FFT Program Generation for the Cell BE *

Srinivas Chellappa, Franz Franchetti, and Markusdpel

Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh PA 15213, USA
{schel I ap, franzf, pueschel }@ce. cru. edu

Abstract. The complexity of the Cell BE’s architecture makes it difficult and
time consuming to develop multithreaded, vectorized, high-performameer-

ical libraries. Our approach to solving this problem is to use Spiral, a anogr
generation system, to automatically generate and optimize linear transform li-
braries for the Cell. To extend the Spiral framework to support the Cetfli-a
tecture, we first show how to automatically generate high-performaisceete
Fourier transform kernels that run on a single SPE. The performafrmer ker-

nels is comparable to hand tuned code, and reaches 16-20 Gflop/sgle SSE

for input vectors resident in the local memories. We then show how tuge
optimized multithreaded code that runs on multiple SPEs.

Key words: fast Fourier transform, Cell, performance, library, code generatio

1 Introduction

The Cell BE chip-multiprocessor is designed for high-dgnébating point computa-
tion required in multimedia, visualization, and other danapplications. Its innovative
design includes multiple SIMD vector cores (called syrstigiprocessing elements, or
SPESs) with explicitly managed per-core local memory andrigbre communication.
The Cell's single-precision peak performance is 204.8 Gdloging the 8 SPEs alone.
However, the same features that allow for high theoretiedigpmance make it difficult
and time consuming to design and optimize specific realdvoomputational kernels
for the Cell. Instead of using automated tools, these prognaust explicitly address
multithreading, SIMD vectorization, and data streamingider to extract maximum
performance.

In this paper we address the automation of program optiioizdior the Cell: we ex-

tend the program generation system Spiral [1] to supportCék processor. Spiral
automates the production, platform adaptation, and opétian of linear transform
libraries and targets SIMD vector extensions [2], sharethorg multicore CPUs [3],

FPGAs [4], and other platforms. It is based on a domain spediiclarative, mathemat-
ical language to describe the algorithms, and uses regtitiparallelize and optimize
algorithms at a high level of abstraction.

* This work was supported by NSF through awards 0325687, 070238BARPA (DOI grant
NBCH1050009), the ARO grant W911NF0710416, and by Mercumn@ater Systems, Inc.

We extend Spiral in two steps, focusing on the discrete EBotransform (DFT): first,
we extend Spiral's SIMD vector program generation capéslito support the SIMD
instruction set of the Cell SPE. Next, we extend Spiral tgosupexplicit DMA trans-
fers and single-program-multiple-data (SPMD) multitlited code to generate parallel
multi-SPE implementations. The performance of our sinfgteaded code is compara-
ble to the best available hand tuned code. Further, we obmato a 2x speed-up with
4-SPE implementations computing single DFTs for siZe® 2!2 data points, with all
data resident in the SPEs’ local memories.

Related Work. Spiral has previously addressed the task of generating ptirhiaing
scalar, vector, and parallel code [1-3, 5] for a variety afforms including single and
multicore Intel and AMD processors, GPUs, and FPGAs. Howdgatures in the Cell
including explicit DMA operations and the generation ofj@DMA packet sizes have
not been addressed. Several other projects have impledngpeeialized DFT libraries
tuned (by hand) for the Cell [6-9]. Cico et al. [7] achieve af@enance of about 22
Gflop/s for their code on a single SPE for DFTs of input szZ€sand2'? resident in the
SPE'’s local memory. The remaining citations in this secisaume input and output
vectors resident in main memory, and use all 8 SPEs in parfd#ider et al. [6] develop
parallelized DFT algorithms for input sizes betweZf-2'4, and achieve between 9
and 23 Gflop/s. Chow et al. [8] achieve 46.8 Gflop/s for a DFhwit! input samples.
Cico et al. [9] implemented 2t DFT on the Cell that uses double buffering techniques
to hide inter-SPE communication costs. FFTW [10] uses apta@aDFT library, and
achieves 18-23 Mflop/s for transforms of input si2&%-232,

Organization. Section 2 provides an overview of Spiral and existing apgiea for
generating vectorized and parallelized DFT libraries.ti8ac3 presents our approach
to generate high performance multithreaded DFT libraidestfe Cell. We present our
results in Section 4 and conclude in Section 5.

2 Spiral

Spiral is a program generator for linear transforms incigdhe discrete Fourier trans-
form (DFT), the Walsh-Hadamard transform (WHT), discreteice/sine transforms,
filters, and others. For a given transform (e.g., a DFT of 384), Spiral autonomously
generates various algorithms, represented in a declarfatitn as mathematical formu-
las, and their implementations to find the best match fordrget platform [1].

