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Abstract—Set intersection is an important operation and
widely used in both database and graph analytics applications.
However, existing state-of-the-art set intersection methods only
consider the size of input sets and fail to optimize for the case in
which the intersection size is small. In real-world scenarios, the
size of most intersections is usually orders of magnitude smaller
than the size of the input sets, e.g., keyword search in databases
and common neighbor search in graph analytics. In this paper,
we present FESIA, a new set intersection approach on modern
CPUs. The time complexity of our approach is O(n/

√
w+ r), in

which w is the SIMD width, and n and r are the size of input sets
and intersection size, respectively. The key idea behind FESIA is
that it first uses bitmaps to filter out unmatched elements from
the input sets, and then selects suitable specialized kernels (i.e.,
small function blocks) at runtime to compute the final intersection
on each pair of bitmap segments. In addition, all data structures
in FESIA are designed to take advantage of SIMD instructions
provided by vector ISAs with various SIMD widths, including
SSE, AVX, and the latest AVX512. Our experiments on both real-
world and synthetic datasets show that our intersection method
achieves more than an order of magnitude better performance
than conventional scalar implementations, and up to 4x better
performance than state-of-the-art SIMD implementations.

I. INTRODUCTION

Set intersection selects the common elements appearing in

all input sets, which is a fundamental operation in database

applications. For example, given a search query with multiple

keywords, a list of documents containing all input keywords

can be computed through a set intersection [5]. In addition,

set intersection is becoming a critical building block for

a wide range of new applications in graph analytics, such

as triangle counting [6], [7], neighborhood discovery [8],

subgraph isomorphism [9], and community detection [10],

[11]. For example, the common friends of two people on social

networks can be computed through a set intersection as well.
Recent work focusing on accelerating set intersection oper-

ations in database systems [1]–[3] proposed the use of merge-

based approaches, in which the runtime cost usually only

depends on the size of the input sets. However, in real-world

scenarios, the intersection size is usually dramatically smaller

than the sizes of the input sets. For example, 90% of the

intersections resulting from search queries in Bing is an order

of magnitude smaller than the size of the input sets, and the

intersection size of 76% of the queries is even two orders of

magnitude smaller than the input [4]. A similar result is also

observed in graph analytics [12], in which the size of over

90% of the intersections is smaller than 30% of their input

size.

In this paper, we propose FESIA, a fast and efficient set

intersection algorithm targeting at modern CPU architectures.

Our key insight is that a large number of comparisons re-

quired by existing merge-based set intersection approaches are

redundant. These redundancies result in significant overheads

especially when the intersection size is small. To this end,

FESIA accelerates set intersections by avoiding these redun-

dant and unnecessary comparisons. Specifically, we take a two-

step approach: it builds an auxiliary bitmap data structure for

pruning unnecessary comparisons in the first step. Since the

earlier pruning may leave some false positive matches, our

approach further compares these elements to produce the final

intersection in the second step.

Prior work [4] focusing on new data structures for set

intersection achieves lower time complexity but does not

take advantage of SIMD instructions available on modern

processors. In contrast, other work [1]–[3] focusing on vec-

torizing set intersections with SIMD instructions has higher

time complexity. FESIA is the first approach that considers

both aspects at the same time. It achieves fast and efficient

set intersections for two reasons: firstly, the new segmented-

bitmap data structure and the course-grained filtering step can

make the complexity depend on the intersection size instead

of the size of input sets. In summary, the time complexity

of our approach is O(n/
√
w + r) as in [4], in which w

indicates the SIMD width, and n and r indicate the size

of the input set and the intersection size. Secondly, the data

structure and intersection algorithm are designed with SIMD in

mind, allowing our approach to exploit more data parallelism

and be portable to different SIMD widths. This includes an

efficient design of the course-grained filtering implementation

with the bitwise operations, combined with our specialized

SIMD intersection functions for small input sizes, which are

more efficient than existing vectorization methods [1], [13].

In summary, this paper makes the following major contri-

butions:

• We present FESIA, a fast and efficient set intersection ap-

proach targeting modern CPUs, which leverages the SIMD

instructions and achieves better complexity simultaneously.

• We introduce a coarse-grain pruning approach which can be

efficiently implemented with the bitwise SIMD operations.

• We design a code specialization mechanism to reduce the

cost of fine-grained intersections required after the initial

coarse-grained pruning step.

• We describe an implementation of FESIA for two different
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TABLE I
THE SUMMARY OF OUR APPROACH VS. STATE-OF-THE-ART SET INTERSECTION APPROACHES.

Methods Complexity Small Intersect SIMD Multicore n1 � n2 k-way intersection Portable

FESIA n/
√
w + r � � � min(n1, n2) kn/

√
w + r �

BMiss [1] n1 + n2 � � n1 + n2 n1 · · ·+ nk �
Galloping [2] n1 logn2 � n1 logn2 n1(logn2 + · · ·+ lognk)

Hiera [3] n1 + n2 � n1 + n2 n1 · · ·+ nk

Fast [4] n/
√
w + r � n/

√
w + r n/

√
w + kr

Intel platforms with SSE, AVX, and AVX512 instructions.

Our experiments on both real-world and synthetic datasets

show that our intersection method achieves more than a

order of magnitude better performance than conventional

scalar implementations, and up to 4x better performance

than state-of-the-art SIMD implementations.

II. BACKGROUND AND RELATED WORK

In this section, we describe conventional scalar set inter-

section approaches and introduce how SIMD instructions are

used to accelerate set intersection.

