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Abstract 
 
 

  
This paper presents vectorization techniques tailored to meet the specifics of the two-
way single-instruction multiple-data (SIMD) double-precision floating-point unit, 
which is a core element of the node ASICs of IBM's 360 Tflop/s supercomputer 
BlueGene/L.  
      The paper focuses on the general-purpose basic-block vectorization methods pro-
vided by the Vienna MAP vectorizer. In addition, the paper introduces vectorization 
techniques specific to discrete signal transforms. The presented vectorization methods 
are evaluated in connection with the state-of-the-art automatic performance tuning 
systems SPIRAL and FFTW. 
      The combination of automatic performance tuning and the presented vectorization 
techniques result in FFT codes tuned automatically to a single BlueGene/L processor 
which are up to 60% faster than the best scalar code generated by the respective sys-
tems and five times faster than the mixed-radix FFT implementation provided by the 
GNU scientific library GSL. 
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1  Introduction 
  
IBM’s supercomputer BlueGene/L [3] planned to be in operation in 2005 will be an order of 
magnitude faster than the Earth Simulator, currently being the number one on the Top500 list. 
BlueGene/L will feature eight times more processors than current massively parallel systems. 
To tame this vast parallelism, new approaches and tools have to be developed. However, de-
veloping highly efficient numerical software for this machine starts by optimizing computa-
tional kernels for its processors and BlueGene/L comes with a twist on this level as well. It’s 
processors feature a custom floating-point unit—called double FPU—that provides support 
for complex arithmetic. 

Efficient computation of fast Fourier transforms (FFTs) is required in many applica-
tions planned to be run on BlueGene/L. In most of these applications, very fast one-
dimensional FFT routines for rather small problem sizes (up to 2048 data points) running on a 
single processor are required as major building blocks for large scientific codes. In contrast to 
tedious optimization by hand, the library generator SPIRAL [40] as well as state-of-the-art FFT 
libraries like FFTW [19] and UHFFT [35] use an empirical approach to automatically optimize 
code for a given platform. 

While floating-point support for complex arithmetic is an important prerequisite to 
speed up large scientific codes, the utilization of non-standard FPUs in computational kernels 
like FFTs is not straightforward. Optimization of these kernels leads to complicated data de-
pendencies of real variables that cannot be mapped to BlueGene/L’s complex FPU. This is 
especially true when applying automatic performance tuning techniques and needs to be ad-
dressed to obtain high-performance FFT implementations. 

This paper introduces an FFT library which is the first numerical code not developed 
by IBM run on a BlueGene/L prototype.  The FFT library takes full advantage of 
BlueGene/L’s double FPU by means of short vector SIMD vectorization. It was generated and 
tuned automatically by connecting SPIRAL to special purpose vectorization technology [27, 
28, 30]. The resulting codes provide FFTs running five times faster than industry standard 
non-adaptive FFT libraries. 40% speed-up over the best code not using the double FPU is 
achieved while applying IBM’s vectorizing compiler leads to a 15% slow-down. 
  
  

2  The BlueGene/L Supercomputer 
  
An initial small-scale prototype of IBM’s supercomputer BlueGene/L [3], equipped with just 
1024 of the custom-made IBM PowerPC 440 FP2 processors (512 two-way SMP chips) 
achieved a LINPACK performance of Rmax = 1.44 Tflop/s, i.e., 70% of its theoretical peak per-
formance of 2.05 Tflop/s. This performance ranks the prototype machine already on position 
73 of the Top500 list (November 2003).  

The BlueGene/L prototype machine is roughly 1/20th the physical size of machines of 
comparable compute power— such as Linux clusters —that exist today. 
  The full-fledged 64k processor BlueGene/L machine that is currently being built for 
the Lawrence Livermore National Laboratory (LLNL) will be 128 times larger, occupying 64 
full racks. When completed in 2005, the BlueGene/L supercomputer is expected to lead the 
Top500 list. Compared with today’s fastest supercomputers, it will be an order of magnitude 
faster, consume 1/15th of the power and be 10 times more compact than today’s fastest super-
computers. 
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The BlueGene/L machine at LLNL will be built from 65,536 PowerPC 440 FP2 proc-
essors connected by a 3D torus network leading to 360 Tflop/s peak performance. The Earth 
Simulator, currently leading the Top500 list, achieves 40 Tflop/s peak performance. The final 
BlueGene/L processors will run at 700 MHz, whereas the current prototype runs at 500 MHz. 
  
BlueGene/L’s Floating-Point Unit.  There are many areas of scientific computing like com-
putational electronics where complex arithmetic plays an important role. Thus, it makes sense 
to integrate native complex arithmetic support into the FPU of computers that are mainly de-
voted to such applications. 

BlueGene/L’s new SIMOMD style (Single Instruction, Multiple Operation, Multiple 
Data) ISA extension provide the functionality of either a complex FPU or a real two-way vec-
tor FPU, depending on the techniques used for utilizing the relevant hardware features.  

Programs using complex arithmetic can be mapped to BlueGene/L’s custom FPU in a 
straightforward manner. However, problems arise when the usage of real code is unavoidable. 
Even for purely complex code it may be necessary to express complex arithmetic in terms of 
real arithmetic. In particular, switching to real code allows to apply common sub-expression 
elimination, constant folding, and copy propagation on the real and imaginary parts. For code 
as occurring in DSP transforms this is required to obtain satisfactory performance. 

As BlueGene/L’s ISA extension includes all classical short vector SIMD style (inter-
operand, parallel) instructions as supported by Intel’s SSE2, it can also be used to accelerate 
real computations if the algorithm allows for enough parallelism to be extracted. As a conse-
quence, real codes have to be vectorized as well. 

