
FFTS WITH NEAR-OPTIMAL MEMORY ACCESS THROUGH BLOCK DATA LAYOUTS

Berkin Akın, Franz Franchetti and James C. Hoe

Carnegie Mellon University
Department of Electrical and Computer Engineering

Pittsburgh, PA, USA

ABSTRACT

Fast Fourier transform algorithms on large data sets achieve poor
performance on various platforms because of the inefficient strided
memory access patterns. These inefficient access patterns need to be
reshaped to achieve high performance implementations. In this pa-
per we formally restructure 1D, 2D and 3D FFTs targeting a generic
machine model with a two-level memory hierarchy requiring block
data transfers, and derive memory access pattern efficient algorithms
using custom block data layouts. Using the Kronecker product for-
malism, we integrate our optimizations into Spiral framework. In our
evaluations we demonstrate that Spiral generated hardware designs
achieve close to theoretical peak performance of the targeted plat-
form and offer significant speed-up (up to 6.5x) compared to naive
baseline algorithms.

Index Terms— Discrete Fourier transforms, fast Fourier trans-
forms, algorithm design and analysis, data layout

1. INTRODUCTION

Scientific and digital signal processing applications require single
and multidimensional fast Fourier transforms (FFTs) on large size
and high precision data sets. For these problem sizes, the FFT com-
putation proceeds as stages by constantly transferring small portions
of the data set to and from the external memory (e.g. DRAM or
disk). However, well-known algorithms using standard data layout
schemes require large strided memory accesses which leads to poor
performance on many target platforms.

In this work we develop 1D, 2D and 3D FFT algorithms using
block data layout schemes targeting a generic high level machine
model which captures the major memory characteristics of various
platforms. Tuning the large size FFT algorithms for block data lay-
out schemes, namely tiled and cubic data layouts, allows reshaping
the inefficient strided access patterns, which is the key problem in
achieving high performance. Our goal is to derive restructured FFT
algorithms that transfer large contiguous blocks of data throughout
the computation.

We use the Kronecker product formalism [1] to formally rep-
resent and manipulate the FFT algorithms. Formal representation
allows us to compactly capture the complicated data permutations
and manipulate them to derive custom data layout FFT algorithms.
Further it enables us to abstract algorithmic choices and the machine
model in the same formal framework. Using the formal representa-
tion, we integrate our optimizations into the hardware and software
synthesis framework Spiral [2]. Our hardware based evaluations
show that the optimized designs generated by Spiral can achieve

This work was sponsored by DARPA under agreement HR0011-13-2-
0007. The content, views and conclusions presented in this document do not
necessarily reflect the position or the policy of DARPA.

close to theoretical peak performance and offer significant speed-up
compared to naive baseline algorithms.

Related work. There have been many implementations of sin-
gle and multidimensional FFTs on various platforms. These include
software implementations on CPUs [3, 4], GPUs [5], supercomput-
ers [6, 7], and hardware implementations [8, 9, 10]. These imple-
mentations either do not address the memory access pattern issue
or provide a solution for a specific target platform and problem. In
this work, we address this issue for 1D, 2D and 3D FFTs targeting
a generic machine model which captures the major memory charac-
teristics of various platforms.

Organization. Section 2 provides the background on the tar-
geted machine model, FFT and Kronecker product formalism. Next,
Section 3 discusses FFT algorithms using block data layouts. Then
the main contribution of the paper, the formal representation and
derivation of these algorithms, is provided in Section 4. Finally, Sec-
tion 5 evaluates the implementations of the derived algorithms.

