

Vectorization Techniques
for BlueGene/L’s Double FPU

Franz Franchetti, Stefan Kral,

Juergen Lorenz, Christoph W. Ueberhuber

Institute for Analysis and Scientific Computing
Vienna University of Technology (TU Wien)

Wiedner Hauptstrasse 8–10, A-1040 Wien, Austria

E-mail: c.ueberhuber@tuwien.ac.at

WWW home page: http://www.math.tuwien.ac.at/ascot

This work described in this paper was supported by the Special Research Program SFB F011
„AURORA” of the Austrian Science Fund FWF.

mailto:c.ueberhuber@tuwien.ac.at
http://www.math.tuwien.ac.at/ascot

Abstract

This paper presents vectorization techniques tailored to meet the specifics of the two-
way single-instruction multiple-data (SIMD) double-precision floating-point unit,
which is a core element of the node ASICs of IBM's 360 Tflop/s supercomputer
BlueGene/L.
 The paper focuses on the general-purpose basic-block vectorization methods pro-
vided by the Vienna MAP vectorizer. In addition, the paper introduces vectorization
techniques specific to discrete signal transforms. The presented vectorization methods
are evaluated in connection with the state-of-the-art automatic performance tuning
systems SPIRAL and FFTW.
 The combination of automatic performance tuning and the presented vectorization
techniques result in FFT codes tuned automatically to a single BlueGene/L processor
which are up to 60% faster than the best scalar code generated by the respective sys-
tems and five times faster than the mixed-radix FFT implementation provided by the
GNU scientific library GSL.

 1

1 Introduction

IBM’s supercomputer BlueGene/L [3] planned to be in operation in 2005 will be an order of
magnitude faster than the Earth Simulator, currently being the number one on the Top500 list.
BlueGene/L will feature eight times more processors than current massively parallel systems.
To tame this vast parallelism, new approaches and tools have to be developed. However, de-
veloping highly efficient numerical software for this machine starts by optimizing computa-
tional kernels for its processors and BlueGene/L comes with a twist on this level as well. It’s
processors feature a custom floating-point unit—called double FPU—that provides support
for complex arithmetic.

Efficient computation of fast Fourier transforms (FFTs) is required in many applica-
tions planned to be run on BlueGene/L. In most of these applications, very fast one-
dimensional FFT routines for rather small problem sizes (up to 2048 data points) running on a
single processor are required as major building blocks for large scientific codes. In contrast to
tedious optimization by hand, the library generator SPIRAL [40] as well as state-of-the-art FFT
libraries like FFTW [19] and UHFFT [35] use an empirical approach to automatically optimize
code for a given platform.

While floating-point support for complex arithmetic is an important prerequisite to
speed up large scientific codes, the utilization of non-standard FPUs in computational kernels
like FFTs is not straightforward. Optimization of these kernels leads to complicated data de-
pendencies of real variables that cannot be mapped to BlueGene/L’s complex FPU. This is
especially true when applying automatic performance tuning techniques and needs to be ad-
dressed to obtain high-performance FFT implementations.

This paper introduces an FFT library which is the first numerical code not developed
by IBM run on a BlueGene/L prototype. The FFT library takes full advantage of
BlueGene/L’s double FPU by means of short vector SIMD vectorization. It was generated and
tuned automatically by connecting SPIRAL to special purpose vectorization technology [27,
28, 30]. The resulting codes provide FFTs running five times faster than industry standard
non-adaptive FFT libraries. 40% speed-up over the best code not using the double FPU is
achieved while applying IBM’s vectorizing compiler leads to a 15% slow-down.

2 The BlueGene/L Supercomputer

An initial small-scale prototype of IBM’s supercomputer BlueGene/L [3], equipped with just
1024 of the custom-made IBM PowerPC 440 FP2 processors (512 two-way SMP chips)
achieved a LINPACK performance of Rmax = 1.44 Tflop/s, i.e., 70% of its theoretical peak per-
formance of 2.05 Tflop/s. This performance ranks the prototype machine already on position
73 of the Top500 list (November 2003).

The BlueGene/L prototype machine is roughly 1/20th the physical size of machines of
comparable compute power— such as Linux clusters —that exist today.
 The full-fledged 64k processor BlueGene/L machine that is currently being built for
the Lawrence Livermore National Laboratory (LLNL) will be 128 times larger, occupying 64
full racks. When completed in 2005, the BlueGene/L supercomputer is expected to lead the
Top500 list. Compared with today’s fastest supercomputers, it will be an order of magnitude
faster, consume 1/15th of the power and be 10 times more compact than today’s fastest super-
computers.

 2

The BlueGene/L machine at LLNL will be built from 65,536 PowerPC 440 FP2 proc-
essors connected by a 3D torus network leading to 360 Tflop/s peak performance. The Earth
Simulator, currently leading the Top500 list, achieves 40 Tflop/s peak performance. The final
BlueGene/L processors will run at 700 MHz, whereas the current prototype runs at 500 MHz.

BlueGene/L’s Floating-Point Unit. There are many areas of scientific computing like com-
putational electronics where complex arithmetic plays an important role. Thus, it makes sense
to integrate native complex arithmetic support into the FPU of computers that are mainly de-
voted to such applications.

BlueGene/L’s new SIMOMD style (Single Instruction, Multiple Operation, Multiple
Data) ISA extension provide the functionality of either a complex FPU or a real two-way vec-
tor FPU, depending on the techniques used for utilizing the relevant hardware features.

