
FFT Program Generation for the Cell BE ⋆

Srinivas Chellappa, Franz Franchetti, and Markus Püschel

Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh PA 15213, USA

{schellap, franzf, pueschel}@ece.cmu.edu

Abstract. The complexity of the Cell BE’s architecture makes it difficult and
time consuming to develop multithreaded, vectorized, high-performancenumer-
ical libraries. Our approach to solving this problem is to use Spiral, a program
generation system, to automatically generate and optimize linear transform li-
braries for the Cell. To extend the Spiral framework to support the Cell archi-
tecture, we first show how to automatically generate high-performance discrete
Fourier transform kernels that run on a single SPE. The performanceof our ker-
nels is comparable to hand tuned code, and reaches 16–20 Gflop/s on a single SPE
for input vectors resident in the local memories. We then show how to produce
optimized multithreaded code that runs on multiple SPEs.

Key words: fast Fourier transform, Cell, performance, library, code generation

1 Introduction

The Cell BE chip-multiprocessor is designed for high-density floating point computa-
tion required in multimedia, visualization, and other similar applications. Its innovative
design includes multiple SIMD vector cores (called synergistic processing elements, or
SPEs) with explicitly managed per-core local memory and inter-core communication.
The Cell’s single-precision peak performance is 204.8 Gflop/s using the 8 SPEs alone.
However, the same features that allow for high theoretical performance make it difficult
and time consuming to design and optimize specific real-world computational kernels
for the Cell. Instead of using automated tools, these programs must explicitly address
multithreading, SIMD vectorization, and data streaming inorder to extract maximum
performance.

In this paper we address the automation of program optimization for the Cell: we ex-
tend the program generation system Spiral [1] to support theCell processor. Spiral
automates the production, platform adaptation, and optimization of linear transform
libraries and targets SIMD vector extensions [2], shared memory multicore CPUs [3],
FPGAs [4], and other platforms. It is based on a domain specific, declarative, mathemat-
ical language to describe the algorithms, and uses rewriting to parallelize and optimize
algorithms at a high level of abstraction.

⋆ This work was supported by NSF through awards 0325687, 0702386,by DARPA (DOI grant
NBCH1050009), the ARO grant W911NF0710416, and by Mercury Computer Systems, Inc.

We extend Spiral in two steps, focusing on the discrete Fourier transform (DFT): first,
we extend Spiral’s SIMD vector program generation capabilities to support the SIMD
instruction set of the Cell SPE. Next, we extend Spiral to support explicit DMA trans-
fers and single-program-multiple-data (SPMD) multithreaded code to generate parallel
multi-SPE implementations. The performance of our single-threaded code is compara-
ble to the best available hand tuned code. Further, we obtainup to a 2x speed-up with
4-SPE implementations computing single DFTs for sizes29 to 212 data points, with all
data resident in the SPEs’ local memories.

Related Work. Spiral has previously addressed the task of generating and optimizing
scalar, vector, and parallel code [1–3, 5] for a variety of platforms including single and
multicore Intel and AMD processors, GPUs, and FPGAs. However, features in the Cell
including explicit DMA operations and the generation of large DMA packet sizes have
not been addressed. Several other projects have implemented specialized DFT libraries
tuned (by hand) for the Cell [6–9]. Cico et al. [7] achieve a performance of about 22
Gflop/s for their code on a single SPE for DFTs of input sizes210 and213 resident in the
SPE’s local memory. The remaining citations in this sectionassume input and output
vectors resident in main memory, and use all 8 SPEs in parallel. Bader et al. [6] develop
parallelized DFT algorithms for input sizes between210–214, and achieve between 9
and 23 Gflop/s. Chow et al. [8] achieve 46.8 Gflop/s for a DFT with 224 input samples.
Cico et al. [9] implemented a216 DFT on the Cell that uses double buffering techniques
to hide inter-SPE communication costs. FFTW [10] uses an adaptive DFT library, and
achieves 18-23 Mflop/s for transforms of input sizes216–232.