2. BACKGROUND

Machine model. In this work we target a high level abstract machine
model that has three main components: (1) Main memory and data
transfer, (2) local memory, and (3) compute. Main memory, repre-
sents the SM-size large but slow storage medium (e.g. DRAM, disk,
distributed memory, etc.) which is constructed from smaller SB-size
data blocks (e.g. DRAM rows, disk pages, MPI messages, etc.). Ac-
cessing an element from a data block within the main memory is
generally associated with an initial high latency cost (Amiss

M). After
the initial access, accessing consecutive elements from the same data
block has substantially lower latency (Ahit

M) where Amiss
M =Ahit

M +C and
C is an overhead cost whose value depends on the particular plat-
form. Hence the initial high latency cost of accessing a data block
in the main memory can be best amortized by transferring the whole
contiguous chunk of elements of the accessed data block. In con-
trast, local memory, is SL-size small buffer used for fast access to
the local data (e.g. cache, scratchpad, local cluster node, etc.). We
assume that local memory can hold multiple data blocks of the main
memory i.e. SM > SL > SB. Finally, compute represents the functional
units that actually process the local data (e.g. vector unit, ALU, etc.).
Various high-performance and parallel computing platforms rang-
ing from embedded processors up to distributed supercomputers fit
into this high-level machine model. FFT algorithms should be care-
fully fitted to these architectures to achieve high performance and
power/energy efficiency.

Fast Fourier Transform. Computing the discrete Fourier trans-
form (DFT) of an n-element input vector corresponds to the matrix-
vector multiplication y =DFTn x, where x and y are n point input and
output vectors respectively, and

DFTn = [ω
k`
n]0≤k,`<n, ωn = e−2πi/n.

Computation of the DFT by direct matrix-vector multiplication re-
quires O(n2) arithmetic operations. Well-known fast Fourier trans-
form (FFT) algorithms reduce the operation count to O(n logn). Us-
ing the Kronecker product formalism in [1], an FFT algorithm can be
expressed as a factorization of the dense DFT into product of struc-
tured sparse matrices. For example, the well-known Cooley-Tukey
FFT [11] can be expressed as

DFTnm = (DFTn⊗ Im)Dnm
m (In⊗DFTm)Lnm

n . (1)

In (1), Lnm
n represents a stride permutation matrix that shuffles its

input vector x and generates output vector y as

x[im+ j]→ y[jn+ i], for 0 ≤ i < n, 0 ≤ j < m.

If x is viewed as an n×m matrix, stored in row-major order, then
Lnm

n performs a transposition of this matrix. Further, In is the n×n
identity matrix, and ⊗ is the Kronecker, or tensor, product which is
defined as

A⊗B = [ai, jB], where A = [ai, j].

Finally, Dnm
m is a diagonal matrix of twiddle factors.

Multidimensional DFTs can also be considered as simple
matrix-vector multiplications, e.g. y = DFTn×n×...×n x where

DFTn×n×...×n = DFTn⊗DFTn⊗...⊗DFTn . (2)

Similar to single dimensional DFT, multidimensional DFTs can be
computed efficiently using multidimensional FFT algorithms. For
example the well-known row-column algorithm for 2D-DFT can be
expressed in tensor notation by using (2) and tensor identities [1] as

DFTn×n = (Ln2

n (In⊗DFTn)Ln2

n)(In⊗DFTn). (3)

The overall operation of (3) is demonstrated in Figure 1(a). Here, as-
suming a standard row-major data layout, the first stage (row FFTs)
leads to sequential accesses in main memory, whereas the stride per-
mutations (Ln2

n) in the second stage (column FFTs) correspond to
stride-n accesses which is demonstrated in Figure 1(b).

…

1D-FFTs …

1D-FFTs

n

n

n

n …

…

0

n2

0

n2
1st stage 2nd stage 1st stage 2nd stage

(a) Logical view of the dataset (b) Address space

…

streaming
access

strided
access

Fig. 1. Overview of row-column 2D-FFT computation in (3).

Similarly, by using (2) and tensor identities in [1] the well-
known 3D decomposition algorithm for 3D-DFT can be represented
as, where AM

= MTAM,

DFTn×n×n = (In2 ⊗DFTn)
Ln3

n2 (In2 ⊗DFTn)
In⊗Ln2

n (In2 ⊗DFTn). (4)

The overall operation of (4) is demonstrated in Figure 2. If we
assume a sequential data layout of the cube in x-y-z direction, first
stage (FFTs in x) corresponds to sequential accesses to main memory
however, due to the permutation matrices In⊗Ln2

n and Ln3

n2 , second and
third stages (FFTs in y and z, respectively) require stride n and stride
n2 accesses respectively (very similar to 1(b)).