Programs using complex arithmetic can be mapped to BlueGene/L’s custom FPU in a
straightforward manner. However, problems arise when the usage of real code is unavoidable.
Even for purely complex code it may be necessary to express complex arithmetic in terms of
real arithmetic. In particular, switching to real code allows to apply common sub-expression
elimination, constant folding, and copy propagation on the real and imaginary parts. For code
as occurring in DSP transforms this is required to obtain satisfactory performance.

As BlueGene/L’s ISA extension includes all classical short vector SIMD style (inter-
operand, parallel) instructions as supported by Intel’s SSE2, it can also be used to accelerate
real computations if the algorithm allows for enough parallelism to be extracted. As a conse-
quence, real codes have to be vectorized as well.

BlueGene/L’s floating-point double FPU was obtained by replicating the PowerPC
440’s standard FPU and adding crossover data paths and sign change capabilities to support
complex multiplication leading to the PowerPC 440 FP2. Up to four real floating-point op-
erations (one two-way vector fused multiply-add operation) can be issued every cycle. This
double FPU has many similarities to industry standard two-way short vector SIMD extensions
like AMD’s 3DNow! or Intel’s SSE2. In particular, data to be processed by the double FPU
has to be naturally aligned on 16 byte boundaries in memory.

However, the PowerPC 440 FP2 has some characteristics that are different from stan-
dard short vector SIMD implementations: (i) short vector fused multiply-add (SIMD FMA)
operations with crossover dataflow (required for complex multiplications), (ii) computation-
ally expensive data reorganization within two-way registers, and (iii) cheap intermix of scalar
and vector operations.

The main problem in the context of presently available vectorization techniques is that
a single data reorder operation within a short vector SIMD register is as expensive as an
arithmetic two-way FMA operation. In addition, every cycle either a floating-point operation
or a data reorganization instruction can be issued. Thus, without tailor-made adaptation of
established short vector SIMD vectorization techniques to the specific features of
BlueGene/L’s double FPU, no high-performance short vector code can be obtained.

Utilizing the Double FPU in Programs. To utilize BlueGene/L’s double FPU within a nu-
merical library, three approaches can be pursued: (i) Implement the numerical kernels in C
utilizing proprietary directives such that IBM’s VisualAge XL C compiler for BlueGene/L is
able to vectorize these kernels, (ii) rewrite the numerical kernels in assembly language using
the double FPU instructions, or (iii) rewrite the numerical kernels utilizing XL C’s language
extension to C99 that provides access to the double FPU on source level by means of data
types and intrinsic functions.

 3

The GNU C compiler port for BlueGene/L supports the utilization of not more than 32
temporary variables when accessing the double FPU. This constraint prevents automatic per-
formance tuning on BlueGene/L.
 This paper describes how vector code can be generated following the third approach
utilizing the XL C compiler’s vector data types and intrinsic functions to access the double
FPU. Thus, register allocation and instruction scheduling is left to the compiler while vectori-
zation and instruction selection is done on source code level by the newly developed ap-
proach.

3 Automatic Tuning of DSP Software

In the field of scientific computing, digital signal processing (DSP) transforms, including the
discrete Fourier transform (DFT), the Walsh-Hadamard transform (WHT), and the family of
discrete sine and cosine transforms (DSTs, DCTs) are-despite numerical linear algebra algo-
rithms-core algorithms of almost any computationally intensive software. Thus, the applica-
tions of DSP transforms range from small scale problems with stringent time constraints (for
instance, in real time signal processing) up to large scale simulations and PDE programs run-
ning on the world’s largest supercomputers. Therefore, high-performance software tailor-
made for these applications is desperately needed.

All the transforms mentioned above are structurally complex, leading to complicated
algorithms that are difficult to map onto standard hardware efficiently.

The traditional method for achieving highly optimized numerical code is hand coding
in assembly language. Beside the fact that this approach requires a lot of expertise, its major
drawback is that the resulting code is error prone and non-portable. Thus, hand-coding is an
infeasible approach to performance portable software. Recently, a new software paradigm
emerged in which optimized code for numerical computation is generated automatically. New
standards were set by ATLAS in the field of numerical linear algebra and FFTW which intro-
duced automatic performance tuning in FFT libraries. In the field of digital signal processing
(DSP), SPIRAL is providing automatically tuned codes for large classes of DSP transforms by
utilizing state-of-the-art coding and optimization techniques.

These software packages use code generators to produce code which cannot be struc-
turally compared to hand written code. The code consists of up to thousands of lines of code
in static single assignment (SSA) style.

Nevertheless, the codes generated by ATLAS, SPIRAL and FFTW are translated using
standard compilers enabling portability but achieving satisfactorily high performance in con-
nection with this type of numerical code is impossible.

For top performance in connection with such codes, the exploitation of special proces-
sor features such as short vector SIMD or FMA instruction set architecture extensions is a
must.

Unfortunately, approaches used by vectorizing compilers to vectorize loops or basic
blocks lead to inefficient code when applied to automatically generated codes for DSP trans-
forms. The vectorization techniques entail large overhead for data reordering operations on
the resulting short vector code as they do not have domain specific knowledge about the
codes’ inherent parallelism.

SPIRAL. SPIRAL [40] is a generator for high performance code for discrete linear transforms
like the discrete Fourier transform (DFT), the discrete cosine transforms (DCTs), and many
others. SPIRAL uses a mathematical approach that commutes the implementation problem of

 4

discrete linear transforms to a search problem in the space of structurally different algorithms
and their possible implementations to generate code that is adapted to a given computing plat-
form.