Organization. Section 2 provides an overview of Spiral and existing approaches for
generating vectorized and parallelized DFT libraries. Section 3 presents our approach
to generate high performance multithreaded DFT libraries for the Cell. We present our
results in Section 4 and conclude in Section 5.

2 Spiral

Spiral is a program generator for linear transforms including the discrete Fourier trans-
form (DFT), the Walsh-Hadamard transform (WHT), discrete cosine/sine transforms,
filters, and others. For a given transform (e.g., a DFT of size384), Spiral autonomously
generates various algorithms, represented in a declarative form as mathematical formu-
las, and their implementations to find the best match for the target platform [1].

Fig. 1 shows the design of the Spiral system. Spiral usesbreakdown rules to break down
larger transforms into smaller kernels based on recursion.A large space of algorithms
(formulas) for a single transform may be obtained using these breakdown rules. A for-
mula thus obtained is structurally optimized to match the architecture using a rewriting
system. The formula output is then translated into C code, possibly including intrinsics
(for vectorized code) [2] and threading instructions (for multicores) [3]. The perfor-
mance of this implementation is measured and used in a feedback loop to search over
algorithmic alternatives for the fastest one.

SPL and Formula representation.A linear transform in Spiral is represented by a
transform matrixM , where performing the matrix-vector multiplicationy = Mx trans-

forms the input vectorx into the output vectory. Algorithms for transforms can be
viewed as structured factorizations of the transform matrices. Such structures are ex-
pressed in Spiral using its own signal processing language (SPL), which is an extension
of the Kronecker product formalism [11]. The Kronecker product⊗ is defined as:

A ⊗ B = [akℓB], A = [akℓ].

Based on this, the well known Cooley-Tukey FFT algorithm’s corresponding break-
down rule in Spiral is:

DFTmn → (DFTn ⊗Im)Dn,m(In ⊗ DFTm)Lnm
n (1)

whereIn is then× n identity matrix,Dm,n the diagonal matrix of twiddle factors (see
[11] for details), andLnm

m the stride permutation matrix which transposes ann × m
matrix stored in row-major order.

Mapping formulas to target architectures. The key observation is that the tensor

Formula Generation

Formula Optimization

Implementation

Code Optimization

Compilation

Performance Evaluation

DSP transform (user specified)

optimized/adapted implementation
S

e
a

rc
h

controls

controls

performance

algorithm as formula

in SPL language

C/Fortran

implementation

Algorithm

Level

Implementation

Level

Evaluation

Level

Fig. 1. Spiral’s program genera-
tion system.

product representation of the transform algorithms
in Spiral can be mapped to components of the tar-
get architecture. The tensor product can be viewed
as a program loop. A loop featuring the appro-
priate structure can be implemented using multi-
ple threads or SIMD vector instructions. For in-
stance, in (1) the constructIn ⊗ DFTm is an in-
herently paralleln-way loop, while the construct
DFTm ⊗In is easily translated into a SIMD vec-
tor loop. We use formula rewriting to manipulate
vector loops into parallel loops and vice versa,
when mapping a formula fragment to the multi-
core and SIMD parallelism found in CPU archi-
tectures [2, 3]. The question addressed by this pa-
per is the mapping of (1) to the Cell architecture.
We next introduce a related language calledΣ-SPL, which our approach is based on.

Σ-SPL. Σ-SPL [12] is a layer of abstraction below SPL, and was originally conceived
to allow automatic loop merging, but is also useful for capturing and representing other
useful information about a given DFT algorithm. Since the main approach in this paper
usesΣ-SPL to represent and manipulate DFT algorithms, we providea brief introduc-
tion toΣ-SPL here. A detailed description ofΣ-SPL can be found in [12].

