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Abstract—There is an enormous growth in performance capa-
bility of computing platform in the last decade. The parallelism
becomes an inevitable trend for future computing hardware /
software design. Motivated by the practical computation perfor-
mance demands in power system, especially distribution system,
and the advances in modern computing platform, we developed
a high performance parallel distribution power flow solver for
Monte Carlo styled application. From computer architecture
and programming point of view, we show that by applying
various performance tuning techniques and parallelization, our
distribution power flow solver is able to achieve 50% of a CPU’s
theoretical peak performance. That is 50x speedup comparing to
an already fully compiler-optimized C++ implementation.

I. INTRODUCTION

Power flow computation is the most essential routine for
power system analysis. It often lies on the critical path of most
power system analysis and simulation programs. Distribution
power flow is a computation model and method specified for
distribution system which often has multi-phase unbalanced
parameters, high R/X ratio and radial structure [1] [2] [3].
With the recent development of smart grid technologies and
integration of renewable energy resources into distribution
system, there are more and more performance demands and
research efforts on power flow computations in distribution
system [3] [4] [5]. One compelling application case is applying
probabilistic power flow for distribution system to deal with
the uncertainties of renewable energy resources. Since the
renewable energy is stochastic in nature, the deterministic
power flow results become inefficient in solving the system’s
states. Lots of on-going researches are trying to apply prob-
abilistic load flow for distribution system by modeling the
renewable energy resources as random variables or stochastic
processes [6] [7] [8] [9]. Among the probabilistic power
flow methods, Monte Carlo simulation is one of the numeric
solution that often serves as the “gold standard” for accuracy
reference. However, Monte Carlo styled methods often suffer
from the high computation burden. Previously, such method
can only serve as off-line program to evaluate the accuracy
of other probabilistic power flow methods, and often high
performance supercomputer has to be employed for Monte
Carlo simulation.
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Meanwhile, the performance capability of computing plat-
form has been growing rapidly in last several decades. Moore’s
law would still be a good prediction of the trend of computing
industry [10]. Nowadays, the mainstream CPU or GPU accel-
erated systems enable us to build a personal supercomputer
at a very low cost, which may have the similar computation
power comparing to the fastest supercomputers in the world
just less than ten years ago. However, due to the power wall
of hardware design, from the beginning of this century, the
rapid increase of performance is more achieved by shifting
from increase of clock frequency to parallelization in hardware
/ software models. This means extracting these computation
power from the hardware is not easy any more. Parallel
programming model has to be applied to take advantages of the
hardware advances. Besides, other hardware constraints such
as memory hierarchy have to be considered for performance
tuning in order to fully extract the computation capacity for
specified numerical applications’ performance [11].

In this paper, we are standing in the middle of computational
performance demand of power system application and the
rapid growing and model shifting of modern computing plat-
form. We are looking into the Monte Carlo styled applications
in distribution system analysis. From the software model point
of view, the high computation burden Monte Carlo simulation
is actually a favorable case as it might be easy parallelizable.
We applied data parallelism and multi-threading programming
as well as the performance tuning techniques for dynamic
data structure and memory hierarchy. The core computation
is to solve many power flows efficiently and simultaneously.
The goal is to squeezing the computation power out of the
modern computer architecture, push the application’s per-
formance to the hardware peak limit. After parallelization
and other optimization we are able to achieve 50% of the
theoretical peak performance of a CPU, that is 50x speedup
comparing to already compiler fully optimized baseline C++
implementation on a single CPU desktop system, and on a
two-CPU server system it is about 150x speedup. The result
has show that, without extra work on performance tuning and
parallel programming, the specified power flow application’s
performance can suffer, about 99% of the designed hardware
computation power might be wasted. By applying parallel
programming models and proper performance tuning tech-



niques, the modern mainstream desktop computing platform
can yield a similar high performance result comparing to the
supercomputers several years ago. This result can also be
regarded as a demonstration case that shows how conventional
power grid computation and analysis can benefit from the rapid
development of computing hardware/software platform.