SPIRAL’s approach is to represent the multitude of different algorithms for a signal
transform as formulas in a concise mathematical language based on the Kronecker product
formalism.
SPIRAL utilizes the signal processing language SPL to represent Kronecker product formulas
in a high-level computer language. These formulas expressed in SPL are automatically gener-
ated by the formula generator and automatically translated into code by SPIRAL’s special pur-
pose SPL compiler, thus enabling automated search.

FFTW. The first effort to automatically generate high-performance FFT code was FFTW
[19,20]. Typically, it produces code that runs faster than publicly available FFT codes and
compares well to vendor libraries. A dynamic programming approach relying on a recursive
implementation of the Cooley-Tukey FFT algorithm [44] provides for the adaptation of the
FFT computation of a given size to a given target machine at runtime. The actual computation
is done within routines called (twiddle and no-twiddle) codelets produced by a program gen-
erator named GENFFT [18].

4 Generating Vector Code for BlueGene/L

This chapter describes two approaches to automatically vectorizing FFT code generated by
SPIRAL [40]: (i) Formal vectorization of FFT algorithms, and (ii) vectorization of basic blocks
of automatically generated code. Both techniques were adapted to BlueGene/L’s specifics and
both of them utilize SPIRAL’s search capabilities leading to automatically tuned FFT imple-
mentations that run on BlueGene/L at very high efficiency.

Formal Vectorization. The formal vectorization approach [12, 13, 14, 15, 16, 17] developed
for classical short vector SIMD extensions like Intel’s SSE family, AMD’s 3DNow! family,
and Motorola’s AltiVec has been ported successfully to BlueGene/L’s FPUs [29]. This kind
of vectorization is based on the SIMD vectorizing version of SPIRAL’s SPL compiler [15] that
enables the SPIRAL system to automatically optimize code targeted at one processor of the
BlueGene/L machine.

Vectorizing FFTW 3.0. The new version FFTW 3.0.1 supports the SIMD extensions SSE,
SSE2, 3DNow!, and AltiVec. A new algorithm is used to compute complex DFTs by means
of two-way parallel computation of real DFTs (RDFTs). An important part in porting
FFTW 3.0 to BlueGene/L is the mapping of the SIMD instructions required by FFTW’s imple-
mentation to actually existing instructions on BlueGene/L.

FFTW’s SIMD implementation [20] is based on the linearity of DFTs,
)()()(bRDFTiaRDFTbiaDFT NNN

rrrr
×+=+ ,

and requires the computation of y = a + ib, with complex a, b, and y, once for every output
element per FFTW codelet. One key issue is to implement this operation efficiently utilizing
BlueGene/L’s special FMA instructions.

A straight-forward implementation of the multiplication by i that minimizes the num-
ber of arithmetic operations is given by

y = __fpadd(a,__fsneg(__fxmr(b)))

 5

in XL C99 intrinsic syntax. This implementation requires three instructions for two flops and
one sign change and thus wastes ten out of twelve flops (when a sign change is not considered
as a flop).

A BlueGene/L specific implementation that utilizes the PowerPC 440 FP2 specific
FMA instruction

__fxmadd((ap,as),(bp,bs),(cp,cs))=(ap+bs*cp, as+bp*cs)

is given by
y = __fxmadd(c,b,__cmplx(-1,1))

leading to only one instruction. This implementation introduces artificial multiplications by
one and minus one to allow the utilization of a cross FMA provided by the double FPU. In
subsequent optimization, constant folding may even change the artificial multiplications into
real ones.

The MAP Vectorizer. The Vienna MAP vectorizer [27, 28, 30] that extracts two-way SIMD
parallelism out of automatically generated numerical straight-line code was adapted to support
BlueGene/L’s FPUs. As a supplement to the MAP vectorizer a peephole optimizer enables the
extraction of fused multiply-add SIMD instructions. A thorough description of the Vienna
MAP vectorizer can be found in Section 4.4.

Fig. 2 gives an example of short vector SIMD code obtained by vectorizing straight-
line complex FFT code.

Figure 2: Vectorization of a Scalar FFT of Size 3. The scalar data flow in the left part of the
illustration is computationally equivalent to the vectorized data flow depicted in the right part.

Related Vectorization Techniques. Some methods for vectorizing basic blocks [11, 32, 33]
try to find an efficient mix of SIMD and scalar instructions to carry out the required computa-
tion whereas MAP’s vectorization principle mandates that all computation is performed by

 6

SIMD instructions. The MAP vectorizer makes an attempt to fully utilize the power of SIMD
instructions while trying to keep the SIMD
reordering overhead reasonably small.

The vectorization method of [32] introduces more SIMD data reordering instructions
than necessary, as it is unable to resort to a representation of the numerical scalar DAG as
vectorization input, and is thus deprived of this parallelism revealing instrument. This ap-
proach is not a suitable choice for handling typical numerical codes, e. g., FFTs, efficiently, as
explicit SIMD data reordering operations are very expensive on BlueGene/L’s FPU.

5 The Vienna MAP Vectorizer

The Vienna MAP vectorizer automatically extracts two-way short vector SIMD parallelism
out of a scalar code block by adequately combining scalar variables to SIMD variables and by
joining the corresponding scalar instructions to one or more short vector SIMD instructions,
as illustrated in Fig. 3. The MAP vectorizer targets automatically generated code that solely
consists of arithmetic operations and read/write array access operations involving index com-
putation.