Σ-SPL is a matrix based representation that uses sums of products of scatter, gather,
and kernel matrices. We first provide an intuitive introduction, followed by a formal
definition. As an illustrating example, consider the transform I2 ⊗ A for an arbitrary
2 × 2 matrixA, that operates on a vector of length 4. This construct can be written as:

I2 ⊗ A =

[

A
A

]

=

[

1 · · ·
· 1 · ·

]

A









1 ·
· 1
· ·
· ·









+

[

· · 1 ·
· · · 1

]

A









· ·
· ·
1 ·
· 1









=

1
∑

i=0

Si Am Gi, (2)

where the dots represent zero entries. In each of the summands, the two vertically long
matrices, called the gather matrices, select the elements of the input vector thatAm

works on, and the horizontally long matrices, called the scatter matrices, select the part
of the output vector the summand writes to, and can thus be parameterized as shown.

More formally,Σ-SPL as used in this paper contains matrices parameterized by func-
tions. Functions inΣ-SPL map integer intervals to integer intervals. A functionf
with domain In = {0, . . . , n − 1} and rangeIN = {0, . . . , N − 1} is written as
fn→N : i 7→ f(i), i ∈ In, f(i) ∈ IN . For convenience, we omit the domain and
range where it is clear from the context. We now introduce thestride function used in
this paper:

hn→N
b,s : i 7→ b + is.

Σ-SPL as used in this paper contains two types of matrices parameterized by functions,
the gather matrix and the scatter matrix:G(fn→N), and S (fn→N). These are defined
thus: Leten

k ∈ C
n×1 be the column basis vector with the 1 ink-th position and 0

elsewhere. The gather matrix for the index mappingfn→N is

G(fn→N) :=
[

eN
f(0) | eN

f(1) | · · · | eN
f(n−1)

]⊤

.

Gather matrices thus gathern elements from an array ofN elements, and can gather at
a stride. Scatter matrices are simply transposed gather matrices:S(fn→N) = G(f)⊤.
Finally, the summation inΣ-SPL is mathematically a regular matrix sum, but does not
incur operations since by design, each of the summands produce a unique part of the
output vector. Based on our formal definitions, our previousexample (2) is expressed
in Σ-SPL as

∑1
i=0 S(h2i,1)Am G(h2i,1).

SPL Σ-SPL

(In ⊗ Am)
∑n−1

j=0
S(hjm,1)Am G(hjm,1)

(Am ⊗ In)
∑n−1

j=0
S(hj,n)Am G(hj,n)

(In ⊗ Am)Lnm
n

∑n−1

j=0
S(hjm,1)Am G(hj,n)

Table 1.SPL toΣ-SPL translation.

Table 1 contains a list of SPL expressions used in this paper and their correspondingΣ-
SPL representations. From the table, the Cooley-Tukey algorithm in (1) can be written
in Σ-SPL as:

DFTmn →

m−1
∑

j=0

S(hj,m)DFTn G(hj,m)

n−1
∑

j=0

S(hjm,1)Dj DFTm G(hj,n). (3)

The algorithm developed for the Cell in this paper is based onmanipulating (3).

Cell BE. As mentioned earlier, the Cell BE is a heterogeneous multicore processor with
a single Power architecture based processing element (PPE)and 8 accelerated vector
processing cores called the synergistic processing elements (SPEs). Each SPE has fast
access to its own on-chip memory unit (256k) known as the local store.

In this paper, we only use the SPEs for our implementation. Weview the Cell processor
as a distributed memory multiprocessor connected by a DMA based bus, with each node
consisting of a single SPE and its local store memory. Implementing and optimizing the
FFT for the Cell processor presents the following challenges:

– Vector units on the SPE cores require the use of vector intrinsics to achieve high
performance, and build on our work in [2].

– Multiple SPEs require that the algorithm must be parallelized and load balanced.

– Explicit DMA means that we should identify and issue DMA operations as re-
quired.

– DMA performance constraints require the use of large DMA packet sizes to effec-
tively use the available DMA bandwidth.

– DMA costs can be hidden by multi-buffering techniques; thisis not addressed in
this paper.

3 Generating Fast Implementations for the Cell

Our goal is to generate high performance vectorized, multithreaded Cell code that com-
putes a single 1-D DFT in parallel across multiple SPEs. We dothis by designing DFT
algorithms that take advantage of the architectural features in the Cell that are designed
to speed up numerical computation.