BlueGene/L’s floating-point double FPU was obtained by replicating the PowerPC 
440’s standard FPU and adding crossover data paths and sign change capabilities to support 
complex multiplication leading to the PowerPC 440 FP2.  Up to four real floating-point op-
erations (one two-way vector fused multiply-add operation) can be issued every cycle. This 
double FPU has many similarities to industry standard two-way short vector SIMD extensions 
like AMD’s 3DNow! or Intel’s SSE2. In particular, data to be processed by the double FPU 
has to be naturally aligned on 16 byte boundaries in memory. 

However, the PowerPC 440 FP2 has some characteristics that are different from stan-
dard short vector SIMD implementations:  (i) short vector fused multiply-add (SIMD FMA) 
operations with crossover dataflow (required for complex multiplications), (ii) computation-
ally expensive data reorganization within two-way registers, and (iii) cheap intermix of scalar 
and vector operations. 

The main problem in the context of presently available vectorization techniques is that 
a single data reorder operation within a short vector SIMD register is as expensive as an 
arithmetic two-way FMA operation. In addition, every cycle either a floating-point operation 
or a data reorganization instruction can be issued. Thus, without tailor-made adaptation of 
established short vector SIMD vectorization techniques to the specific features of 
BlueGene/L’s double FPU, no high-performance short vector code can be obtained. 
  
Utilizing the Double FPU in Programs.  To utilize BlueGene/L’s double FPU within a nu-
merical library, three approaches can be pursued: (i) Implement the numerical kernels in C 
utilizing proprietary directives such that IBM’s VisualAge XL C compiler for BlueGene/L is 
able to vectorize these kernels, (ii) rewrite the numerical kernels in assembly language using 
the double FPU instructions, or (iii) rewrite the numerical kernels utilizing XL C’s language 
extension to C99 that provides access to the double FPU on source level by means of data 
types and intrinsic functions. 

 3



The GNU C compiler port for BlueGene/L supports the utilization of not more than 32 
temporary variables when accessing the double FPU. This constraint prevents automatic per-
formance tuning on BlueGene/L. 
  This paper describes how vector code can be generated following the third approach 
utilizing the XL C compiler’s vector data types and intrinsic functions to access the double 
FPU. Thus, register allocation and instruction scheduling is left to the compiler while vectori-
zation and instruction selection is done on source code level by the newly developed ap-
proach. 
  

3  Automatic Tuning of DSP Software 
  
In the field of scientific computing, digital signal processing (DSP) transforms, including the 
discrete Fourier transform (DFT), the Walsh-Hadamard transform (WHT), and the family of 
discrete sine and cosine transforms (DSTs, DCTs) are-despite numerical linear algebra algo-
rithms-core algorithms of almost any computationally intensive software. Thus, the applica-
tions of DSP transforms range from small scale problems with stringent time constraints (for 
instance, in real time signal processing) up to large scale simulations and PDE programs run-
ning on the world’s largest supercomputers. Therefore, high-performance software tailor-
made for these applications is desperately needed. 

All the transforms mentioned above are structurally complex, leading to complicated 
algorithms that are difficult to map onto standard hardware efficiently.  

The traditional method for achieving highly optimized numerical code is hand coding 
in assembly language. Beside the fact that this approach requires a lot of expertise, its major 
drawback is that the resulting code is error prone and non-portable. Thus, hand-coding is an 
infeasible approach to performance portable software. Recently, a new software paradigm 
emerged in which optimized code for numerical computation is generated automatically. New 
standards were set by ATLAS in the field of numerical linear algebra and FFTW which intro-
duced automatic performance tuning in FFT libraries. In the field of digital signal processing 
(DSP), SPIRAL is providing automatically tuned codes for large classes of DSP transforms by 
utilizing state-of-the-art coding and optimization techniques. 

These software packages use code generators to produce code which cannot be struc-
turally compared to hand written code. The code consists of up to thousands of lines of code 
in static single assignment (SSA) style.  

Nevertheless, the codes generated by ATLAS, SPIRAL and FFTW are translated using 
standard compilers enabling portability but achieving satisfactorily high performance in con-
nection with this type of numerical code is impossible. 

For top performance in connection with such codes, the exploitation of special proces-
sor features such as short vector SIMD or FMA instruction set architecture extensions is a 
must.  

Unfortunately, approaches used by vectorizing compilers to vectorize loops or basic 
blocks lead to inefficient code when applied to automatically generated codes for DSP trans-
forms. The vectorization techniques entail large overhead for data reordering operations on 
the resulting short vector code as they do not have domain specific knowledge about the 
codes’ inherent parallelism. 
  
SPIRAL.  SPIRAL [40] is a generator for high performance code for discrete linear transforms 
like the discrete Fourier transform (DFT), the discrete cosine transforms (DCTs), and many 
others. SPIRAL uses a mathematical approach that commutes the implementation problem of 
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discrete linear transforms to a search problem in the space of structurally different algorithms 
and their possible implementations to generate code that is adapted to a given computing plat-
form. 

SPIRAL’s approach is to represent the multitude of different algorithms for a signal 
transform as formulas in a concise mathematical language based on the Kronecker product 
formalism. 
SPIRAL utilizes the signal processing language SPL to represent Kronecker product formulas 
in a high-level computer language. These formulas expressed in SPL are automatically gener-
ated by the formula generator and automatically translated into code by SPIRAL’s special pur-
pose SPL compiler, thus enabling automated search.  
  
FFTW.  The first effort to automatically generate high-performance FFT code was FFTW 
[19,20]. Typically, it produces code that runs faster than publicly available FFT codes and 
compares well to vendor libraries. A dynamic programming approach relying on a recursive 
implementation of the Cooley-Tukey FFT algorithm [44] provides for the adaptation of the 
FFT computation of a given size to a given target machine at runtime. The actual computation 
is done within routines called (twiddle and no-twiddle) codelets produced by a program gen-
erator named GENFFT [18]. 
  