Ideally, two-way vectorization transforms any pair of scalar instruction to one SIMD
instruction yielding 100% SIMD utilization. This maximum is achievable only for completely
parallel scalar DAGs. For DAGs with less parallelism, SIMD reordering instructions are re-
quired, at the costs of reduced SIMD utilization. As not all combinations of scalar operations
may be joined into one SIMD instruction (as defined by the ISA extension of the target proc-
essor), the vectorizer’s realistic goals are (i) to completely cover the given scalar DAG by
natively supported SIMD instructions while achieving (ii) a satisfactory runtime performance,
which is tantamount to minimizing SIMD data reorganization.

 →

 add(A,B,C), add(D,E,F) → v_add(AD,BE,CF)

Figure 3: Example of Two-way Vectorization. Ideally, two scalar instructions are trans-
formed into one vector instruction to achieve optimal SIMD coverage.

5.1 Fundamentals of Vectorization

A thorough description of the two-way vectorization algorithm rests upon the following fun-
damentals.

Variable Fusion. Two scalar variables A, B can be fused either to a SIMD variable of the
form AB = (A,B) or the other way round, BA = (B,A), where AB ≠ BA. Moreover, no scalar
variable can be part of two different SIMD variables.

 7

An already existing fusion AB = (A,B) is said to be compatible to another fusion CD =
(C,D) requested in the vectorization process, if and only if AB = CD or A = D and B = C. In
the first case, fusion CD requested compatible has not to be generated as AB can be used. In
the second case, a SIMD swap operation is required to maintain data flow consistency when
using fusion the AB instead of generating and using CD (see Fig. 4).

 Requested Compatible

Figure 4: Compatible Fusion. The vectorization process requests a fusion CD = (C,D). The
existing fusion AB = (D,C) is used as input operand to a swap instruction whose output T can
be used whenever CD is needed.

Operation Joining. Joining rules specify ways of pairwise transforming scalar instructions
into one or more SIMD instructions. The MAP vectorizer supports transformations of the fol-
lowing instruction combinations: (i) load/load, (ii) store/store, (iii) unary/unary, (iv) bi-
nary/binary, (v) unary/binary, (vi) unary/load, and (vii) load/binary. Joining rules (i) and (ii)
support the transformation of memory operations accessing consecutive and non-consecutive
memory locations as illustrated in the example of Fig. 6. Rules (iii) and (iv) allow the pairing
of instructions of the same type only, while (v) to (vii) also allow mixed type pairings (see
Fig. 7).

Rules of type (iii) fuse the two source operands S1 and S2 for transforming two unary
instructions (uop1,S1,D1) and (uop2,S2,D2).

Rules of type (iv) provide several alternatives (see Fig. 8). As they target two binary
instructions (bop1,S1,T1,D1) and (bop2,S2,T2,D2), different possibilities for choosing the
fusion partners among the four source operands S1, T1, S2 and T2 arise. Thus, three layouts,
ACC, PAR and CHI defining the possibilities for fusing the operand variables for binary in-
structions as shown in Fig. 5 are introduced. ACC is needed to fuse variables used as oper-
ands for SIMD instructions of intra-operand style, whereas PAR and CHI are meant for those
of parallel style as illustrated in Fig. 8.

 ACC PAR CHI

Figure 5: Fusion Layouts. Three layouts for fusing the source variables of the scalar
instructions (op1,S1,T1,D1) and (op2,S2,T2,D2) are supported.

Vectorization Quality. To extract high performance short vector SIMD code distinguished
by good SIMD utilization, the joining rules include SIMD reorder instructions only in the
unavoidable case of a compatible fusion demanding a swap instruction. The majority of the

 8

extracted swaps can be removed by applying a peephole optimization directly after the vec-
torization process.

The vectorization engine starts out by constraining all SIMD memory operations to
access consecutive locations and by disabling the sub-optimal pairing rules (v)-(vii). If these
restrictions cause the vectorization process to fail, it is restarted after enabling operation pair-
ing rules (v)-(vii) and support for less efficient, i.e., non-consecutive, memory access opera-
tions. This extension substantially augments the class of vectorizable codes by allowing the
extraction of some less efficient instruction combinations.

5.2 The Vectorization Algorithm

Before the actual vectorization process is started, the following preparatory steps are taken.
First, a dependency analysis is performed on the scalar DAG. Then, instruction statis-

tics are assembled, which provide instruction counts for each instruction type and operation.
Data gathered in these first two steps is used as heuristics to speed up the vectorization proc-
ess by avoiding futile vectorization attempts.

Finally, store instructions are combined non-deterministically by fusing their respec-
tive source operands.

 Scalar ACC PAR CHI

Figure 8: Vectorization Alternatives. Two scalar instructions, one addition and one sub-
traction, are transformed into a sequence of SIMD instructions in three different ways.

The Actual Vectorization. The vectorization algorithm consists of two steps.

 (i) Pick I1 = (op1,s1,t1,d1) and I2 = (op2,s2,t2,d2), i.e., two scalar instructions that
have not been vectorized yet, with (d1,d2) or (d2,d1) being an existing fusion.

(ii) The two scalar operations op1 and op2 are paired non-deterministically, yielding
an equivalent sequence of SIMD operations. This step may impose the need for new fusions if
no compatible fusions are available. In this case, the layout for the fusion of the respective
source operands s1, t1, s2 and t2 is mandated by the pairing rule. The vectorization process
has to ensure that no scalar variable is part of two different fusions.

The vectorizer alternatingly applies steps (i) and (ii) until either the vectorization suc-
ceeds, i.e., thereafter all scalar variables are part of at most one fusion and all scalar opera-
tions have been paired, or the vectorization fails. If the vectorizer succeeds, it immediately
commits to the first solution of the search process, which keeps the vectorization runtime rea-
sonably small.