Vectorization. Our first goal was to create a high performance vectorized FFTimple-
mentation that executes on a single SPE. Vectorization is based on our previous work
[2]. The main idea is briefly described here. Consider the constructIn ⊗ DFTm in (1),
which cannot immediately be translated into an efficient SIMD vector program. How-
ever, it can be rewritten intoLmn

n

(

(DFTm ⊗In/ν) ⊗ Iν

)

Lmn
m , which is a perfectly

vectorized construct for vector sizeν, except for the permutations which are handled
subsequently by other rewriting rules. The work in [2] was targeted towards Intel’s SSE
and its variants. Vectorizing for the Cell consisted of porting this to the Cell by adapting
it to the SPE’s vector instruction set, which was straightforward.

Parallelization. The main problem addressed in this paper is parallelizing the FFT for
the Cell architecture. There are two main challenges to address. First, we need a load
balanced FFT algorithm that will execute on multiple SPEs inparallel. Second, our
algorithm must identify the points at which explicit DMA is required to perform inter-
core data exchanges. Also, to obtain high DMA performance onthe Cell, DMA packets
of large sizes must be used. We use formula rewriting to attack these problems at the
algorithmic level, as described in the rest of this section.Our approach usesΣ-SPL to

express algorithms because we use several constructs to represent various types of I/O
that cannot be conveniently expressed at the SPL level.

Parallelization through formula manipulation. Our approach is based on rewriting
theΣ-SPL version of the Cooley-Tukey algorithm to map well to theCell’s architecture.
Here, we briefly describe how rewriting is done, and provide atable of the rewriting
identities that we use in this paper. As an illustrating example, consider theΣ-SPL
expression:

n−1
∑

j=0

S(h2j,1)DFT2 G(h2j,1). (4)

This expresses a loop withn independent iterations, and applies theDFT2 kerneln
times to chunks of the input vector. This expression thus also expresses ann-way par-
allel loop. We derive an expression for mapping this expression ontop processors by
converting the original loop into a nested loop pair so that (4) becomes:

p−1
∑

k=0

S(h2k(n/p),1)





n/p−1
∑

j=0

S(h2j,1)DFT2 G(h2j,1)



 G(h2k(n/p),1).

The outer sum in the preceding expression is our parallel loop.

To produce code that includes DMA operations, we introduce two newΣ-SPL con-
structs, the DMA-scatterS, and the DMA-gatherG. These are similar to the regular
scatters and gathers, except that they are parameterized bya different functionq that
better captures DMA operations on blocks of data:

qn→N
b,s,µ : i 7→ (b + ⌊i/µ⌋ s)µ + (i modµ).

DMA-scatters and gathers based onq always operate on chunks of sizeµ elements as
opposed to single elements.G(qi,s,µ) is thus a DMA-gather operation with strides and
DMA block sizeµ. Ultimately, the DMA-scatter and the DMA-gather are translated by
Spiral into DMA get/put code.

Table 2 lists rewriting identities to rewrite the Cooley-Tukey FFT algorithm to a version
that can be mapped onto the Cell.

Expression Parallelized Form
∑n−1

j=0
S(hjm,1)Am G(hjm,1)

∑p−1

k=0
S(qkm,1,µ)(

∑µ−1

j=0
S(hjm,1)Am G(hjm,1))G(qkm,1,µ)

∑n−1

j=0
S(hj,n)Am G(hj,n)

∑p−1

k=0
S(qk,n/µ,µ)(

∑µ−1

j=0
S(hj,µ)Am G(hj,µ))G(qk,n/µ,µ)

∑n−1

j=0
S(hjm,1)Am G(hj,n)

∑p−1

k=0
S(qkm,1,µ)(

∑µ−1

j=0
S(hjm,1)Am G(hj,µ))G(qk,n/µ,µ)

Table 2.Σ-SPL Parallelization identities. The formulas in the second column are parallelized for
p processors and a DMA packet size ofµ = n/p.