II. ADVANCES AND CHALLENGES IN COMPUTATION

The performance capabilities of computing platforms have
been growing rapidly in last several decades at a roughly
exponential rate. Currently a mainstream Intel server CPU
can deliver a floating point operation speed of almost 200
Gflops, that is 2× 1011 additions/substractions/mulitplications
per second. This is only one single CPU chip, another 10x
increase can be achieved with graphics accelerator and multi-
ple CPUs. To better interpret the speed, we compare the peak
performance of commercial off the shelf (COTS) Intel CPU
with several fastest supercomputing system in the world (on
Top500 list [12]) ten years ago in the following table I.

TABLE I
THEORETICAL PEAK PERFORMANCE COMPARISON

Systems / Chips Peak Gflops Year Position
SP Power3 375MHz 78.0 2000 Top 500

T2E1200 139.2 2001 Top 500
SuperDome/HyperPlex 281.6 2002 Top 500

Intel i7-975 105.0 2010 COTS Desktop
Intel Xeon X5680 162.0 2010 COTS Server

Table I shows the peak performance of 500-th fastest
supercomputer in the world on Top500 list about ten years
ago and the peak performance of COTS Intel desktop/server
CPU [13]. Clearly, the Intel CPUs released in 2010 have
similar, even higher theoretical peak performance comparing
to the world’s top 500 fastest supercomputers about ten years
ago. We are using theoretical peak performance value as
“Peak Gflops”. The performance data may give us an rough
implication that certain numerical application which can only
run on supercomputer ten years ago may be possible to just
fit into a single desktop personal computer nowadays.
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Fig. 1. The evolution of Intel CPU peak performance v.s. CPU frequency [11]

However, to extract such computation power out of the
hardware architecture is not easy.

As we can observe from the Fig. 1. Before the end of last
century, the CPU clock frequency is growing at a roughly
exponential rate. The clock frequency increase roughly means
a “free speedup” for existing numerical computation software,
but even in those times, the increasing of CPU clock frequency
has caused the bottleneck between processor and memory
systems, the code has to be optimized considering the memory
hierarchy.

From the beginning of this century, the CPU clock fre-
quency is approaching its limit due to the power density
limit of the chip. The “free speed up” time has ended. The
hardware has shifted to various types of parallelism including
vector instructions, multi-core/many-core architectures. There-
fore, the performance gain for numerical software application
can only be achieved by employing parallelism in software
development using code vectorization and multi-threading
besides the memory hierarchy optimization.

In this paper, we take the mass amount distribution power
flow computation that can be used for Monte Carlo simulation
as an example to demonstrate this trend in computing and
possible benefit we can obtain by applying performance tuning
and parallel programming model.

III. DISTRIBUTION SYSTEM AND POWER FLOW

In this section, we described the basis of the distribution
power flow model we used in our computation.

A. Component Models

In order to preserve the most detail information and achieve
the high analysis accuracy, the exact model for three-phase
unbalanced distribution system is used in our work. These
models are developed by W. Kersting in [3]. To describe the
details of the three-phase unbalanced system in phasor domain,
the 3 by 1 complex vectors and 3 by 3 complex matrices are
used to represent each phase and phase coupling relations.
In general, all the components in distribution system can be
classified into two catalogues: the two terminal “link models”
such as line segments, transformers, and the single terminal
“node models”, such as spot load. The abstract representations
of link model and node model are show in Fig. 2 and Fig. 3.
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Fig. 2. Link model for two terminal component

For link model in Fig. 2, the relations of the four variables
are given as following:

[Vabc]n = [a] [Vabc]m + [b] [Iabc]m
[Iabc]n = [c] [Vabc]m + [d] [Iabc]m

(1)



Another equation can be also be derived:

[Vabc]m = [A] [Vabc]n − [B] [Iabc]m (2)

The matrix a,b, c,d and A,B can be derived from spec-
ified equipment models and parameters, these are constant
complex matrix in steady state power flow computation.
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Fig. 3. Node model for one terminal component

For the node model in Fig. 3, considering the three phase
complex power [Sabc] injected into the node, the relation
between power, voltage and current is:

[Sabc] = diag [Vabc] [Iabc]
∗ (3)

The vector Sabc,Vabc and Iabc represents complex power,
voltage phasor and current phasor of each phase.

B. Solving Power Flow

We only consider the radial structured distribution system.
We use the ”Ladder Iterative Method” developed in [3] to
solve the power flow. The distribution system is represented
by a tree structure, the substation is the root of the tree. A
Forward Sweep is to update the voltage by traversing the tree
from root to leaves, and the Backward Sweep is to update the
branch current by traversing the tree from leaves to root. The
detail procedure is as following:

Initially, assume the current are all zero, and the voltage are
all nominal.