 9

Although a search for the solution that achieves the shortest runtime would be desir-
able, it is not feasible using the current version of the vectorizer, even for relatively small
straight-line codes.

Non-determinism in Vectorization. Non-determinism in vectorization arises due to vectori-
zation alternatives like ACC, PAR and CHI for binary/binary pairings. For a fusion (d1,d2)
there may be several layouts for fusing the source operands s1, t1, s2 and t2, depending on the
pairing (op1,op2), as illustrated in Fig. 8. This kind of non-determinism widens the search
space of the vectorizer’s backtracking search engine.

The rule ranking, i.e., the order in which vectorization alternatives are tried, may in-
fluence the order of the solutions of the vectorization process. As the vectorizer always com-
mits to the first solution, the rule ranking is adapted such that the first solution favors instruc-
tion sequences which are particularly well-suited for the given target machine, taking the dif-
ferent costs of individual instructions (see Fig. 9) into account.

Nevertheless, the ranking must be seen as something like an extraction „hint“. At
every point of decision the search engine initially tries the rule that is ranked first. If this does
not lead to a vectorization, later ranked rules are used as well, even if their application leads to
the extraction of pseudo instructions that are not supported on the target ISA. This kind of
retreat is unavoidable as a complete vectorization is the central goal.

ISA

SIMD Op

basic
3Dnow!
(K6-II+)

ext.
3Dnow!
(K7/K8)

SSE2
(P4/K8)

SSE3
(P4e)

IA64
(Itanium)

Double FPU
(440FP2)

Load/Store 1 1 1 1 1 1
Uniform Unpack
Mixed Unpack

1
2

1
2

1
2

1
2

1
1

2
2

Uniform ACC
Mixed ACC

1
2

1
1

3
4

1
2

3
3

5
5

Uniform PAR
Mixed PAR

1
2

1
2

1
2

1
1

1
1

1
1

PAR FMA 2 2 2 2 1 1

Figure 9: Relatives Costs of SIMD Operations. For a selection of ISA extensions, the
number of actual SIMD instructions necessary to implement the respective SIMD operations,
is given. This data directly influences the rule ranking used by the MAP vectorizer.

5.3 The Realization of the Vectorization Engine

MAP’s vectorization algorithm is implemented using a depth-first search engine with chrono-
logical backtracking.

The vectorization engine’s backtracking capability is indispensable when a fusion, re-
quested by the current vectorization alternative, does not comply with the globally existing
fusions, i.e., in cases when it is impossible to ensure that the scalar variables considered for
the new fusion are not already participating in existing fusions.

In such a case, the search engine backtracks to the last non-deterministic point of deci-
sion. There, another vectorization alternative is chosen and correspondingly fusions of differ-
ent layout are requested and generated if necessary. If these fusions comply with the set of
existing fusions the vectorization process commits to this rule. Otherwise, backtracking is
chronologically applied repeatedly until either a vectorization is obtained or the search space
is exhausted. In the latter case, the vectorization engine was not able to find a valid fusion set
for the given scalar DAG.

 10

6 The Vienna MAP Optimizer

The Vienna MAP Optimizer is a rule-based local rewriting system that implements peephole
optimization on vector DAGs. It post-processes the output of the MAP vectorizer, and com-
prises two groups of rewriting rules. Finally, the optimized output is sorted topologically, in
an attempt to minimize the lifespan of variables by improving the locality of variable ac-
cesses, using a scheduling algorithm based on the scheduler of GENFFT [18].

The first group of rewriting rules aims at general optimizations such as (i) the minimi-
zation of the instruction count, (ii) redundancy and dead code elimination, (iii) the reduction
of the number of source operands (which reduces register pressure), (iv) the minimization of
the critical path length of the vector DAG, (v) copy propagation, and (vi) constant folding.
On target architectures supporting FMAs (Intel Itanium, IBM PowerPC 440FP2) FMAs are
extracted by combining multiplications (or sign changes) with directly dependent additions
(or subtractions or already existing FMAs) into FMAs. If this direct combination is not possi-
ble at first, the respective instructions are moved down in the DAG, in an attempt to fold them
into other instructions.

The second group of rewriting rules is target architecture specific. When optimizing
for the IBM PowerPC 440 FP2 used in BlueGene/L, vector swap instructions are fold into
FMAs, utilizing vector cross FMA instructions exclusively available on BlueGene/L, using a
method similar to extracting FMAs.

v_chsLo(A,B) v_sub(A,C,D)
v_chsHi(C,D) → v_chsLo(D,E)
v_add(B,D,E)

Figure 9: Example of a General Optimization Rule. A vector add instruction
v_add(B,D,E) taking the output of two sign change instructions, one on the lower part
v_chsLo(A,B) and another on the higher part v_chsHi(C,D) of two different registers, as its’
inputs is transformed into a vector subtraction v_sub(A,C,D) and a subsequent vector sign
change v_chsLo(D,E) instruction.

 11

v_chsHi(A,T1)
v_swap(T1,T2) → v_cfmac(A,(-Kl,Kh),B,C)
v_mulC(T2,(Kl,Kh),T3)
v_add(T3,B,C)

Figure 9: Example of a BlueGene/L Specific Optimization Rule. A vector mulconst in-
struction v_mulC(T2,(Kl,Kh),T3) taking the output of a vector swap instruction
v_swap(T1,T2) preceded by a vector sign change v_chsHi(A,T1) is transformed into a vector
cross FMA instruction v_cfmac(A,(-Kl,Kh),B,C), if the contents of the temporary variables T1,
T2, and T3 are not referenced anywhere else in the vector DAG.

