 409–425.

[13] N.T. Karonis, B.R. de Supinski, I. Foster, W. Gropp, E.
Lusk, J. Bresnahan, "Exploiting Hierarchy in Parallel
Computer Networks to Optimize Collective Operation
Performance," 14th International Parallel and Distributed
Processing Symposium (IPDPS 2000), Cancun, Mexico,
May 1–5, 2000.

[14] Graphs in Figure 2 were generated with YED
(http://www.yworks.com/).

http://www.complang.tuwien.ac.at/skral/fftwgel.html

	1. INTRODUCTION
	2. KEY ASPECTS OF THE BLUEGENE/L ARCHITECTURE FOR FPMD
	3. COMPUTATIONAL KERNELS
	3.1 Linear Algebra
	3.1.1 Optimized ZGEMM library
	3.1.2 Mathematical and Memory-based Operations: SIMD Vector Units
	3.1.3 The Computational Kernel: Register-Based View
	3.1.4 L1 Cache Considerations
	3.1.5 The L2 Cache and Pre-fetching
	3.1.6 L3 Interface
	3.1.7 DDR Bandwidth

	3.2 Fourier Transforms
	3.2.1 FFTW-GEL for BlueGene/L

	4. NODE MAPPING STRATEGIES
	5. PERFORMANCE MEASUREMENTS
	5.1 FPU Operations Count
	5.2 Results

	1.
	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