4  Generating Vector Code for BlueGene/L 
  
This chapter describes two approaches to automatically vectorizing FFT code generated by 
SPIRAL [40]: (i) Formal vectorization of FFT algorithms, and (ii) vectorization of basic blocks 
of automatically generated code. Both techniques were adapted to BlueGene/L’s specifics and 
both of them utilize SPIRAL’s search capabilities leading to automatically tuned FFT imple-
mentations that run on BlueGene/L at very high efficiency. 
  
Formal Vectorization.  The formal vectorization approach [12, 13, 14, 15, 16, 17] developed 
for classical short vector SIMD extensions like Intel’s SSE family, AMD’s 3DNow! family, 
and Motorola’s AltiVec has been ported successfully to BlueGene/L’s FPUs [29]. This kind 
of vectorization is based on the SIMD vectorizing version of SPIRAL’s SPL compiler [15] that 
enables the SPIRAL system to automatically optimize code targeted at one processor of the 
BlueGene/L machine. 
  
Vectorizing FFTW 3.0.  The new version FFTW 3.0.1 supports the SIMD extensions SSE, 
SSE2, 3DNow!, and AltiVec. A new algorithm is used to compute complex DFTs  by means 
of two-way parallel computation of real DFTs (RDFTs). An important part in porting 
FFTW 3.0 to BlueGene/L is the mapping of the SIMD instructions required by FFTW’s imple-
mentation to actually existing instructions on BlueGene/L. 

FFTW’s SIMD implementation [20] is based on the linearity of DFTs, 
)()()( bRDFTiaRDFTbiaDFT NNN

rrrr
×+=+ , 

and requires the  computation of y = a + ib, with complex a, b, and y, once for every output 
element per FFTW codelet. One key issue is to implement this operation efficiently utilizing 
BlueGene/L’s special FMA instructions. 

A straight-forward implementation of the multiplication by i that minimizes the num-
ber of arithmetic operations is given by 

y = __fpadd(a,__fsneg(__fxmr(b))) 
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in XL C99 intrinsic syntax. This implementation requires three instructions for two flops and 
one sign change and thus wastes ten out of twelve flops (when a sign change is not considered 
as a flop). 

A BlueGene/L specific implementation that utilizes the PowerPC 440 FP2 specific 
FMA instruction 

__fxmadd((ap,as),(bp,bs),(cp,cs))=(ap+bs*cp, as+bp*cs) 

is given by 
y = __fxmadd(c,b,__cmplx(-1,1)) 

leading to only one instruction. This implementation introduces artificial multiplications by 
one and minus one to allow the utilization of a cross FMA provided by the double FPU. In 
subsequent optimization, constant folding may even change the artificial multiplications into 
real ones. 
  
The MAP Vectorizer.  The Vienna MAP vectorizer [27, 28, 30] that extracts two-way SIMD 
parallelism out of automatically generated numerical straight-line code was adapted to support 
BlueGene/L’s FPUs. As a supplement to the MAP vectorizer a peephole optimizer enables the 
extraction of fused multiply-add SIMD instructions. A thorough description of the Vienna 
MAP vectorizer can be found in Section 4.4. 

Fig. 2 gives an example of short vector SIMD code obtained by vectorizing straight-
line complex FFT code. 
  

    
 

Figure 2: Vectorization of a Scalar FFT of Size 3. The scalar data flow in the left part of the 
illustration is computationally equivalent to the vectorized data flow depicted in the right part. 
 
  
Related Vectorization Techniques.  Some methods for vectorizing basic blocks [11, 32, 33] 
try to find an efficient mix of SIMD and scalar instructions to carry out the required computa-
tion whereas MAP’s vectorization principle mandates that all computation is performed by 
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SIMD instructions. The MAP vectorizer makes an attempt to fully utilize the power of SIMD 
instructions while trying to keep the SIMD 
reordering overhead reasonably small. 

The vectorization method of [32] introduces more SIMD data reordering instructions 
than necessary, as it is unable to resort to a representation of the numerical scalar DAG as 
vectorization input, and is thus deprived of this parallelism revealing instrument. This ap-
proach is not a suitable choice for handling typical numerical codes, e. g., FFTs, efficiently, as 
explicit SIMD data reordering operations are very expensive on BlueGene/L’s FPU. 
  

5  The Vienna MAP Vectorizer 
  
The Vienna MAP vectorizer automatically extracts two-way short vector SIMD parallelism 
out of a scalar code block by adequately combining scalar variables to SIMD variables and by 
joining the corresponding scalar instructions to one or more short vector SIMD instructions, 
as illustrated in Fig. 3. The MAP vectorizer targets automatically generated code that solely 
consists of arithmetic operations and read/write array access operations involving index com-
putation. 

Ideally, two-way vectorization transforms any pair of scalar instruction to one SIMD 
instruction yielding 100% SIMD utilization. This maximum is achievable only for completely 
parallel scalar DAGs. For DAGs with less parallelism, SIMD reordering instructions are re-
quired, at the costs of reduced SIMD utilization. As not all combinations of scalar operations 
may be joined into one SIMD instruction (as defined by the ISA extension of the target proc-
essor), the vectorizer’s realistic goals are (i) to completely cover the given scalar DAG by 
natively supported SIMD instructions while achieving (ii) a satisfactory runtime performance, 
which is tantamount to minimizing SIMD data reorganization.   

     

  → 

         add(A,B,C), add(D,E,F) → v_add(AD,BE,CF) 
  
Figure 3: Example of Two-way Vectorization. Ideally, two scalar instructions are trans-
formed into one vector instruction to achieve optimal SIMD coverage. 
  