Until now we discussed decomposing large 2D and 3D-FFTs
into small 1D-FFT computation stages that fit in the local memory

n

n

n

n

n

n

…

1D-FFTs

n n

…
1D-FFTs

…
…

1D-FFTs

1st stage 2nd stage 3rd stage

n

y

x
z

Fig. 2. Overview of 3D-decomposed 3D-FFT computation in (4).

considering the described machine model. A large 1D-FFT whose
data set do not fit in local memory requires similar decomposition
into smaller 1D-FFT kernels (e.g. Cooley-Tukey decomposition in
(1)). In (1), we observe the same stride permutations as the row-
column 2D-FFT algorithm. Hence, from a memory access pattern
point of view, overall large size 1D-FFTs are handled very similar to
the 2D-FFT computation (see Figure 1).

In summary, conventional large size FFT algorithms that use
standard data layouts require strided accesses. These strided ac-
cess patterns correspond to accessing different data blocks in the
main memory. Continuously striding over data blocks does not al-
low amortizing the high latency cost of the main memory accesses,
which yields very low data transfer bandwidth and high energy con-
sumption. While there are FFT algorithms like the vector recur-
sion [12] that ensure block transfers, they require impractically large
local storage for data block sizes dictated by the main memory.

3. FFTS USING BLOCK DATA LAYOUTS

Changing the spatial locality of the memory accesses by adapting
a customized block data layout in the main memory enables avoid-
ing inefficient strided access patterns. By avoiding strided accesses
and transferring large contiguous blocks of data one can amortize
the latency of the main memory accesses and often also a large en-
ergy overhead. In this paper we focus on tiled and cubic data layout
schemes.

Tiling is basically a block data layout, where n2 element vectors
are considered as n×n element matrices which are divided into k×
k element small tiles (Figure 3(a)). Then the elements within tiles
are mapped to physically contiguous locations in the main memory.
When the tile size is selected to match the data block size in the
main memory, transferring a tile corresponds to transferring a whole
contiguous data block from main memory.

As explained in [8], given the tiled data layout, one can compute
the 2D-FFT while avoiding strided accesses. The main idea is in-
stead of transferring stripe of elements in row and column direction
as shown in Figure 1, transfer “tiles” in row and column direction
(see 1 and 2 in Figure 3(a)).

From a memory access pattern perspective, 2-stage Cooley-
Tukey algorithm for 1D-FFT has the same behavior as the row-
column 2D-FFT algorithm as mentioned in Section 2. Hence the
tiled data layout can be used in computing the 1D-FFT to avoid
strided accesses.

Similarly in the cubic data layout, n3 element data set is ab-
stracted as a n× n× n element three dimensional cube which is di-
vided into k× k× k element smaller cubes (see Figure 3(b)). Then
each k× k× k element small cube is physically mapped into a con-
tiguous data block in main memory. Hence transferring a cube cor-
responds to transferring a whole data block from the main memory.

Cubic data layout enables 3D-FFT computation without strided
accesses. Similar to the 2D-FFT scheme, the main idea is instead of
transferring stripe of elements in x, y and z direction as demonstrated
in Figure 2, transfer “cubes” in x, y and z direction (see 1 , 2 and
3 in Figure 3(b)).

n

n

k

k

…

…

…

…

“tile”

1

2

(a) Tiled representation.

n

n

n

k

k

k

…

…

…

…

“cube”

1

2

3

(b) Cubic representation.
Fig. 3. Logical view of the dataset for tiled and cubic representation.

A custom data layout comes along with address translation
scheme that maps the logical addresses to the physical locations in
the main memory. Formal representation of a custom data layout
scheme is given as DFT = ((DFT)

←Ð
Q
)

Ð→
P where Q = P−1. Here

←Ð

(.) and
Ð→

(.) represent the address translation and the data layout respectively.
This representation only makes the data layout and the address map-
ping constructs explicitly labelled, the overall operation is still a
natural DFT computation. P and Q are simply stride permutation
matrices. For example, the identity matrix (i.e. P = Q = I) corre-
sponds to the standard sequential data layout. It is also possible to
represent block data layouts by the stride permutation matrices.