Fig. 1 shows the design of the Spiral system. Spiral besskdown rulesto break down

larger transforms into smaller kernels based on recurgidarge space of algorithms
(formulas) for a single transform may be obtained usingetmeakdown rules. A for-
mula thus obtained is structurally optimized to match tlodidecture using a rewriting
system. The formula output is then translated into C codssipty including intrinsics

(for vectorized code) [2] and threading instructions (foulticores) [3]. The perfor-

mance of this implementation is measured and used in a fekdbap to search over
algorithmic alternatives for the fastest one.

SPL and Formula representation. A linear transform in Spiral is represented by a
transform matrix\/, where performing the matrix-vector multiplicatign= M x trans-

forms the input vector: into the output vectoy. Algorithms for transforms can be

viewed as structured factorizations of the transform roasi Such structures are ex-
pressed in Spiral using its own signal processing languaBe), which is an extension

of the Kronecker product formalism [11]. The Kronecker prot is defined as:

A® B = [CLMB], A= [akg].

Based on this, the well known Cooley-Tukey FFT algorithnmosresponding break-
down rule in Spiral is:

DFT,,, — (DFT, ®1L,)Dp m (I, @ DET,,)L™ (1)

wherel,, is then x n identity matrix,D,, ,, the diagonal matrix of twiddle factors (see
[11] for details), andL}"™ the stride permutation matrix which transposesnar m

m

matrix stored in row-major order.

Mapping formulas to target architectures. The key observation is that the tensor
product representation of the transform algorithms
in Spiral can be mapped to components of the tar-
get architecture. The tensor product can be viewed

Algorithm Formula Generation controls

DSP transform (user specified)

as a program loop. A loop featuring the appro- Lovel eSS]
priate structure can be implemented using multi- ‘

ple threads or SIMD vector instructions. For in- X conrols 5
stance, in (1) the construéf, ® DFT,, is an in- Fevel T code Optimization 3
herently parallelz-way loop, while the construct l

DFT,, ®I, is easily translated into a SIMD vec- vaaion 10 Compion =,
tor loop. We use formula rewriting to manipulate

vector loops into parallel loops and vice versa, ‘

when mapping a formula fragment to the multi-
core and SIMD parallelism found in CPU archii:i 1 Spiral's program genera-
tectures [2, 3]. The question addressed by this F{%gri s. ste?m prog 9

per is the mapping of (1) to the Cell architecture. y '

We next introduce a related language called&sPL, which our approach is based on.

X)-SPL. X-SPL [12] is a layer of abstraction below SPL, and was origyr@nceived
to allow automatic loop merging, but is also useful for caipiy and representing other
useful information about a given DFT algorithm. Since themagproach in this paper
uses)’-SPL to represent and manipulate DFT algorithms, we proaidgef introduc-
tion to X-SPL here. A detailed description &f-SPL can be found in [12].

X)-SPL is a matrix based representation that uses sums of g@eodfiscatter, gather,
and kernel matrices. We first provide an intuitive introduet followed by a formal

definition. As an illustrating example, consider the transf I, ® A for an arbitrary

2 x 2 matrix A, that operates on a vector of length 4. This construct canrtiteewas:

1.

1
A 1. .. 1 1 ..
. 1T

where the dots represent zero entries. In each of the sunanredtwo vertically long
matrices, called the gather matrices, select the elemériteednput vector thatd,,,
works on, and the horizontally long matrices, called thétecanatrices, select the part
of the output vector the summand writes to, and can thus terperized as shown.

More formally, X-SPL as used in this paper contains matrices parametenzéacb-
tions. Functions in¥-SPL map integer intervals to integer intervals. A functipn
with domainl,, = {0,...,n — 1} and rangely = {0,...,N — 1} is written as
=N i f(i), i€ 1, f(i) € Iy. For convenience, we omit the domain and
range where it is clear from the context. We now introducesthide function used in
this paper:

hg;N D i b+is.
X)-SPL as used in this paper contains two types of matricesmsteaized by functions,
the gather matrix and the scatter matax(f"—"), and S (f*~"). These are defined
thus: Lete} € C"*! be the column basis vector with the 1 inth position and 0
elsewhere. The gather matrix for the index mappftig'? is

.
G(fn_'N) = e?f(o) | ejfvu) |- eﬁfv(nq)

Gather matrices thus gatherlements from an array df elements, and can gather at
a stride. Scatter matrices are simply transposed gatheicesS(f"~") = G(f)'.
Finally, the summation i’-SPL is mathematically a regular matrix sum, but does not
incur operations since by design, each of the summands geagluinique part of the
output vector. Based on our formal definitions, our previexiample (2) is expressed
in X-SPL aSZ;ZO S(hgi,l)Am G(hgiyl).