 

5.1  Fundamentals of Vectorization 
 

A thorough description of the two-way vectorization algorithm rests upon the following fun-
damentals. 
  
Variable Fusion.  Two scalar variables A, B can be fused either to a SIMD variable of the 
form AB = (A,B) or the other way round, BA = (B,A), where AB ≠ BA.  Moreover, no scalar 
variable can be part of two different SIMD variables. 
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An already existing fusion AB = (A,B) is said to be compatible to another fusion CD = 
(C,D) requested in the vectorization process, if and only if AB = CD or A = D and B = C. In 
the first case, fusion CD requested compatible has not to be generated as AB can be used. In 
the second case, a SIMD swap operation is required to maintain data flow consistency when 
using fusion the AB instead of generating and using CD (see Fig. 4). 
  
                                   Requested   Compatible 

    
 
Figure 4: Compatible Fusion.  The vectorization process requests a fusion CD = (C,D). The 
existing fusion AB = (D,C) is used as input operand to a swap instruction whose output T can 
be used whenever CD is needed. 
  
Operation Joining.  Joining rules specify ways of pairwise transforming scalar instructions 
into one or more SIMD instructions. The MAP vectorizer supports transformations of the fol-
lowing instruction combinations: (i) load/load, (ii) store/store, (iii) unary/unary, (iv) bi-
nary/binary, (v) unary/binary, (vi) unary/load, and (vii) load/binary. Joining rules (i) and (ii) 
support the transformation of memory operations accessing consecutive and non-consecutive 
memory locations as illustrated in the example of Fig. 6.  Rules (iii) and (iv) allow the pairing 
of instructions of the same type only, while (v) to (vii) also allow mixed type pairings (see 
Fig. 7). 

Rules of type (iii) fuse the two source operands S1 and S2 for transforming two unary 
instructions (uop1,S1,D1) and (uop2,S2,D2). 

Rules of type (iv) provide several alternatives (see Fig. 8). As they target two binary 
instructions (bop1,S1,T1,D1) and (bop2,S2,T2,D2), different possibilities for choosing the 
fusion partners among the four source operands S1, T1, S2 and T2 arise. Thus, three layouts, 
ACC, PAR and CHI defining the possibilities for fusing the operand variables for binary in-
structions as shown in Fig. 5 are introduced. ACC is needed to fuse variables used as oper-
ands for SIMD instructions of intra-operand style, whereas PAR and CHI are meant for those 
of parallel style as illustrated in Fig. 8. 

  
                              ACC                   PAR                  CHI 

 

     
 
Figure 5: Fusion Layouts. Three layouts for fusing the source variables of the scalar 
instructions (op1,S1,T1,D1) and (op2,S2,T2,D2) are supported. 
 
 
Vectorization Quality.  To extract high performance short vector SIMD code distinguished 
by good SIMD utilization, the joining rules include SIMD reorder instructions only in the 
unavoidable case of a compatible fusion demanding a swap instruction. The majority of the 
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extracted swaps can be removed by applying a peephole optimization directly after the vec-
torization process. 

The vectorization engine starts out by constraining all SIMD memory operations to 
access consecutive locations and by disabling the sub-optimal pairing rules (v)-(vii). If these 
restrictions cause the vectorization process to fail, it is restarted after enabling operation pair-
ing rules (v)-(vii) and support for less efficient, i.e., non-consecutive, memory access opera-
tions. This extension substantially augments the class of vectorizable codes by allowing the 
extraction of some less efficient instruction combinations. 
  

5.2  The Vectorization Algorithm 
 

Before the actual vectorization process is started, the following preparatory steps are taken.  
First, a dependency analysis is performed on the scalar DAG. Then, instruction statis-

tics are assembled, which provide instruction counts for each instruction type and operation. 
Data gathered in these first two steps is used as heuristics to speed up the vectorization proc-
ess by avoiding futile vectorization attempts. 

Finally, store instructions are combined non-deterministically by fusing their respec-
tive source operands. 
    
                                   Scalar            ACC                 PAR               CHI     

   
 

Figure 8: Vectorization Alternatives.  Two scalar instructions, one addition and one sub-
traction, are transformed into a sequence of SIMD instructions in three different ways. 
 
 
The Actual Vectorization.  The vectorization algorithm consists of two steps. 

 (i)  Pick I1 = (op1,s1,t1,d1) and I2 = (op2,s2,t2,d2), i.e., two scalar instructions that 
have not been vectorized yet, with (d1,d2) or (d2,d1) being an existing fusion. 

(ii)  The two scalar operations op1 and op2 are paired non-deterministically, yielding 
an equivalent sequence of SIMD operations. This step may impose the need for new fusions if 
no compatible fusions are available. In this case, the layout for the fusion of the respective 
source operands s1, t1, s2 and t2 is mandated by the pairing rule. The vectorization process 
has to ensure that no scalar variable is part of two different fusions. 

The vectorizer alternatingly applies steps (i) and (ii) until either the vectorization suc-
ceeds, i.e., thereafter all scalar variables are part of at most one fusion and all scalar opera-
tions have been paired, or the vectorization fails. If the vectorizer succeeds, it immediately 
commits to the first solution of the search process, which keeps the vectorization runtime rea-
sonably small. 
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Although a search for the solution that achieves the shortest runtime would be desir-
able, it is not feasible using the current version of the vectorizer, even for relatively small 
straight-line codes. 
  
Non-determinism in Vectorization.  Non-determinism in vectorization arises due to vectori-
zation alternatives like ACC, PAR and CHI for binary/binary pairings. For a fusion (d1,d2) 
there may be several layouts for fusing the source operands s1, t1, s2 and t2, depending on the 
pairing (op1,op2), as illustrated in Fig. 8. This kind of non-determinism widens the search 
space of the vectorizer’s backtracking search engine. 