Although conceptually straightforward, capturing the details of
the overall operation algorithmically is non-trivial. The discussion
above omits the complexity of the data permutations and the details
of the local computation. Formal representation in tensor notation
allows capturing all the non-trivial details of the algorithms and the
machine model in the same framework. Abstracting the algorithm
and the machine model in the same framework allows detailed for-
mula manipulations targeting the machine model, which is crucial to
achieve high performance implementations.

Spiral. Spiral is an automated tool for generation and optimiza-
tion of hardware and software implementations of linear signal trans-
forms including DFT [2, 9]. Spiral takes formula representation of
a given transform (e.g. DFTn), then expands and optimizes it re-
cursively using internal rewrite rules, resulting in a structured for-
mula, which is subsequently translated into implementation. The
formal representation in tensor notation used in this paper enables
integrating our optimizations into Spiral. This way we can generate
implementations of optimized FFT and search the alternative design
possibilities automatically.

4. FORMALLY RESTRUCTURED ALGORITHMS

In our approach, we identify set of formula identities that restruc-
ture the given FFT formula so that it can be mapped to the data
layout scheme and target machine model efficiently. The goals for
restructuring the FFT are (i) to make sure that all the permutations
that correspond to main memory accesses are restructured to trans-
fer tiles/cubes, and (ii) to breakdown the formula constructs such
that the local permutations and local 1D-FFT computations fit in the
local memory.

Rewrite Rules Rewrite rules are set of formula identities that
capture the restructuring of the FFT algorithms. We list the neces-
sary formula identities used in restructuring the algorithms for the
tiled data layout in Table 1. The labels on the restructured formula
constructs represent the implied functionality in the implementation.
←Ð

(.) and
Ð→

(.) represent the address translation and the data layout re-
spectively. ∣ represents a memory fence. I` ⊗̃ corresponds to iteration
operator. Finally, (.) and (.) correspond to the local kernel (permuta-
tion or computation) and the main memory data transfer permutation

Table 1. Tiled mapping rewrite rules.

A → (A
←Ð
Q
)
Ð→
P , where Q = P−1 (5)

AB → A∣B (6)
In⊗An → In2(In/k ⊗̃Ik⊗An) In2 (7)

An⊗ In → Ln2

n (In/k ⊗̃Ik⊗An)Ln2

n (8)

In2 → (In/k ⊗̃Ln
k⊗ Ik

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R9b

)(In/k⊗Ln
n/k⊗ Ik

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R9a

) (9)

Ln2

n → (In/k ⊗̃Lnk
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R10b

)(Ln2
/k

n/k ⊗ Ik

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R10a

) (10)

Table 2. Cubic mapping rules. R j refers to the right hand side of (j).

In⊗ In⊗An → In3(In2/k2 ⊗̃Ik2 ⊗An) In3 (11)

In⊗An⊗ In → (In⊗Ln2

n)(In2/k2 ⊗̃Ik2 ⊗An)(In⊗Ln2

n) (12)

An⊗ In⊗ In → Ln3

n (In2/k2 ⊗̃Ik2 ⊗An)Ln3

n2 (13)

In3 →(In/k⊗Ln
k⊗ Ink)(In2/k2 ⊗̃Lnk

k2 ⊗ Ik)

(In2/k2 ⊗Ln
n/k⊗ Ik2)(In/k⊗Ln

n/k⊗Ln
n/k⊗ Ik) = R14 (14)

In⊗Ln2

n →(In/k⊗Ln
k⊗ Ink)(In2/k2 ⊗̃Lnk2

k2 (In/k⊗Lk2

k ⊗ Ik))

(In/k⊗Ln2

n/k⊗ Ik)(In/k⊗Ln
n/k⊗ Ink) = R15 (15)

Ln3

n2 →(In/k⊗Ln
k⊗ Ink)(In2/k2 ⊗̃Lnk2

k2)

(Ln3/k
n2/k2 ⊗ Ik)(In⊗Ln

k⊗ In) = R16 (16)

respectively. These labelled formula constructs are restructured base
cases, hence an FFT algorithm that consists only of these constructs
considered to be final restructured algorithm.