1) Forward Sweep: update each downstream node’s volt-
age Vabc using Eqn. 2.

2) Node Current: once the new voltages are obtained,
using these voltages to compute the current Iabc from
each node based on Eqn. 3.

3) Backward Sweep: based on the new voltages and cur-
rents, using Eqn. 1 to compute each upstream branch’s
current.

4) Check Convergence: Once at the root branch, if the
difference of current (or voltage) between two iteration
step is within a tolerate threshold, the convergence is
reached. Otherwise, go back to Forward Sweep again.

From above computation procedure we can see that the
small size complex matrix vector operations are the basic
computation kernel. The tree traversal is the basic structure
of the computation procedure. These are the main targets of
the computation performance tuning.

IV. PERFORMANCE TUNING AND PARALLEL
PROGRAMMING MODEL

In this section, we describe the performance tuning method
and the parallel programming model. These are also the
two main steps to build our fast distribution power flow
solver: the performance tuning part applies code optimization
techniques to push the scalar version code’s performance to
the peak limit using the single core scalar instructions. Based
on optimized scalar code, the parallel programming model
using Single Instruction Multiple Data (SIMD) instructions
and multi-threading can further extract the computation power
from hardware by solving many power flow simultaneously.

A. Performance Tuning

The first step to build an efficient and fast solver is to build
an efficient scalar version of the code which fully utilized the
hardware computation power in scalar instructions. For the
baseline code, we use C++ Standard Template Library (STL),
STL provides nice object oriented classes to describe the radial
distribution system as a tree data structure. The forward and
backward sweep are to iterate over the tree from root to leaves
and from leaves to root. The STL is convenient and productive
from the software engineering point of view and therefore
has been adopted by many software developers. However,
these benefits come with the price of performance drop. The
extensive point chasing and large amount of overhead often
make the typical application’s performance one or more orders
of magnitude below the processor’s capabilities.
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Fig. 4. Shift of data structure for fast memory access

For the data structure optimization, as show in Fig. 4, we
convert the STL tree structure to array access and further
pointer array access. We put all data into three data arrays: the
parameter array, the input array and the output array, and the
data needed for forward / backward sweep are placed consec-
utively in these arrays to exploit the data locality. Further we
convert the tree iteration into another two pointer arrays that
guide the forward/backward sweep over the data arrays. This
optimization strategy converts the pointer chasing to streaming
access and preserve the data temporal and spatial locality.
Besides data structure conversion, the computation kernel can
be further optimized using array scalarization techniques and
loop unrolling. The new version scalar code takes advantages
of the modern memory hierarchy, and can yield a much better



performance result than baseline STL code. More detailed
techniques can be found in [11].

B. Programming Model

In this application case, we mainly consider the embar-
rassingly parallelizable Monte Carlo styled applications. The
idea is to solve many power flow cases, each case may have
different data, but they are all independent from each other.
Therefore, mass amount of power flow solvers can be execut-
ed simultaneously. Monte Carlo simulation for probabilistic
power flow is one of such application case. Besides Monte
Carlo simulation, steady state time series simulation, and other
statistical applications which require many independent power
flow results may also be the application cases.

The parallel programming model of power flow mainly
takes advantages of data parallelism and simultaneous multi-
threading of modern computing platform. The SIMD in-
structions enable multiple data being processed by a single
instruction simultaneously. On modern mainstream CPUs, the
Streaming SIMD Extensions (SSE) and Advanced Vector
Extensions (AVX) are SIMD instruction set extensions imple-
mentation on the x86 architecture. For floating point opera-
tions, the SSE enables 4 single precision data being processed
simultaneously, and AVX enables 8 single precision data being
processed simultaneously, without any extra cost. Besides the
SIMD, simultaneous multi-threading enables multiple threads
runs on multiply CPU cores simultaneous, with very little
overhead cost if the computation workload is high enough.
SIMD and multi-threading are two building blocks that enables
the utilization of the parallel computation power of modern
hardware architecture.
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Fig. 5. Parallel programming model on mainstream desktop/server CPU

The overview of the parallel programming model is showed
in Fig. 5. We have multiple threads running on multiple CPU
cores. Each thread contains one SIMD vectorized power flow
solver, depending on the data width of the SIMD instructions,
the SIMD vectorized power flow solver can simultaneously
solve 4 power flow on SSE instruction set and 8 power flow
on AVX instruction set. Multi-threading can further extract the
computation power out of the hardware architecture. Multi-
threading power flow using Pthread library that enables fast
synchronization has been implemented. Ideally, the compu-
tation can speedup linearly with the available data width
of SIMD instructions and the number of simultaneous CPU
threads.