The rule ranking, i.e., the order in which vectorization alternatives are tried, may in-
fluence the order of the solutions of the vectorization process. As the vectorizer always com-
mits to the first solution, the rule ranking is adapted such that the first solution favors instruc-
tion sequences which are particularly well-suited for the given target machine, taking the dif-
ferent costs of individual instructions (see Fig. 9) into account. 

Nevertheless, the ranking must be seen as something like an extraction „hint“. At 
every point of decision the search engine initially tries the rule that is ranked first. If this does 
not lead to a vectorization, later ranked rules are used as well, even if their application leads to 
the extraction of pseudo instructions that are not supported on the target ISA. This kind of 
retreat is unavoidable as a complete vectorization is the central goal. 
 

ISA 
 
SIMD Op 

basic 
3Dnow! 
(K6-II+) 

ext. 
3Dnow! 
(K7/K8) 

SSE2 
(P4/K8) 

SSE3 
(P4e) 

IA64 
(Itanium) 

Double FPU 
(440FP2) 

Load/Store 1 1 1 1 1 1 
Uniform Unpack   
Mixed Unpack   

1 
2 

1 
2 

1 
2 

1 
2 

1 
1 

2 
2 

Uniform ACC 
Mixed ACC 

1 
2 

1 
1 

3 
4 

1 
2 

3 
3 

5 
5 

Uniform PAR  
Mixed PAR 

1 
2 

1 
2 

1 
2 

1 
1 

1 
1 

1 
1 

PAR FMA 2 2 2 2 1 1 
 
Figure 9: Relatives Costs of SIMD Operations.  For a selection of ISA extensions, the 
number of actual SIMD instructions necessary to implement the respective SIMD operations, 
is given. This data directly influences the rule ranking used by the MAP vectorizer. 

5.3  The Realization of the Vectorization Engine  
 
MAP’s vectorization algorithm is implemented using a depth-first search engine with chrono-
logical backtracking. 

The vectorization engine’s backtracking capability is indispensable when a fusion, re-
quested by the current vectorization alternative, does not comply with the globally existing 
fusions, i.e., in cases when it is impossible to ensure that the scalar variables considered for 
the new fusion are not already participating in existing fusions. 

In such a case, the search engine backtracks to the last non-deterministic point of deci-
sion. There, another vectorization alternative is chosen and correspondingly fusions of differ-
ent layout are requested and generated if necessary. If these fusions comply with the set of 
existing fusions the vectorization process commits to this rule. Otherwise, backtracking is 
chronologically applied repeatedly until either a vectorization is obtained or the search space 
is exhausted. In the latter case, the vectorization engine was not able to find a valid fusion set 
for the given scalar DAG. 
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6  The Vienna MAP Optimizer 
 

The Vienna MAP Optimizer is a rule-based local rewriting system that implements peephole 
optimization on vector DAGs. It post-processes the output of the MAP vectorizer, and com-
prises two groups of rewriting rules. Finally, the optimized output is sorted topologically, in 
an attempt to minimize the lifespan of variables by improving the locality of variable ac-
cesses, using a scheduling algorithm based on the scheduler of GENFFT [18]. 
 

The first group of rewriting rules aims at general optimizations such as (i) the minimi-
zation of the instruction count, (ii) redundancy and dead code elimination, (iii) the reduction 
of the number of source operands (which reduces register pressure), (iv) the minimization of 
the  critical path length of the vector DAG, (v) copy propagation, and (vi) constant folding. 
On target architectures supporting FMAs (Intel Itanium, IBM PowerPC 440FP2) FMAs are 
extracted by combining multiplications (or sign changes) with directly dependent additions 
(or subtractions or already existing FMAs) into FMAs. If this direct combination is not possi-
ble at first, the respective instructions are moved down in the DAG, in an attempt to fold them 
into other instructions. 
 

The second group of rewriting rules is target architecture specific. When optimizing 
for the IBM PowerPC 440 FP2 used in BlueGene/L, vector swap instructions are fold into 
FMAs, utilizing vector cross FMA instructions exclusively available on BlueGene/L, using a 
method similar to extracting FMAs. 
 

                             
v_chsLo(A,B)       v_sub(A,C,D) 
v_chsHi(C,D)              → v_chsLo(D,E) 
v_add(B,D,E) 

 
Figure 9: Example of a General Optimization Rule.  A vector add instruction 
v_add(B,D,E) taking the output of two sign change instructions, one on the lower part 
v_chsLo(A,B) and another on the higher part v_chsHi(C,D) of two different registers, as its’ 
inputs is transformed into a vector subtraction v_sub(A,C,D) and a subsequent vector sign 
change v_chsLo(D,E) instruction. 
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v_chsHi(A,T1)         
v_swap(T1,T2)              → v_cfmac(A,(-Kl,Kh),B,C) 
v_mulC(T2,(Kl,Kh),T3) 
v_add(T3,B,C) 
 

Figure 9: Example of a BlueGene/L Specific Optimization Rule.  A vector mulconst in-
struction v_mulC(T2,(Kl,Kh),T3) taking the output of  a vector swap instruction 
v_swap(T1,T2) preceded by a vector sign change v_chsHi(A,T1) is transformed into a vector 
cross FMA instruction v_cfmac(A,(-Kl,Kh),B,C), if the contents of the temporary variables T1, 
T2, and T3 are not referenced anywhere else in the vector DAG. 

 
6  Experimental Results 
  
The presented vectorization techniques were evaluated on an early BlueGene/L prototype. 
Performance data of 1D FFTs with vector lengths N = 22, 23,…, 210 were obtained on a single 
PowerPC 440 FP2 running at 500 MHz. In addition, FFTW no-twiddle codelets for size 2, 
3,…, 16, 32, and 64 were vectorized using the Vienna MAP vectorizer. For the same problem 
sizes, FFTW 3.0 SIMD codelets ported to BlueGene/L were assessed. 