Tiled 2D-FFT. We now apply the rewrite rules to a given 2D-
DFT problem to obtain the restructured FFT. For DFTn×n, we as-
sume the n2 element data set size (SD) do not fit in the local memory,
i.e. SM > SD > SL, hence the large DFTn×n should be decomposed
into smaller DFTn stages as discussed. Further we assume that k×k
tiles match the data block size SB and local memory can hold a whole
stripe of n/k tiles, i.e. SL ≥ SB ×n/k. We now derive a tiled 2D-FFT
targeting this machine model. Due to space limitations we briefly
mention the derivation steps but rather focus on the structure of the
final derived algorithm.

The starting point is DFTn×n. First, rule (5) defines the data lay-
out and corresponding address mapping. Then DFTn×n is expanded
into smaller DFT stages by using (3) which are separated via mem-
ory fence by (6). Next, rules (7)-(8) make the data permutations
explicit and label the kernel computation. Finally, rules (9)-(10) re-
structure the data permutation so that they correspond to tile transfer
operations. The result is given in (17). We observe that the local per-
mutation and computation kernel size, k×n elements, fit in the local
memory. However, derived algorithm is restricted to the problem
sizes for which a whole stripe of tiles can be held simultaneously in
the local memory so that the kernels can be processed locally (re-
member SL ≥ SB × n/k where SB = k2 elements). Inspection of the
(17) shows that all of the formula constructs are labelled base cases
of the tiling rewrite rules, hence this formula corresponds to a final
optimized algorithm.

Considering the DFT computation is a matrix multiplication, the

Table 3. Final restructured FFT algorithms: 2D, 3D and 1D respectively. (R9-R16 are given in (9)-(16) in Table 1 & 2.)

DFTn×n =((RT
10aRT

10b(In/k ⊗̃Ik⊗DFTn)R10bR10a ∣ RT
9aRT

9b(In/k ⊗̃Ik⊗DFTn)R9bR9a)
←Ð
Q
)

Ð→
P
, where P = Q−1

= In/k⊗Ln
n/k⊗ Ik . (17)

DFTn×n×n =(((In2/k2 ⊗̃Ik2 ⊗DFTn)
R16 ∣(In2/k2 ⊗̃Ik2 ⊗DFTn)

R15 ∣(In2/k2 ⊗̃Ik2 ⊗DFTn)
R14)

←Ð
Q
)

Ð→
P
, P = Q−1

= (In2/k2 ⊗Ln
n/k⊗ Ik2)(In/k⊗Ln

n/k⊗Ln
n/k⊗ Ik) (18)

DFTn2 =((RT
10aRT

10b(In/k ⊗̃Ik⊗DFTn)R10bR10a ∣ RT
9aRT

9bDn2

n (In/k ⊗̃Ik⊗DFTn)R10bR10a)
←Ð
Q
)

Ð→
P
, where P = Q−1

= In/k⊗Ln
n/k⊗ Ik . (19)

0

10

20

30

40

50

128 256 512 1k 2k 4k

Pe
rf

o
rm

an
ce

 [
G

fl
o

p
/s

]

Problem Size (N for NxN 2D-FFT)

(a) 2D-FFT with Tiled Data Layout
Theoretical Peak
Realistic Model
Spiral
Naïve

0

10

20

30

40

64 128 256 512

Pe
rf

o
rm

an
ce

 [
G

fl
o

p
/s

]

Problem Size (N for NxNxN 3D-FFT)

(b) 3D-FFT with Cubic Data Layout

Theoretical Peak
Realistic Model
Spiral
Naïve

0

10

20

30

40

50

16k 64k 256k 1M 4M 16M

Pe
rf

o
rm

an
ce

 [
G

fl
o

p
/s

]