6 Experimental Results

The presented vectorization techniques were evaluated on an early BlueGene/L prototype.
Performance data of 1D FFTs with vector lengths N = 22, 23,…, 210 were obtained on a single
PowerPC 440 FP2 running at 500 MHz. In addition, FFTW no-twiddle codelets for size 2,
3,…, 16, 32, and 64 were vectorized using the Vienna MAP vectorizer. For the same problem
sizes, FFTW 3.0 SIMD codelets ported to BlueGene/L were assessed.

Fig. 12 compares different FFT implementations for vector lengths N = 22, 23,…,210.
In particular the following FFT implementations were tested: (i) The best vectorized code
obtained using all technologies presented in this paper (LIBDFT), (ii) the best scalar FFT im-
plementation found by SPIRAL (XL C’s vectorizer and FMA extraction turned off), (iii) the
best vectorized FFT implementation found by SPIRAL using the XL C compiler’s vectorizer
and FMA extraction turned on, and (iv) the mixed-radix FFT implementation provided by the
GNU scientific library (GSL).

static const _Complex double __align(16) VECT_CONST1 =
 __cmplx(-1.000000000000000, -1.000000000000000);
...
static const _Complex double __align(16) VECT_CONST21 =
 __cmplx(+0.634393284163645, +0.773010453362737);

void DFT_64(double *y, double *x)
{
 _Complex double f0;
 ...
 _Complex double f603;
 f0 = __lfpd((double *)(x+64));

 12

 f1 = __lfpd((double *)(x+0));
 f2 = __fpadd(f0,f1);
 f3 = __fpmadd(f0,VECT_CONST1,f1);
 ...
 f417 = __cmplx(__creal(f415),__creal(f416));
 f418 = __cmplx(__cimag(f415),__cimag(f416));
 ...
 f602 = __fpmadd(f511,VECT_CONST2,f407);
 f603 = __fpmadd(f358,VECT_CONST3,f476);
 __stfpd((double *)(y+34), t602);
 __stfpd((double *)(y+98), t603);
}

Figure 11: Example output of BlueGene/L MAP vectorizer. Scalar code for a DFT64 gener-
ated by SPIRAL is vectorized using XL C99 intrinsics.

GSL Mixed Radix
Best vectorized code (IBM XL C)

Best scalar code
libdft

Floating-Point Performance

Vector Length N

Gflop/s

2102928272625242322

1.5

1.0

0.5

0

Figure 12: Performance of the vectorization techniques introduced by this paper (LIBDFT)
compared to the best scalar code and the best vectorized code (utilizing the VisualAge XLC
for BlueGene/L vectorizing compiler) found by SPIRAL. Performance is displayed in pseudo
Gflop/s (5N log N/runtime with N being the vector length).

The combination of all methods as implemented in LIBDFT leads to 60% speed-up w.r.t. the
best scalar codes generated by SPIRAL for smaller problem sizes and 20% speed-up for larger
problem sizes. Thus formal vectorization provides significant speed-up for larger problem
sizes.

The third-party GNU GSL FFT library reaches about 30% of the performance of the
best scalar SPIRAL generated code thus performing badly.

XL C’s vectorization and FMA extraction produces code 15% slower than scalar XL
C without FMA extraction. Thus, the vectorization techniques to vectorize straight-line code
currently used within the XL C compiler cannot handle SPIRAL generated FFT codes well.

Fig. 13 compares the speed of scalar FFTW codelets to the speed of codelets vectorized
by the XL C compiler and codelets vectorized by the Vienna MAP vectorizer. While the vec-
torization obtained by the Vienna MAP vectorizer speeds up the computation significantly,
XL C compiler provides only small speed-ups and sometimes even slows down the computa-
tion.

 13

Fig. 14 compares FFTW 3.0 SIMD codelets ported to BlueGene/L to the vectorization
capabilities of the XL C compiler. The trend in Fig. 14 is similar to Fig. 13: The XL C com-
piler’s vectorization provides small speed-ups and sometimes slows down the code while
FFTW’s SIMD codelets speed up the computation significantly.

IBM XL C scalar
IBM XL C Vect. Comp. FMA

Vienna MAP Vect. FMA

Speed-up of Vectorized FFTW No-Twiddle Codelets on BlueGene/L

Codelet Size

64321615141312111098765432

2.0

1.5

1

0.5

Figure 13: Speed-up of the vectorization techniques applied by the MAP vectorizer compared
to scalar code and code vectorized by IBM’s VisualAge XL C compiler.

IBM XL C scalar
IBM XL C Vect. Comp. FMA

FFTW 3 SIMD Intrinsics

Speed-up of FFTW 3.0 SIMD No-Twiddle Codelets on BlueGene/L

Codelet Size

64321615141312111098765432

2.0

1.5

1

0.5

Figure 14: Speed-up of the FFTW 3.0 SIMD codelets compared to scalar code and code vec-
torized by IBM’s VisualAge XL C compiler.

7 Conclusions and Outlook

As FFTs are indispensable parts of practically all kinds of applications in scientific comput-
ing, efficient FFT software is urgently needed by BlueGene/L’s scientific users. The perform-
ance portable vectorization techniques introduced in this paper allow timely software optimi-
zation concurrently done with IBM BlueGene/L’s hardware development. Besides the formal
vectorization techniques, the highly portable Vienna MAP vectorizer can be used to automati-

 14

cally vectorize numerical straight line code generated by advanced automatic performance
tuning software like FFFTW or SPIRAL helping to develop highly efficient implementations of
FFT kernels.