Fig. 12 compares different FFT implementations for vector lengths N = 22, 23,…,210. 
In particular the following FFT implementations were tested: (i) The best vectorized code 
obtained using all technologies presented in this paper (LIBDFT), (ii) the best scalar FFT im-
plementation found by SPIRAL (XL C’s vectorizer and FMA extraction turned off), (iii) the 
best vectorized FFT implementation found by SPIRAL using the XL C compiler’s vectorizer 
and FMA extraction turned on, and (iv) the mixed-radix FFT implementation provided by the 
GNU scientific library (GSL).  

 
static const _Complex double __align(16) VECT_CONST1 =  
 __cmplx(-1.000000000000000, -1.000000000000000); 
... 
static const _Complex double __align(16) VECT_CONST21 =  
 __cmplx(+0.634393284163645, +0.773010453362737); 
  
void DFT_64(double *y, double *x)  
{ 
   _Complex double f0;    
   ... 
   _Complex double f603; 
   f0 = __lfpd((double *)(x+64)); 
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   f1 = __lfpd((double *)(x+0)); 
   f2 = __fpadd(f0,f1); 
   f3 = __fpmadd(f0,VECT_CONST1,f1); 
   ... 
   f417 = __cmplx(__creal(f415),__creal(f416)); 
   f418 = __cmplx(__cimag(f415),__cimag(f416)); 
   ... 
   f602 = __fpmadd(f511,VECT_CONST2,f407); 
   f603 = __fpmadd(f358,VECT_CONST3,f476); 
   __stfpd((double *)(y+34), t602); 
   __stfpd((double *)(y+98), t603);  
} 

  

Figure 11: Example output of BlueGene/L MAP vectorizer. Scalar code for a DFT64 gener-
ated by SPIRAL is vectorized using XL C99 intrinsics. 
  
  
  

GSL Mixed Radix
Best vectorized code (IBM XL C)

Best scalar code
libdft

Floating-Point Performance

Vector Length N

Gflop/s

2102928272625242322

1.5

1.0

0.5

0

 
  
  

Figure 12:  Performance of the vectorization techniques introduced by this paper (LIBDFT) 
compared to the best scalar code and the best vectorized code (utilizing the VisualAge XLC 
for BlueGene/L vectorizing compiler) found by SPIRAL. Performance is displayed in pseudo 
Gflop/s (5N log N/runtime with N being the vector length). 
 
 
The combination of all methods as implemented in LIBDFT leads to 60% speed-up w.r.t. the 
best scalar codes generated by SPIRAL for smaller problem sizes and 20% speed-up for larger 
problem sizes. Thus formal vectorization provides significant speed-up for larger problem 
sizes. 

The third-party GNU GSL FFT library reaches about 30% of the performance of the 
best scalar SPIRAL generated code thus performing badly. 

XL C’s vectorization and FMA extraction produces code 15% slower than scalar XL 
C without FMA extraction. Thus, the vectorization techniques to vectorize straight-line code 
currently used within the XL C compiler cannot handle SPIRAL generated FFT codes well. 

Fig. 13 compares the speed of scalar FFTW codelets to the speed of codelets vectorized 
by the XL C compiler and codelets vectorized by the Vienna MAP vectorizer. While the vec-
torization obtained by the Vienna MAP vectorizer speeds up the computation significantly, 
XL C compiler provides only small speed-ups and sometimes even slows down the computa-
tion. 
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Fig. 14 compares FFTW 3.0 SIMD codelets ported to BlueGene/L to the vectorization 
capabilities of the XL C compiler. The trend in Fig. 14 is similar to Fig. 13:  The XL C com-
piler’s vectorization provides small speed-ups and sometimes slows down the code while 
FFTW’s SIMD codelets speed up the computation significantly. 
   
 
  

IBM XL C scalar
IBM XL C Vect. Comp. FMA

Vienna MAP Vect. FMA

Speed-up of Vectorized FFTW No-Twiddle Codelets on BlueGene/L

Codelet Size

64321615141312111098765432

2.0

1.5

1

0.5

 
  

Figure 13: Speed-up of the vectorization techniques applied by the MAP vectorizer compared 
to scalar code and code vectorized by IBM’s VisualAge XL C compiler.  
  
  
  

IBM XL C scalar
IBM XL C Vect. Comp. FMA

FFTW 3 SIMD Intrinsics

Speed-up of FFTW 3.0 SIMD No-Twiddle Codelets on BlueGene/L

Codelet Size

64321615141312111098765432

2.0

1.5

1

0.5

 
  

Figure 14: Speed-up of the FFTW 3.0 SIMD codelets compared to scalar code and code vec-
torized by IBM’s VisualAge XL C compiler.  
  

7  Conclusions and Outlook 
  
As FFTs are indispensable parts of practically all kinds of applications in scientific comput-
ing, efficient FFT software is urgently needed by BlueGene/L’s scientific users. The perform-
ance portable vectorization techniques introduced in this paper allow timely software optimi-
zation concurrently done with IBM BlueGene/L’s hardware development. Besides the formal 
vectorization techniques, the highly portable Vienna MAP vectorizer can be used to automati-
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cally vectorize numerical straight line code generated by advanced automatic performance 
tuning software like FFFTW or SPIRAL helping to develop highly efficient implementations of 
FFT kernels. 

Performance experiments carried out on a BlueGene/L prototype show that automatic 
performance tuning in combination with the two newly developed vectorization approaches is 
able to speed up FFT code considerably, while vectorization by the current version of IBM’s 
XL C compiler does not speed up the automatically generated scalar codes at all. The two 
vectorization approaches of this paper are able to provide high-performance FFT kernels for 
the BlueGene/L supercomputer by fully utilizing the new double FPU. 