Problem Size

(c) 1D-FFT with Tiled Data Layout
Theoretical Peak
Realistic Model
Spiral
Naïve

Fig. 4. Performance results of 2D, 3D and 1D-FFTs for theoretical upper bound, realistic model upper bound, Spiral generated and naive
baseline hardware implementations on Altera DE4 FPGA. (All single precision floating point)

constructs in the resulting algorithm (17) are performed from right
to left on the input data set. First, R9a reads tiles, i.e. whole contigu-
ous data blocks, from the main memory. Then, R9b shuffles the local
data to natural order and then 1D-FFTs are applied to the local data.
Finally, RT

9b re-shuffles the local data after FFT processing and RT
9a

writes the local data back into the main memory as tiles, which con-
cludes the first stage. The algorithm consists of two stages separated
by a memory fence (∣). Overall operation in the second stage is very
similar to the first stage except the permutations. The second stage
has the permutations R10a−b instead of R9a−b where R9−10 are given
in (9)-(10).

In addition to the tiled 2D-FFT algorithm, we use the set of for-
mula identities (5)-(10) given in Table 1 to derive optimized tiled
algorithms for large 1D-FFT (see (19)). Further, we use formula
identities (11)-(16) shown in Table 2 to derive 3D-FFT algorithms
using cubic data layout (see (18)). The formulas given in (18) and
(19) are final optimized algorithms for 3D and 1D FFTs, however
due to space limitations we omit the derivations.

This work focuses only on 1D, 2D and 3D FFTs using tiled and
cubic data layouts, yet the mathematical framework can easily be
extended to higher dimensional FFTs using higher dimensional hy-
percube data layouts.

5. EVALUATION

We included the formula identities shown in Table 1 and Table 2 into
Spiral’s formula rewriting system so that Spiral drives the optimized
algorithms automatically (e.g. (17), (18) and (19)). In this section
we evaluate the 1D, 2D and 3D-FFT designs generated by Spiral.

Algorithms derived in this work can be implemented in hard-
ware or software on various platforms since we target a generic ma-
chine model. However, our evaluations are based on hardware im-
plementations on an Altera DE4 FPGA platform. DE4 FPGA plat-
form comes with two channels of total 2 GB DDR2-800 DRAM
which corresponds to the main memory considering the machine
model described in Section 2, so SM = 2 GB. DRAM rows are the
data blocks in the main memory and the DRAM row buffer size
is 8 KB so SB = 8 KB. Strided accesses to different data blocks
(i.e. DRAM rows) yield 1.16 GB/s DRAM data transfer bandwidth
whereas transferring contiguous DRAM row buffer size data chunks
results in 11.87 GB/s bandwidth out of given 12.8 GB/s theoretical
peak. We have measured the penalty of non-contiguous access to a

different data block as approximately, Amiss
M −Ahit

M =C = 20 clock cy-
cles at 200 MHz. DE4 further provides 2.53 MB of on-chip SRAM
which we consider as the local memory, hence SL = 2.53 MB. Fi-
nally, floating point units correspond to the compute element in the
machine model. For example, a single precision 4K×4K 2D-FFT
has a total data set of SD = 128 MB where n = 4096. Further we need
32× 32 single precision complex valued element tiles to match the
SB = 8 KB, so k = 32. This overall configuration fits in the described
machine model assumptions, i.e. SM > SD > SL ≥ SB×n/k.

Our evaluation results are summarized in Figure 4. We report
performance in “Gflop/s” which is calculated as 5n log2(n)/t for
DFTn where t is the total runtime. Thus higher is better. In Figure 4,
we provide (i) bandwidth bounded theoretical peak performance for
Altera DE4 where we assume zero latency but limited bandwidth
DRAM and infinitely fast on-chip processing, (ii) a realistic peak
performance where we include DRAM latency cost and bounded
on-chip processing, (iii) actual results from Spiral generated imple-
mentations on Altera DE4, and (iv) performance of a naive baseline
implementation on the same platform with non-optimized DRAM
access patterns. Optimized implementations generated by Spiral al-
ways transfer contiguous data blocks from main memory (i.e. whole
DRAM rows), whereas the naive implementations have inefficient
access patterns that strides over data blocks. Optimized use of the
DRAM row buffer leads to efficient DRAM bandwidth utilization,
hence Spiral generated implementations offer up to 6.5x higher per-
formance than the naive baseline algorithms by reaching on average
83% of the theoretical peak performance and 97.5% of the realistic
peak performance. Further, based on our simulations using DRAM-
Sim2 [13], they achieve 5.5x more energy efficiency in DRAM.