Parallelized FFT Algorithm. We manipulate the Cooley-Tukey FFT algorithm (3) to
adapt it for the Cell, based on the rules in Table 2. Our modified version of this algorithm
is shown below:

DFTmn →

p−1
∑

k=0

S(qk,m/µ,µ)





m/p−1
∑

j=0

S(hj,µ)DFTn G(hj,µ)



G(qk,m/µ,µ)

p−1
∑

k=0

S(qkm,1,µ)





n/p−1
∑

j=0

S(hjm,1)Dj DFTm G(hj,µ)



G(qk,n/µ,µ). (5)

(5) is obtained by rewriting the factors in (3) based on two parameters:p, the number
of SPEs the algorithm will be executed on, andµ, the DMA packet size to be used for
inter-core data exchanges. We now explain how our parallelized algorithm addresses
the issues of obtaining load balanced parallelism and DMA operations.

Load balanced parallelism.Each factor in (5) is composed of a pair of nested sums.
The outer sums are comprised ofp completely independent iterations, and are thusp-
way load balanced parallel sums that can be executed in parallel onp SPEs.

Inter-core communications using DMA operations.Note that three of the four DMA-
scatters and DMA-gathers in (5) involve reading or writing at strides, which assumes
a view of memory that is shared and global. However, since we view the Cell as a
distributed memory processor for our purposes, we must explicitly ship data from SPE
to SPE when required. From (5), we see that three such inter-SPE communication stages
are required: one each at the beginning and at the end, and onein between the two
factors. We first show how we reduce the number of communication stages by using a
suitable data format, and then describe how we actually handle the remaining stage.

Block cyclic data format. Our multithreaded FFT assumes block cyclic input and out-
put data formats: input and output vectors are assigned to processors in a round-robin
fashion in blocks of sizeµ. Assuming a block cyclic format is both beneficial and prac-
tical. The assumption reduces the number of communication stages by cancelling out
the initial and final DMA-gather/scatter stages, so that (5)becomes:

DFTmn →

p−1
∑

k=0

S(qk,1,µ)





m/p−1
∑

j=0

S(hj,µ)DFTn G(hj,µ)



G(qk,m/µ,µ)

p−1
∑

k=0

S(qkm,1,µ)





n/p−1
∑

j=0

S(hjm,1)Dj DFTm G(hj,µ)



G(qk,1,µ). (6)

We now have only a single communication stage (the strided DMA-gather) remaining
between the two factors. This results in significant savingssince each communication
stage involves the cost of data transfer (depends on kernel size) and the cost of the
required succeeding global synchronization (fixed at approximately 660 processor cy-
cles). This allows us to obtain a parallel speedup for even the smaller DFT kernels. The

format is practical because DFTs are typically a single stepin a series of operations on
input data. The cost of conversion to the block cyclic formatcan be hidden or amortized
using preceding and succeeding operations.

Implementing inter-SPE communication.To implement the single remaining com-
munication stage in (6), consider the scatter-gather pair formed by the inner DMA-
scatter and the inner DMA-gather. The scatter has a stride parameter of1, which means
that all its writes are to the SPE’s local memory. The gather,however, has a non-unit
stride, and thus reads from an assumed global memory (in other words, it reads ele-
ments that are resident in the local stores of the other SPEs). In this case, the produced
code must translate the scatter (which operates on local memory space) into a null op-
eration, and translate the gather into DMA-get operations.To achieve this, we build
and use an address table to allow each scatter to know the ultimate destination of each
data packet through the entire scatter-gather pair. This approach allows us to produce
DMA instructions for scatters, and renders gathers into null operations, and adds a
global synchronization barrier between the pair. Our actual implementation in Spiral,
not described here due to lack of space, is general enough to be able to identify and nul-
lify communications stages when possible, on other algorithms and signal processing
transforms.