Nevertheless, even better performance results will be obtained by further improving 
the current version of the Vienna MAP vectorizer. An integral part of the future work will be 
to fully fold any SIMD data reorganization into SIMD fused multiply add instructions. Be-
sides, a compiler backend is in development which uses a register allocation that is better 
suited for numerical straight-line code than the backend of IBM’s XL C compiler. 
  
 
Acknowledgements.  Special thanks go to Manish Gupta, José Moreira, and their group at 
IBM T. J. Watson Research Center (Yorktown Heights, N.Y.) for making it possible to work 
on the BlueGene/L prototype and for a very pleasant and fruitful cooperation. 

The Center for Applied Scientific Computing at Lawrence Livermore National Labo-
ratory (LLNL) deserves particular appreciation for ongoing support. 

Additionally, we would like to acknowledge the financial support of the Austrian sci-
ence fund FWF. 
  

References 
  
[1] D. Aberdeen and J. Baxter, „Emmerald: a fast matrix-matrix multiply using Intel’s SSE instructions,“ Con-
currency and Computation: Practice and Experience, vol. 13, no. 2, pp. 103-119, 2001. 
  
[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools. Addison-Wesley Pub-
lishing Company, 1986. 
  
[3] G. Almasi et al., „An overview of the BlueGene/L system software organization,“ Proceedings of the Euro-
Par ‘03 Conference on Parallel and Distributed Computing LNCS 2790, 2003. 
 
[4] AMD Core Math Library (ACML) Manual, Advanced Micro Devices Corporation, 2000. 
  
[5] ANSI, „ISO/IEC 9899:1999(E), Programming Languages – C,“ American National Standard Institute 
(ANSI), New York, 1999. 
  
[6] L. A. Belady, „A study of replacement algorithms for virtual storage computers,“ IBM Systems Journal, vol. 
5, no. 2, 1966. 
  
[7] J. Bilmes, K. Asanovic, C. W. Chin, J. Demmel, „Optimizing Matrix Multiply using PHIPAC: a Portable, 
High-Performance, ANSI C Coding Methodology,“ in Proceedings of the International Conference on Super-
computing, ACM, Vienna, Austria, pp. 340-347, 1997. 
  
[8] R. Crandall and J. Klivington, „Supercomputer-style FFT library for the Apple G4,“ Advanced Computation 
Group, Apple Computer Inc., 2002. 
  
[9] J. Demmel, J. Dongarra, V. Eijkhout, and K. Yelick, „Automatic performance tuning for large scale scientific 
applications.“ to appear in IEEE Special Issue on Program Generation, Optimization, and Platform Adaptation. 
  

 15



[10] R. J. Fisher and H. G. Dietz, „The SCC Compiler: SWARing at MMX and 3DNow,“ in 12th Annual Work-
shop on Languages and Compilers for Parallel Computing (LCPC99), 1999. 
  
[11] ―, „Compiling for SIMD within a register,“ in Languages and Compilers for Parallel Computing, pp. 290–
304, 1998. [Online]. Available: citeseer.ist.psu.edu/fisher98compiling.html 
  
[12] F. Franchetti, „A portable short vector version of FFTW,“ in Proceedings Fourth IMACS Symposium on 
Mathematical Modelling (MATHMOD 2003), vol. 2, pp. 1539–1548, 2003. 
  
[13] ―, „Performance portable short vector transforms,“ Ph. D. Thesis, Institute for Applied Mathematics and 
Numerical Analysis, Vienna University of Technology, 2003. 
  
[14] F. Franchetti, H. Karner, S. Kral, and C. W. Ueberhuber, „Architecture independent short vector FFTs,“ in 
Proceedings ICASSP, vol. 2, pp. 1109–1112, 2001. 
  
[15] F. Franchetti and M. Püschel, „A SIMD Vectorizing Compiler for Digital Signal Processing Algorithms,“ in 
Proceedings IPDPS, pp. 20–26, 2002. 
  
[16] ―, „Short vector code generation and adaptation for DSP algorithms.“ in Proceedings of the International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP’03), vol. 2, pp. 537–540, 2003. 
  
[17] ―, „Short vector code generation for the discrete Fourier transform.“ in Proceedings of the 17th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’03), pp. 58–67, 2003. 
  
[18] M. Frigo, „A fast Fourier transform compiler,“ in Proceedings of the ACM SIGPLAN ‘99 Conference on 
Programming Language Design and Implementation. New York, ACM Press, pp. 169–180, 1999. 
  
[19] M. Frigo and S. G. Johnson, „FFTW: An Adaptive Software Architecture for the FFT,“ in ICASSP 98, vol. 
3, pp. 1381–1384, 1998,  http://www.fftw.org 
  
[20] ―, „The design and implementation of FFTW,“ to appear in IEEE Special Issue on Program Generation, 
Optimization, and Platform Adaptation. 
  
[21] J. Guo, M. Garzaran, and D. Padua, „The power of Belady’s algorithm in register allocation for long basic 
blocks,“ Proceedings of the LCPC, 2003. 
  
[22] Intel Corporation, „AP-808 split radix fast Fourier transform using streaming SIMD extensions,“ 1999. 
  
[23] ―, „Intel C/C++ compiler user’s guide,“ 2002. 
  
[24] ―, „Math kernel library,“ 2002. [Online]. Available: http://www.intel.com/software/products/mkl 
  
[25] J. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, „A methodology for designing, modifying, and 
implementing Fourier transform algorithms on various architectures,“ IEEE Trans. on Circuits and Systems, vol. 
9, pp. 449–500, 1990. 
  