SPL X)-SPL
(In & Am) Z;l:_ol S(h]'m,l)Am G(hjmvl)
(In ® Ap) L™ 520 S(hgm,1)Am G(hjn)

Table 1.SPL toX'-SPL translation.

Table 1 contains a list of SPL expressions used in this paypktteeir corresponding -
SPL representations. From the table, the Cooley-Tukeyrighgo in (1) can be written
in X-SPL as:

_

n—1
DF Ty — Y S(hjm) DFTy G(hjm) Y S(hjm.1)D; DF Ty, G(hjn). (3)
j=0

3

<.
I
o

The algorithm developed for the Cell in this paper is basethanipulating (3).

Cell BE. As mentioned earlier, the Cell BE is a heterogeneous muéiipmcessor with

a single Power architecture based processing element @REJ accelerated vector
processing cores called the synergistic processing elsni8RESs). Each SPE has fast
access to its own on-chip memory unit (256k) known as the ktoae.

In this paper, we only use the SPEs for our implementationvidle the Cell processor

as a distributed memory multiprocessor connected by a DM&taus, with each node
consisting of a single SPE and its local store memory. Implging and optimizing the

FFT for the Cell processor presents the following challenge

— Vector units on the SPE cores require the use of vector sitsnto achieve high
performance, and build on our work in [2].

— Multiple SPEs require that the algorithm must be paraksliand load balanced.

— Explicit DMA means that we should identify and issue DMA ogtéwns as re-
quired.

— DMA performance constraints require the use of large DMAkpasizes to effec-
tively use the available DMA bandwidth.

— DMA costs can be hidden by multi-buffering techniques; thisot addressed in
this paper.

3 Generating Fast Implementations for the Cell

Our goal is to generate high performance vectorized, rhutiiided Cell code that com-
putes a single 1-D DFT in parallel across multiple SPEs. Wehidoby designing DFT
algorithms that take advantage of the architectural featirthe Cell that are designed
to speed up numerical computation.

Vectorization. Our first goal was to create a high performance vectorized iRfple-
mentation that executes on a single SPE. Vectorizationsedan our previous work
[2]. The main idea is briefly described here. Consider thestant/,, ® DFT,, in (1),
which cannot immediately be translated into an efficient Blector program. How-
ever, it can be rewritten intdL?,?”((DFln ®IL,/) ® L,)L::;", which is a perfectly
vectorized construct for vector size except for the permutations which are handled
subsequently by other rewriting rules. The work in [2] wagéded towards Intel's SSE
and its variants. Vectorizing for the Cell consisted of paythis to the Cell by adapting

it to the SPE’s vector instruction set, which was straigtird.

Parallelization. The main problem addressed in this paper is paralleliziad-fT for
the Cell architecture. There are two main challenges toesddiFirst, we need a load
balanced FFT algorithm that will execute on multiple SPEganallel. Second, our
algorithm must identify the points at which explicit DMA isquired to perform inter-
core data exchanges. Also, to obtain high DMA performandiertell, DMA packets
of large sizes must be used. We use formula rewriting to lattaese problems at the
algorithmic level, as described in the rest of this sect@uar approach uses-SPL to

express algorithms because we use several constructsréseap various types of 1/0
that cannot be conveniently expressed at the SPL level.

Parallelization through formula manipulation. Our approach is based on rewriting
the X-SPL version of the Cooley-Tukey algorithm to map well to@wdl’'s architecture.
Here, we briefly describe how rewriting is done, and providelde of the rewriting
identities that we use in this paper. As an illustrating eplenconsider the’-SPL
expression:

n—1

> " S(h2j1) DFT3 G(haj1). ()

7=0
This expresses a loop with independent iterations, and applies IhET, kerneln
times to chunks of the input vector. This expression thus ekpresses an-way par-
allel loop. We derive an expression for mapping this expoessntop processors by
converting the original loop into a nested loop pair so tAabgecomes:

p—1 n/p—1
> S(harmp1) | D S(hajn) DET2 G(hojn) | Glhar(nyp).1)-
k=0 =0

The outer sum in the preceding expression is our parall@l.loo

To produce code that includes DMA operations, we introdua® new '-SPL con-
structs, the DMA-scatte§, and the DMA-gathef;. These are similar to the regular
scatters and gathers, except that they are parameterizadliffigrent functiong that
better captures DMA operations on blocks of data:

ayon i (b [i/p])+ (i modp).
DMA-scatters and gathers based galways operate on chunks of sizeelements as
opposed to single element(g; s ,.) is thus a DMA-gather operation with strideand
DMA block sizep. Ultimately, the DMA-scatter and the DMA-gather are trastl by
Spiral into DMA get/put code.