DMA performance. DMA requests that use larger packet sizes achieve higher inter-
connect bandwidth performance on the Cell [13]. Our algorithm is therefore tuned to
produce DMA packets of the largest sizes, by implicitly choosing the maximum value
for theµ parameter in rewriting rules shown in Table 1. One better approach to increas-
ing packet sizes is to assemble and send only one packet from any given SPE to another
during each communication stage. We are currently studyingthe tradeoff between the
cost of creating these larger packets and the decreased communication costs.

Σ-SPL to code.To generate code for (6), we observe that the expression consists of
two computation stages that are bothp-way parallel. We thus generate an SPMD type
program, parameterized only by the variablep, to be executed acrossp SPEs in parallel.
Since the rightmost factor produces data that the leftmost factor is dependent upon, a
synchronization barrier must be inserted between these stages after the all-to-all data
exchange is completed. An annotated skeleton of the code produced by (6) follows:

void DFT1024(float *Y, float *X, int spe_id) // SPMD function
{ for(j=0; j<n/p; j++) // Right-most sum

{ // declarations ...
s0 = X[j]; s1 = X[j+1]; // Read from input vector
T1[j] = spu_add(s0, s1); // Perform DFT_m kernel
...
// S(q_km,1,u) DMA puts to temporary vectors: (Scatter+subsequent gather):
spu_mfcdma64(T1, addr_table(T2, j), ... , MFC_PUT_CMD);

}
all_to_all_sync_barrier();
for(j=0; j<m/p; j++) // Left-most sum
{ // declarations ...

// G(q_k,m/u,u) DMA gets: null ops (accounted for in dma puts above)
s10 = T2[j]; s11 = T2[mj+1]; // Read from temporary vector
s12 = spu_add(s10, s11); // Perform DFT_n kernel
...
Y[j] = s12 ... // Write to output vector

}
}

 0

 4

 8

 12

 16

 20

 16 32 64 128 256 512 1024 2048 4096

Problem size

(a) DFT on a Single SPE (2-powers)
Performance [pseudo Gflop/s]

Interleaved complex

Split complex

 0

 4

 8

 12

 16

 20

 32 64 96 128 160 192 224 256 288 320

Problem size

(b) DFT on a Single SPE (non 2-power sizes)
Performance [pseudo Gflop/s]

Interleaved complex

Split complex

 0

 4

 8

 12

 16

 20

 384 512 640 768 896 1024 1152 1280

Problem size

(c) DFT on a Single SPE (non 2-power larger sizes)
Performance [pseudo Gflop/s]

Interleaved complex

Split complex

 0

 8

 16

 24

 32

 128 256 512 1024 2048 4096

Problem Size

(d) DFT on multiple-SPEs

1-SPE

Performance [pseudo Gflop/s]

4-SPEs

Fig. 2. Performance results for single precision 1-D complex DFTs on a PlayStation 3 (3.2 GHz
Cell). Higher is better.

Automatic rewriting using Spiral. The entire process described above is automated
with Spiral. For a given size, Spiral automatically rewrites the DFT into the paral-
lelized version for user specified values ofp with the maximum possible value forµ.
The smaller DFTs in the parallelized formulas are automatically vectorized, and Spiral
searches over a space of possible recursive breakdowns to find the fastest algorithm that
is blocked appropriately for the Cell’s register space. This makes it easy to generate
DFT code for a given number of SPEs for a large range of DFT sizes.

4 Experimental Results

We evaluated our generated single-precision 1-D DFT implementations on a single SPE
and on 4 SPEs of the Cell processor in a PlayStation 3 (6 available SPEs) running at
3.2 GHz. Our idea in this paper is a first attempt at formalizing the mapping of the DFT
onto the SPEs, and does not yet target double buffering techniques. Furthermore, DFTs
are usually a single stage in a series of operations on input data. Hence, we assume the
input and output vectors are resident in the SPEs’ local memories.