Performance experiments carried out on a BlueGene/L prototype show that automatic
performance tuning in combination with the two newly developed vectorization approaches is
able to speed up FFT code considerably, while vectorization by the current version of IBM’s
XL C compiler does not speed up the automatically generated scalar codes at all. The two
vectorization approaches of this paper are able to provide high-performance FFT kernels for
the BlueGene/L supercomputer by fully utilizing the new double FPU.

Nevertheless, even better performance results will be obtained by further improving
the current version of the Vienna MAP vectorizer. An integral part of the future work will be
to fully fold any SIMD data reorganization into SIMD fused multiply add instructions. Be-
sides, a compiler backend is in development which uses a register allocation that is better
suited for numerical straight-line code than the backend of IBM’s XL C compiler.

Acknowledgements. Special thanks go to Manish Gupta, José Moreira, and their group at
IBM T. J. Watson Research Center (Yorktown Heights, N.Y.) for making it possible to work
on the BlueGene/L prototype and for a very pleasant and fruitful cooperation.

The Center for Applied Scientific Computing at Lawrence Livermore National Labo-
ratory (LLNL) deserves particular appreciation for ongoing support.

Additionally, we would like to acknowledge the financial support of the Austrian sci-
ence fund FWF.

References

[1] D. Aberdeen and J. Baxter, „Emmerald: a fast matrix-matrix multiply using Intel’s SSE instructions,“ Con-
currency and Computation: Practice and Experience, vol. 13, no. 2, pp. 103-119, 2001.

[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools. Addison-Wesley Pub-
lishing Company, 1986.

[3] G. Almasi et al., „An overview of the BlueGene/L system software organization,“ Proceedings of the Euro-
Par ‘03 Conference on Parallel and Distributed Computing LNCS 2790, 2003.

[4] AMD Core Math Library (ACML) Manual, Advanced Micro Devices Corporation, 2000.

[5] ANSI, „ISO/IEC 9899:1999(E), Programming Languages – C,“ American National Standard Institute
(ANSI), New York, 1999.

[6] L. A. Belady, „A study of replacement algorithms for virtual storage computers,“ IBM Systems Journal, vol.
5, no. 2, 1966.

[7] J. Bilmes, K. Asanovic, C. W. Chin, J. Demmel, „Optimizing Matrix Multiply using PHIPAC: a Portable,
High-Performance, ANSI C Coding Methodology,“ in Proceedings of the International Conference on Super-
computing, ACM, Vienna, Austria, pp. 340-347, 1997.

[8] R. Crandall and J. Klivington, „Supercomputer-style FFT library for the Apple G4,“ Advanced Computation
Group, Apple Computer Inc., 2002.

[9] J. Demmel, J. Dongarra, V. Eijkhout, and K. Yelick, „Automatic performance tuning for large scale scientific
applications.“ to appear in IEEE Special Issue on Program Generation, Optimization, and Platform Adaptation.

 15

[10] R. J. Fisher and H. G. Dietz, „The SCC Compiler: SWARing at MMX and 3DNow,“ in 12th Annual Work-
shop on Languages and Compilers for Parallel Computing (LCPC99), 1999.

[11] ―, „Compiling for SIMD within a register,“ in Languages and Compilers for Parallel Computing, pp. 290–
304, 1998. [Online]. Available: citeseer.ist.psu.edu/fisher98compiling.html

[12] F. Franchetti, „A portable short vector version of FFTW,“ in Proceedings Fourth IMACS Symposium on
Mathematical Modelling (MATHMOD 2003), vol. 2, pp. 1539–1548, 2003.

[13] ―, „Performance portable short vector transforms,“ Ph. D. Thesis, Institute for Applied Mathematics and
Numerical Analysis, Vienna University of Technology, 2003.

[14] F. Franchetti, H. Karner, S. Kral, and C. W. Ueberhuber, „Architecture independent short vector FFTs,“ in
Proceedings ICASSP, vol. 2, pp. 1109–1112, 2001.

[15] F. Franchetti and M. Püschel, „A SIMD Vectorizing Compiler for Digital Signal Processing Algorithms,“ in
Proceedings IPDPS, pp. 20–26, 2002.

[16] ―, „Short vector code generation and adaptation for DSP algorithms.“ in Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing (ICASSP’03), vol. 2, pp. 537–540, 2003.

[17] ―, „Short vector code generation for the discrete Fourier transform.“ in Proceedings of the 17th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’03), pp. 58–67, 2003.

[18] M. Frigo, „A fast Fourier transform compiler,“ in Proceedings of the ACM SIGPLAN ‘99 Conference on
Programming Language Design and Implementation. New York, ACM Press, pp. 169–180, 1999.

[19] M. Frigo and S. G. Johnson, „FFTW: An Adaptive Software Architecture for the FFT,“ in ICASSP 98, vol.
3, pp. 1381–1384, 1998, http://www.fftw.org

[20] ―, „The design and implementation of FFTW,“ to appear in IEEE Special Issue on Program Generation,
Optimization, and Platform Adaptation.

[21] J. Guo, M. Garzaran, and D. Padua, „The power of Belady’s algorithm in register allocation for long basic
blocks,“ Proceedings of the LCPC, 2003.

[22] Intel Corporation, „AP-808 split radix fast Fourier transform using streaming SIMD extensions,“ 1999.

[23] ―, „Intel C/C++ compiler user’s guide,“ 2002.

[24] ―, „Math kernel library,“ 2002. [Online]. Available: http://www.intel.com/software/products/mkl

[25] J. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, „A methodology for designing, modifying, and
implementing Fourier transform algorithms on various architectures,“ IEEE Trans. on Circuits and Systems, vol.
9, pp. 449–500, 1990.