V. EXPERIMENT RESULT

In this section, we are testing our optimized parallel power
flow solver based IEEE 4 bus test feeder system [14]. We
expand the system for performance test by duplicating and
connecting multiple 4 bus systems together to build larger
system up to thousands of buses.
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Fig. 6. Impact of performance optimization techniques (on Core2Extreme)

The comparison baseline code is implemented using C++
with various productivity software engineering methods: the
operators are overridden for complex number operation, a
tree class is developed by using C++ STL template, the tree
traverse is an iterator of the template class. An improved
C version is implemented by using data array and further
pointer array as mentioned in section IV. The Fig. 6 shows the
performance breakdown when applying various optimization
and parallelization techniques. The lowest bar is the C++ code
compiled with compiler’s speed optimization options (-o2).
The second lowest bar is the same C++ code compiled by
Intel Compiler with full compiler optimization options (-o3).
The version that uses pointer arrays (the third highest bar) is
considered as the best scalar code that can reach nearly 60% of
the theoretic peak performance of the CPU scalar instruction
hardware. We further implemented the SSE version and SSE
with multi-threading version based on this optimized scalar
version code, which can give us a nearly linear speedup. From
this figure we can see, with only naive software engineering
styled implementation and normal compiler options, some two
to three orders of magnitude of performance can be lost, which
means, more than 99% of the designed computation capability
of CPU hardware is wasted for this particular numerical
application. With proper optimization and parallelization, we
can extract about 50% of the theoretical peak computation
capacity of the CPU hardware.

B. Peak Running Speed

We test our scalar code, SIMD code and multi-thread code
on the test feeder system up to the 2048 buses. The speed result
on a desktop system with an Intel Core 2 Extreme QX6700
quad-core CPU is showed in Fig. 7. The Composite Theo-
retical Performance (CTP) of QX6700 is 80.68 Gflops [13].
The optimized Multi-threading SSE code can achieve 50% of



this theoretical peak. Which means on average, the CPU can
commit 16 floating point operation per click tick. When the
bus number exceed 2048, there is a performance drop due to
the cache capacity of the CPU.
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Fig. 7. Performance on one Core2Extreme QX6700 CPU
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Fig. 8 shows the performance result on Intel’s new Sandy
Bridge micro-architecture CPU Core i5-2400, The AVX in-
struction set is able to process 8-floating point operations per
instruction. Comparing to SSE, the AVX can give an almost
2x speedup thanks to the increase of data parallelism. On
this CPU, the L2 cache is small than QX6700, therefore, the
performance drops at a smaller problem size.
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Fig. 9 shows the performance result on a server system
with two six-core Intel Xeon X5680 CPUs @ 3.33GHz. With

HyperThreading, two X5680 enable 24 threads to be executed
simultaneously. The parallel programming model implemented
in this application enjoys an almost “free speedup” with the
increase of the parallel threading capability. This system can
delivery up to 120Gflops computation power for specified
distribution power flow computation.

VI. CONCLUSION

In this paper, we summarized the advances and challenges
of modern computing platform for specified power system
computation applications. Performance tuning and various
forms of parallelization have to be considered for perfor-
mance oriented applications, without extra work, it is easy
to lose several orders of magnitude of performance and waste
the CPU’s designed computation power. We implemented a
high performance parallel distribution power flow solver as
an example that shows what performance can be achieved
from computation point of view. Our distribution power flow
solver is able fully utilize the parallel computing power and
can achieve around 50% of theoretical peak performance.
Applying parallel programming model to specified power
system applications can benefit from the trend of parallelism
in computing platform. The “free speedup” in the future may
come mostly from the parallel model implemented in specified
applications.
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