Table 2 lists rewriting identities to rewrite the Cooleykey FFT algorithm to a version
that can be mapped onto the Cell.

Expression Parallelized Form
>0 S(hm,1) A G(hjm,1) Y020 S(@hm.1,0) (520 S(hgm) Am G(hjm1)) G(rm,1,)

Z}Zoi S(hjn)Am G(hjn) Zi;és(qk,n/u,u)(Zﬁl& S(hj,u) Am G(hj,u)) G(an,n/mn)
30720 S(him,1)Am G(hyjn) 22720 S(@rm,1,u) Q2520 S(hym,1) Am G(hyu)) G(@k,n/pu)

Table 2. ¥-SPL Parallelization identities. The formulas in the second column are paediéor
p processors and a DMA packet sizetof= n/p.

Parallelized FFT Algorithm. We manipulate the Cooley-Tukey FFT algorithm (3) to
adapt it for the Cell, based on the rules in Table 2. Our matlifexsion of this algorithm
is shown below:

p—1 m/p—1

DFTmn - ZS(Qk,’rn/u,u) Z S(hj.,,u) DFTTL G(hj”u) g(‘]k,m/u,u)

k=0 7=0
p—1 n/p—1
> S(@rma) | Y S(hjma)D;DFT, Glhyp) | G(@hmjup)- ()
k=0 Jj=0

(5) is obtained by rewriting the factors in (3) based on twoapzetersp, the number
of SPEs the algorithm will be executed on, andhe DMA packet size to be used for
inter-core data exchanges. We now explain how our paradiélalgorithm addresses
the issues of obtaining load balanced parallelism and DMéraions.

Load balanced parallelism.Each factor in (5) is composed of a pair of nested sums.
The outer sums are comprisedtompletely independent iterations, and are thus
way load balanced parallel sums that can be executed inglaralp SPEs.

Inter-core communications using DMA operations.Note that three of the four DMA-
scatters and DMA-gathers in (5) involve reading or writingstides, which assumes
a view of memory that is shared and global. However, since ie@ the Cell as a
distributed memory processor for our purposes, we mustathpiship data from SPE
to SPE when required. From (5), we see that three such ifREreBmmunication stages
are required: one each at the beginning and at the end, anth dregween the two
factors. We first show how we reduce the number of commuisicatiages by using a
suitable data format, and then describe how we actuallylbahd remaining stage.

Block cyclic data format. Our multithreaded FFT assumes block cyclic input and out-
put data formats: input and output vectors are assignedotmepsors in a round-robin
fashion in blocks of size.. Assuming a block cyclic format is both beneficial and prac-
tical. The assumption reduces the number of communicataes by cancelling out
the initial and final DMA-gather/scatter stages, so thab@ggomes:

p—1 m/p—1
DFT’mn e ZS(Qk,l,u) Z S(hj,u) DFTn G(hj,u) g(Qk,m/u,u)
k=0 Jj=0
p—1 n/p—1
> S(@kman) | D S(hjma1) Dy DFTy, Gk) | Gakau)- (6)
k=0 §j=0

We now have only a single communication stage (the strided\Rydther) remaining

between the two factors. This results in significant savsigese each communication
stage involves the cost of data transfer (depends on keiz@) and the cost of the
required succeeding global synchronization (fixed at apprately 660 processor cy-
cles). This allows us to obtain a parallel speedup for eversthaller DFT kernels. The

format is practical because DFTs are typically a single stepseries of operations on
input data. The cost of conversion to the block cyclic foroeat be hidden or amortized
using preceding and succeeding operations.