[26] N. P. Jouppi and D. W. Wall, „Available instruction-level parallelism for superscalar and super-pipelined
machines,“ Digital Western Research Laboratory, Palo Alto, California, WRL Research Report 7, 1989.

[27] S. Kral, F. Franchetti, J. Lorenz, and C. Ueberhuber, „SIMD vectorization of straight line FFT code,“ Pro-
ceedings of the Euro-Par ‘03 Conference on Parallel and Distributed Computing LNCS 2790, pp. 251–260,
2003.

[28] ―, „FFT compiler techniques,“ Proceedings of the 13th International Conference on Compiler Construction
LNCS 2790, pp. 217–231, 2004.

[29] S. Kral, F. Franchetti, J. Lorenz, M. Püschel, C. Ueberhuber, and P. Wurzinger, „Automatically Optimized
FFT Codes for the BlueGene/L Supercomputer,“ in VecPar Proceedings on High Performance Computing for
Computational Science, 2004.

 16

[30] ―, „Efficient Utilziation of SIMD Extensions,“ to appear in IEEE Proceedings Special Issue on Program
Generation, Optimization, and Platform Adaption.

[31] S. Lamson, „SCIPORT,“ 1995. [Online]. Available: http://www.netlib.org/scilib/

[32] S. Larsen and S. Amarasinghe, „Exploiting super-word level parallelism with multimedia instruction sets,“
ACM SIGPLAN Notices, vol. 35, no. 5, pp. 145–156, 2000.

[33] R. Leupers and S. Bashford, „Graph-based code selection techniques for embedded processors,“ ACM
Transactions on Design Automation of Electronic Systems., vol. 5, no. 4, pp. 794–814, 2000. [Online].
http://citeseer.nj.nec.com/leupers00graph.html

[34] M. Lorenz, L. Wehmeyer, and T. Draeger, „Energy aware compilation for DSPs with SIMD instructions,“
Proceedings of the 2002 Joint Conference on Languages, Compilers, and Tools for Embedded Systems & Soft-
ware and Compilers for Embedded Systems (LCTES’02-SCOPES’02)., pp. 94–101, 2002. [Online].
http://citeseer.ist.psu.edu/lorenz02energy.html

[35] D. Mirkovic and S. L. Johnsson, „Automatic Performance Tuning in the UHFFT Library,“ in Proceedings
ICCS’01, pp. 71–80, 2001.

[36] J. M. F. Moura, J. Johnson, D. Padua, M. Püschel, and M. Veloso, „SPIRAL.“ to appear in IEEE Special
Issue on Program Generation, Optimization, and Platform Adaptation.

[37] S. S. Muchnick, Advanced Compiler Design and Implementation. Morgan Kaufmann Publishers, San Fran-
cisco, 1997.

[38] K. Nadehara, T. Miyazaki, and I. Kuroda, „Radix-4 FFT implementation using SIMD multi-media instruc-
tions,“ in Proceedings ICASSP 99, pp. 2131–2135, 1999.

[39] I. Nicholson, „libSIMD,“ 2002. [Online]. Available: http://libsimd.sourceforge.net

[40] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, and R. W. Johnson,
„SPIRAL: A generator for platform-adapted libraries of signal pro cessing algorithms,“ Journal on High Perform-
ance Computing and Applications, special issue on Automatic Performance Tuning, Vol. 18, pp. 21–45, 2004,
http://www.SPIRAL.net

[41] N. Sreraman and R. Govindarajan, „A vectorizing compiler for multimedia extensions,“ Int. Journal of
Parallel Programming, vol. 28, no. 4, pp. 363–400, 2000.

[42] Y. Srikant and P. Shankar, The Compiler Design Handbook. Boca Raton London New York Washington
D.C.: CRC Press LLC, 2003.

[43] P. N. Swarztrauber, „FFT algorithms for vector computers,“ Parallel Computing, vol. 1, pp. 45–63, 1984.

[44] C. F. Van Loan, Computational Frameworks for the Fast Fourier Transform, ser. Frontiers in Applied
Mathematics. Philadelphia: SIAM, 1992, vol. 10.

[45] R. C. Whaley, A. Petitet, and J. J. Dongarra, „Automated empirical optimizations of software and the AT-
LAS project,“ Parallel Computing, vol. 27, pp. 3–35, 2001. http://math-atlas.sourceforge.net

[46] J. Xiong, J. Johnson, R. Johnson, and D. Padua, „SPL: A Language and Compiler for DSP Algorithms,“ in
Proceedings of the Conference on Programming Languages Design and Implementation (PLDI), pp. 298–308,
2001.

[47] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers. New York: ACM Press,
1991.

[48] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.

 17

http://www.spiral.net/
http://www.spiral.net/
http://www.spiral.net/

	
	
	Vectorization Techniques
	for BlueGene/L’s Double FPU
	
	1 Introduction
	2 The BlueGene/L Supercomputer
	3 Automatic Tuning of DSP Software
	4 Generating Vector Code for BlueGene/L
	5 The Vienna MAP Vectorizer
	5.1 Fundamentals of Vectorization
	5.2 The Vectorization Algorithm
	5.3 The Realization of the Vectorization Engine
	6 The Vienna MAP Optimizer
	 6 Experimental Results
	Figure 11: Example output of BlueGene/L MAP vectorizer. Scalar code for a DFT64 generated by Spiral is vectorized using XL C99 intrinsics.
	7 Conclusions and Outlook
	References