[26] N. P. Jouppi and D. W. Wall, „Available instruction-level parallelism for superscalar and super-pipelined 
machines,“ Digital Western Research Laboratory, Palo Alto, California, WRL Research Report 7, 1989. 
  
[27] S. Kral, F. Franchetti, J. Lorenz, and C. Ueberhuber, „SIMD vectorization of straight line FFT code,“ Pro-
ceedings of the Euro-Par ‘03 Conference on Parallel and Distributed Computing LNCS 2790, pp. 251–260, 
2003. 
  
[28] ―, „FFT compiler techniques,“ Proceedings of the 13th International Conference on Compiler Construction 
LNCS 2790, pp. 217–231, 2004. 
  
[29] S. Kral, F. Franchetti, J. Lorenz, M. Püschel, C. Ueberhuber, and P. Wurzinger, „Automatically Optimized 
FFT Codes for the BlueGene/L Supercomputer,“ in VecPar Proceedings on High Performance Computing for 
Computational Science, 2004. 
  

 16



[30] ―, „Efficient Utilziation of SIMD Extensions,“ to appear in IEEE Proceedings Special Issue on Program 
Generation, Optimization, and Platform Adaption. 
  
[31] S. Lamson, „SCIPORT,“ 1995. [Online]. Available: http://www.netlib.org/scilib/ 
  
[32] S. Larsen and S. Amarasinghe, „Exploiting super-word level parallelism with multimedia instruction sets,“ 
ACM SIGPLAN Notices, vol. 35, no. 5, pp. 145–156, 2000. 
  
[33] R. Leupers and S. Bashford, „Graph-based code selection techniques for embedded processors,“ ACM 
Transactions on Design Automation of Electronic Systems., vol. 5, no. 4, pp. 794–814, 2000. [Online]. 
http://citeseer.nj.nec.com/leupers00graph.html 
  
[34] M. Lorenz, L. Wehmeyer, and T. Draeger, „Energy aware compilation for DSPs with SIMD instructions,“ 
Proceedings of the 2002 Joint Conference on Languages, Compilers, and Tools for Embedded Systems & Soft-
ware and Compilers for Embedded Systems (LCTES’02-SCOPES’02)., pp. 94–101, 2002. [Online]. 
http://citeseer.ist.psu.edu/lorenz02energy.html 
  
[35] D. Mirkovic and S. L. Johnsson, „Automatic Performance Tuning in the UHFFT Library,“ in Proceedings 
ICCS’01, pp. 71–80, 2001. 
  
[36] J. M. F. Moura, J. Johnson, D. Padua, M. Püschel, and M. Veloso, „SPIRAL.“ to appear in IEEE Special 
Issue on Program Generation, Optimization, and Platform Adaptation. 
  
[37] S. S. Muchnick, Advanced Compiler Design and Implementation. Morgan Kaufmann Publishers, San Fran-
cisco, 1997. 
  
[38] K. Nadehara, T. Miyazaki, and I. Kuroda, „Radix-4 FFT implementation using SIMD multi-media instruc-
tions,“ in Proceedings ICASSP 99, pp. 2131–2135, 1999. 
  
[39] I. Nicholson, „libSIMD,“ 2002. [Online]. Available: http://libsimd.sourceforge.net 
  
[40] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, and R. W. Johnson, 
„SPIRAL: A generator for platform-adapted libraries of signal pro cessing algorithms,“ Journal on High Perform-
ance Computing and Applications, special issue on Automatic Performance Tuning, Vol. 18, pp. 21–45, 2004, 
http://www.SPIRAL.net
  
[41] N. Sreraman and R. Govindarajan, „A vectorizing compiler for multimedia extensions,“ Int. Journal of 
Parallel Programming, vol. 28, no. 4, pp. 363–400, 2000. 
  
[42] Y. Srikant and P. Shankar, The Compiler Design Handbook. Boca Raton London New York Washington 
D.C.: CRC Press LLC, 2003. 
  
[43] P. N. Swarztrauber, „FFT algorithms for vector computers,“ Parallel Computing, vol. 1, pp. 45–63, 1984. 
  
[44] C. F. Van Loan, Computational Frameworks for the Fast Fourier Transform, ser. Frontiers in Applied 
Mathematics. Philadelphia: SIAM, 1992, vol. 10. 
  
[45] R. C. Whaley, A. Petitet, and J. J. Dongarra, „Automated empirical optimizations of software and the AT-
LAS project,“ Parallel Computing, vol. 27, pp. 3–35, 2001.  http://math-atlas.sourceforge.net 
  
[46] J. Xiong, J. Johnson, R. Johnson, and D. Padua, „SPL: A Language and Compiler for DSP Algorithms,“ in 
Proceedings of the Conference on Programming Languages Design and Implementation (PLDI), pp. 298–308, 
2001. 
  
[47] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers. New York: ACM Press, 
1991. 
  
[48] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice Hall, 1995. 
 

 17

http://www.spiral.net/
http://www.spiral.net/
http://www.spiral.net/

	 
	 
	Vectorization Techniques 
	for BlueGene/L’s Double FPU
	 
	1  Introduction
	2  The BlueGene/L Supercomputer
	3  Automatic Tuning of DSP Software
	4  Generating Vector Code for BlueGene/L
	5  The Vienna MAP Vectorizer
	5.1  Fundamentals of Vectorization
	5.2  The Vectorization Algorithm
	5.3  The Realization of the Vectorization Engine 
	6  The Vienna MAP Optimizer
	 6  Experimental Results
	Figure 11: Example output of BlueGene/L MAP vectorizer. Scalar code for a DFT64 generated by Spiral is vectorized using XL C99 intrinsics.
	7  Conclusions and Outlook
	References