Implementing inter-SPE communication. To implement the single remaining com-
munication stage in (6), consider the scatter-gather paiméd by the inner DMA-
scatter and the inner DMA-gather. The scatter has a stridenger ofl, which means
that all its writes are to the SPE’s local memory. The gathewever, has a non-unit
stride, and thus reads from an assumed global memory (i otbedls, it reads ele-
ments that are resident in the local stores of the other SRER)is case, the produced
code must translate the scatter (which operates on localomyespace) into a null op-
eration, and translate the gather into DMA-get operatidiosachieve this, we build
and use an address table to allow each scatter to know theatdtidestination of each
data packet through the entire scatter-gather pair. Thpsoagh allows us to produce
DMA instructions for scatters, and renders gathers intd opérations, and adds a
global synchronization barrier between the pair. Our ddtaplementation in Spiral,
not described here due to lack of space, is general enoughablb to identify and nul-
lify communications stages when possible, on other algarit and signal processing
transforms.

DMA performance. DMA requests that use larger packet sizes achieve higherint
connect bandwidth performance on the Cell [13]. Our alpariis therefore tuned to
produce DMA packets of the largest sizes, by implicitly ckiog the maximum value
for the i, parameter in rewriting rules shown in Table 1. One better@ggh to increas-
ing packet sizes is to assemble and send only one packet frpgiveen SPE to another
during each communication stage. We are currently studyiagradeoff between the
cost of creating these larger packets and the decreasedurdnation costs.

X-SPL to code.To generate code for (6), we observe that the expressionstoms
two computation stages that are bgtlvay parallel. We thus generate an SPMD type
program, parameterized only by the variap|éo be executed acropsSPEs in parallel.
Since the rightmost factor produces data that the leftrangof is dependent upon, a
synchronization barrier must be inserted between thegestafter the all-to-all data
exchange is completed. An annotated skeleton of the codkriped by (6) follows:

void DFT1024(float *Y, float *X, int spe_id) // SPMD function

{ for(j=0; j<n/p; j++) /1 Right-nost sum
{ // declarations ...
s0 = X[jl; s1 = X[j+1]; /1 Read frominput vector
Ti[j] = spu_add(sO, si); /1 Perform DFT_m ker nel

/1 S(q_km1,u) DVA puts to tenporary vectors: (Scatter+subsequent gather):
spu_nfcdma64(T1, addr_table(T2, j), ... , MFC_PUT_CMD);

all _to_all_sync_barrier();

for(j=0; j<mp; j++) /1 Left-npst sum

{ /1 declarations ...
/'l qq_k,mu,u) DVA gets: null ops (accounted for in dnma puts above)
s10 = T2[j]; s11 = T2[nj+1]; // Read fromtenporary vector
s12 = spu_add(sl1l0, sll); /1 Perform DFT_n kernel

Y[j] = s12 ... /1l Wite to output vector

(a) DFT on a Single SPE (2-powers)

Performance [pseudo Gflop/s]

20

Split complex
16
12 Interleaved complex

(b) DFT on a Single SPE (non 2-power sizes)

Performance [pseudo Gflop/s]

20

Split complex
16 i i

12

8 8 Interleaved complex

4 4

0 0

16 32 64 128 256 512 1024 2048 4096 32 64 96 128 160 192 224 256 288 320
Problem size Problem size

(c) DFT on a Single SPE (non 2-power larger sizes)
Performance [pseudo Gflop/s]

(d) DFT on multiple-SPEs
Performance [pseudo Gflop/s]
2

20

Split complex 4-SPEs
16 24
12 16
Interleaved complex
8 1-SPE
8
4
0 0
384 512 640 768 896 1024 1152 1280 128 256 512 1024 2048 4096
Problem size Problem Size

Fig. 2. Performance results for single precision 1-D complex DFTs on a Plag$t (3.2 GHz
Cell). Higher is better.

Automatic rewriting using Spiral. The entire process described above is automated
with Spiral. For a given size, Spiral automatically rewsitdhe DFT into the paral-
lelized version for user specified valuespoWith the maximum possible value for.

The smaller DFTs in the parallelized formulas are autoralijiczectorized, and Spiral
searches over a space of possible recursive breakdowns théifastest algorithm that

is blocked appropriately for the Cell's register space.sTiniakes it easy to generate
DFT code for a given number of SPEs for a large range of DFTssize

4 Experimental Results

We evaluated our generated single-precision 1-D DFT impleations on a single SPE
and on 4 SPEs of the Cell processor in a PlayStation 3 (6 &aiBPESs) running at
3.2 GHz. Our idea in this paper is a first attempt at formagjzlme mapping of the DFT
onto the SPEs, and does not yet target double buffering iaés. Furthermore, DFTs
are usually a single stage in a series of operations on irgiat elence, we assume the
input and output vectors are resident in the SPES’ local g0

Fig. 2(a) displays the single-core performance of our geedr DFT kernels for 2-
power sizes for both the split-complex and the interleaseahplex data formats. Per-
formance is computed in pseudo Gflop/s usingog, (n)/(runtime(s) 10%). Figs. 2(b)
and 2(c) show the performance for DFT kernels for input sikesare multiples of 16
or 32. Spiral generated code achieves 16—20 Gflop/s whishcismparable to the best
reported single-core performance for 2-power sizes in [7].