Fig. 2(a) displays the single-core performance of our generated DFT kernels for 2-
power sizes for both the split-complex and the interleaved-complex data formats. Per-
formance is computed in pseudo Gflop/s using5n log2(n)/(runtime(s)·109). Figs. 2(b)
and 2(c) show the performance for DFT kernels for input sizesthat are multiples of 16
or 32. Spiral generated code achieves 16–20 Gflop/s which is is comparable to the best
reported single-core performance for 2-power sizes in [7].

In Fig. 2(d) we compare our generated multithreaded DFT code(assuming a block
cyclic data distribution) executed on 4 SPEs to the single-SPE kernel performance. The
largest DMA packet sizes possible are used for all our DFT kernels. Forn = 512 we
reach the break-even point (the runtime is about 5,000 cycles), and forn = 4, 096 we
see close to a 2x speed-up, leading to 27 Gflop/s for a single, non-streamed, 1-D DFT.
Our multithreaded DFT code cannot be easily compared with other existing libraries
since we measure performance for input and output vectors resident in the local stores
as opposed to main memory.

5 Conclusion
We presented preliminary work that extends the Spiral framework to automatically gen-
erate DFT code for the Cell BE. Our DFT libraries are performance competitive with
hand-tuned code on a single SPE, and speed up small DFT sizes by using multiple
SPEs. We are currently examining further algorithmic manipulations to increase the
achieved communication bandwidth, and to enable double-buffering to hide communi-
cation costs.

References

1. P̈uschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso, M.,Singer, B., Xiong, J.,
Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, R.W., Rizzolo, N.: SPIRAL:
Code generation for DSP transforms. Proc. of the IEEE, special issue on ”Program Genera-
tion, Optimization, and Adaptation”93(2) (2005) 232– 275

2. Franchetti, F., P̈uschel, M.: A SIMD vectorizing compiler for digital signal processing algo-
rithms. In: Intl. Parallel and Distributed Processing Symposium (IPDPS). (2002) 20–26

3. Franchetti, F., Voronenko, Y., Püschel, M.: A rewriting system for the vectorization of sig-
nal transforms. In: High Performance Computing for Computational Science (VECPAR).
Volume 4395 of Lecture Notes in Computer Science., Springer (2006) 363–377

4. Milder, P.A., Franchetti, F., Hoe, J.C., Püschel, M.: Formal datapath representation and
manipulation for implementing DSP transforms. In: Design Automation Conference. (2008)

5. Bonelli, A., Franchetti, F., Lorenz, J., Püschel, M., Ueberhuber, C.W.: Automatic perfor-
mance optimization of the discrete Fourier transform on distributed memorycomputers. In:
International Symposium on Parallel and Distributed Processing and Application (ISPA).
Volume 4330 of Lecture Notes In Computer Science., Springer (2006)818–832

6. Bader, D.A., Agarwal, V.: FFTC: Fastest Fourier transform forthe IBM Cell Broadband
Engine. In: IEEE Intl. Conference on High Performance Computing. (2007) 172–184

7. Cico, L., Cooper, R., Greene, J.: Performance and Programmability of the IBM/Sony/-
Toshiba Cell Broadband Engine Processor. In: Proc. of (EDGE) Workshop. (2006)

8. Chow, A.C., Fossum, G.C., Brokenshire, D.A.: A programmingexample: Large FFT on the
Cell Broadband Engine. Technical report (May 2005)

9. Greene, J., Cooper, R.: A parallel 64K complex FFT algorithm for the ibm/sony/toshiba cell
broadband engine processor. In: Global Signal Processing Expo (GSPx). (2005)

10. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. of the IEEE,
special issue on ”Program Generation, Optimization, and Adaptation”93(2) (2005) 216–231

11. Van Loan, C.: Computational Framework of the Fast Fourier Transform. SIAM (1992)
12. Franchetti, F., Voronenko, Y., Püschel, M.: Loop merging for signal transforms. In: Proc.

Programming Language Design and Implementation (PLDI). (2005) 315–326
13. Kistler, M., Perrone, M., Petrini, F.: Cell multiprocessor communication network: Built for

speed. IEEE Micro26(3) (2006) 10–23