6. CONCLUSION

In this work we formally derive efficient memory access pattern FFT
algorithms for large problem sizes using block data layout schemes
and targeting a generic machine model which captures the major
memory characteristics of various platforms. Formal representation
in tensor notation allows us to capture both algorithmic manipula-
tions and the machine model in the same framework. We integrate
our optimizations into the Spiral and generate designs for 1D, 2D
and 3D-FFTs automatically. Spiral generated designs can achieve
close to the theoretical peak performance of the target platform and
offer significant speed-up compared to the naive algorithms.

7. REFERENCES

[1] C. Van Loan, Computational frameworks for the fast Fourier
transform. SIAM, 1992.

[2] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo, “SPIRAL: Code
generation for DSP transforms,” Proc. of IEEE, special is-
sue on “Program Generation, Optimization, and Adaptation”,
vol. 93, no. 2, pp. 232–275, 2005.

[3] F. Franchetti, M. Püschel, Y. Voronenko, S. Chellappa, and
J. M. F. Moura, “Discrete Fourier transform on multicore,”
IEEE Signal Processing Magazine, vol. 26, no. 6, pp. 90–102,
2009.

[4] M. Frigo and S. G. Johnson, “FFTW: An adaptive software
architecture for the FFT,” in Proc. IEEE Intl. Conf. Acous-
tics Speech and Signal Processing (ICASSP), vol. 3, 1998, pp.
1381–1384.

[5] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and
J. Manferdelli, “High performance discrete Fourier transforms
on graphics processors,” in Proc. of the ACM/IEEE Conference
on Supercomputing (SC), 2008, pp. 2:1–2:12.

[6] M. Eleftheriou, B. Fitch, A. Rayshubskiy, T. J. C. Ward,
and R. Germain, “Scalable framework for 3D FFTs on the
Blue Gene/L supercomputer: Implementation and early per-
formance measurements,” IBM Journal of Research and De-
velopment, vol. 49, no. 2.3, pp. 457–464, 2005.

[7] D. Bailey, “FFTs in external or hierarchical memory,” in Pro-
ceedings of the ACM/IEEE Conference on Supercomputing
(SC), 1989, pp. 234–242.

[8] B. Akin, P. A. Milder, F. Franchetti, and J. C. Hoe, “Memory
bandwidth efficient two-dimensional fast Fourier transform al-
gorithm and implementation for large problem sizes,” in Proc.
of the 20th IEEE Symp. on Field-Programmable Custom Com-
puting Machines (FCCM), 2012, pp. 188–191.

[9] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Com-
puter generation of hardware for linear digital signal process-
ing transforms,” ACM Transactions on Design Automation of
Electronic Systems, vol. 17, no. 2, 2012.

[10] Q. Zhu, B. Akin, H. Sumbul, F. Sadi, J. Hoe, L. Pileggi, and
F. Franchetti, “A 3d-stacked logic-in-memory accelerator for
application-specific data intensive computing,” in 3D Systems
Integration Conference (3DIC), 2013 IEEE International, Oct
2013, pp. 1–7.

[11] J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex Fourier series,” Mathematics of compu-
tation, vol. 19, no. 90, pp. 297–301, 1965.

[12] F. Franchetti and M. Püschel, Encyclopedia of Parallel Com-
puting. Springer, 2011, ch. Fast Fourier Transform.

[13] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A
cycle accurate memory system simulator,” IEEE Comp. Arch.
Letters, vol. 10, no. 1, pp. 16–19, 2011.