In Fig. 2(d) we compare our generated multithreaded DFT dadsuming a block
cyclic data distribution) executed on 4 SPEs to the sindgt&-8ernel performance. The
largest DMA packet sizes possible are used for all our DFhiddst Forn = 512 we
reach the break-even point (the runtime is about 5,000 sycdend forn = 4,096 we
see close to a 2x speed-up, leading to 27 Gflop/s for a singtestreamed, 1-D DFT.
Our multithreaded DFT code cannot be easily compared whbragxisting libraries
since we measure performance for input and output vectsidemst in the local stores
as opposed to main memory.

5 Conclusion

We presented preliminary work that extends the Spiral figonk to automatically gen-
erate DFT code for the Cell BE. Our DFT libraries are perfanoegacompetitive with
hand-tuned code on a single SPE, and speed up small DFT sizesirlg multiple
SPEs. We are currently examining further algorithmic malgipions to increase the
achieved communication bandwidth, and to enable doulfeding to hide communi-
cation costs.

References

1. Ruschel, M., Moura, J.M.F., Johnson, J., Padua, D., Veloso,Shger, B., Xiong, J.,
Franchetti, F., Gacic, A., Voronenko, Y., Chen, K., Johnson, .RRi#zolo, N.: SPIRAL:
Code generation for DSP transforms. Proc. of the IEEE, specia @mstProgram Genera-
tion, Optimization, and Adaptatior8i3(2) (2005) 232— 275

2. Franchetti, F., &schel, M.: A SIMD vectorizing compiler for digital signal processingoalg
rithms. In: Intl. Parallel and Distributed Processing Symposium (IPD8p2) 20-26

3. Franchetti, F., Voronenko, Y.{(Bchel, M.: A rewriting system for the vectorization of sig-
nal transforms. In: High Performance Computing for Computatioc@é@rge (VECPAR).
Volume 4395 of Lecture Notes in Computer Science., Springer (208%)3/7

4. Milder, P.A., Franchetti, F., Hoe, J.C.u$thel, M.: Formal datapath representation and
manipulation for implementing DSP transforms. In: Design Automation €emice. (2008)

5. Bonelli, A., Franchetti, F., Lorenz, J.jiBchel, M., Ueberhuber, C.W.: Automatic perfor-
mance optimization of the discrete Fourier transform on distributed meocwonputers. In:
International Symposium on Parallel and Distributed Processing anticappn (ISPA).
Volume 4330 of Lecture Notes In Computer Science., Springer (2808832

6. Bader, D.A., Agarwal, V.: FFTC: Fastest Fourier transformtfer IBM Cell Broadband
Engine. In: IEEE Intl. Conference on High Performance Computi2@07) 172-184

7. Cico, L., Cooper, R., Greene, J.: Performance and Progaduifity of the IBM/Sony/-
Toshiba Cell Broadband Engine Processor. In: Proc. of (EDGEkSWop. (2006)

8. Chow, A.C., Fossum, G.C., Brokenshire, D.A.: A programnergmple: Large FFT on the
Cell Broadband Engine. Technical report (May 2005)

9. Greene, J., Cooper, R.: A parallel 64K complex FFT algorithm feitim/sony/toshiba cell
broadband engine processor. In: Global Signal Processing EX®BX). (2005)

10. Frigo, M., Johnson, S.G.: The design and implementation of FET®8c. of the IEEE,
special issue on "Program Generation, Optimization, and Adapte@ig@) (2005) 216—231

11. Van Loan, C.: Computational Framework of the Fast Fouriersfoam. SIAM (1992)

12. Franchetti, F., Voronenko, Y.{Bchel, M.: Loop merging for signal transforms. In: Proc.
Programming Language Design and Implementation (PLDI). (2005)346

13. Kistler, M., Perrone, M., Petrini, F.: Cell multiprocessor commaitiin network: Built for
speed. IEEE Micr@6(3) (2006) 10-23