A. Scalar Set Intersection Approaches

Merge-based set intersection is the most common approach

to compute the intersection of two (or more) sorted sets, and

an example is shown in C in Listing 1. Suppose there are two

sets L1 and L2 of size n1 and n2 respectively, and we use r to

denote the number of common elements. The algorithm starts

with two pointers that point to the beginning of the two sorted

lists. Pointers are iteratively advanced based on the comparison

result of their pointed elements. The algorithm finishes when

one pointer points to the end of the list. The time complexity

of merge-based set intersection is O(n1+n2) for two sets and

O(n1+ · · ·+nk) for k-way set intersection. One limitation of

merge-based set intersection is that it cannot be easily extended

to exploit multicore parallelism. This is because there exists a

loop-carried dependency when pointers are advanced.

1 int scalar_merge_intersection(int L1[],
2 int n1, int L2[], int n2) {
3 int i = 0, j = 0, r = 0;
4 while (i < n1 && j < n2) {
5 if (L1[i] < L2[j]) {
6 i++;
7 } else if (L1[i] > L2[j]) {
8 j++;
9 } else {
10 i++; j++; r++;
11 }
12 }
13 return r;
14 }

Listing 1. A code example of scalar merge-based set intersection

Hash-based set intersection is another popular approach.

It builds a hash table from the elements of one set and

then probes the hash table with all elements from the other

set. The time complexity of hash-based set intersection is

O(min(n1, n2)), which makes it the best method when one set

is dramatically smaller than the other set. As we will discuss

in later sections, the time complexity of our approach is the

same as hash-based set intersection when two input sets have

dramatically different sizes.

In additional, many other data structures have been proposed

to compute set intersection, such as treap [14], skiplist [15],

bitmap [4], [16], and adaptive data structures [17].

B. Accelerating Set Intersections

Data parallelism using SIMD: SIMD instructions have be-

come the status quo on modern CPUs to exploit data paral-

lelism. For example, Intel CPUs have SSE/AVX2 instructions

to support 128-bit and 256-bit vector operations. Similarly,

ARM processors have NEON instructions, and IBM Power

processors have AltiVec instructions. The prevailing SIMD

widths on modern processors are 128-bit and 256-bit. More

recently, the Intel Skylake architecture introduced AVX512

instructions. Additionally, Intel SSE4.2 introduces the STTNI

instruction for string comparisons and it has been used for

all-pair comparisons between two vectors in parallel.

The state-of-the-art set intersection methods: Prior work

has proposed different ways to accelerate set intersections,

which are summarized and compared with our approach in

Table I. We now introduce each method in more detail.

BMiss [1] aims at reducing the number of branch mispre-

dictions in merge-based set intersections and demonstrates this

on Intel and IBM Power processors. The complexity of this

method is the same as other merge-based methods. Note that

BMiss performs better when the intersection size is small, in

which mispredictions are more likely to occur.

Galloping [18] and its extension SIMDGalloping [2] are

approaches based on binary search. Each element from the

smaller set is looked up in the larger set through a bi-

nary search. This method usually performs better when the

size of two input sets is significantly different. Note that

the complexity of k-way intersection with binary search is

n1(log n2 + · · · + log nk), in which each element from the

smallest set (L1) is used as an anchor point and looked up in

all other sets.

Hiera [3] is an approach that leverages the STTNI instruc-

tion to accelerate merge-based set intersections. Since it is a

merge-based approach, its time complexity is O(n1 + n2) on

two sets. In addition, a hierarchical data structure is used in

Hiera, since STTNI instruction supports only 8-bit and 16-bit

data types. One limitation of Hiera is that its effectiveness

highly depends on the data distribution. For example, it

downgrades to a scalar approach when the elements in input

sets are sparse. In addition, it is not portable to processors

without the STTNI instruction.
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Fig. 1. Illustrating the data structure and the set intersection algorithm in FESIA. There are two steps in the set intersection: (1) the bitmaps are used to filter
out unmatched elements, and (2) a segment-by-segment comparison is conducted to compute the final set intersection using specialized SIMD kernels.

Fast [4] is an approach that leverages bitmaps for fast

comparisons and it performs better when the intersection size

is small. Its time complexity is O(n/
√
w+ r), in which n, r,

and w indicate the size of input sets, the intersection size,

and the word size, respectively. This method has a better

time complexity compared to other merge-based methods,

however, it fails to consider SIMD instructions and may not

have competitive performance compared to other merge-based

methods with SIMD accelerations.

III. THE FESIA APPROACH

In this section, we start with an overview of our FESIA

approach. We next explain our data structure and the set in-

tersection algorithm in detail. Finally, we present a theoretical

analysis of our approach.

A. Overview

The intersection process is built upon our segmented-bitmap
data structure. It first compresses and encodes all elements

of a set into a bitmap in an offline phase. To exploit data-

level parallelism, every s bits from the bitmap are further

grouped into a segment. When performing online intersection,

the bitmap serves as a data structure to quickly filter out the

unmatched elements between two sets. The online intersection

process therefore consists of two steps: (1) bitmap intersec-

tion: we compare the segmented bitmaps of two given sets

using a bitwise-AND operator and output the segments

that intersect, and (2) segment intersection: given a list of

segments whose bitmap intersects with one another (i.e., the

result of bitwise-AND is not zero), we go through their

corresponding lists and compare the relevant elements from

each segment to compute the final set intersection. A larger m
can eliminate more false-positive intersections on the bitmap,

but leads to more comparison time in step 1. The segment

size s affects the intersection sizes at step 2. The m and s are

chosen to minimize the total time. A theoretical analysis on

the choice of m and s will be presented in Section III-D.

We now introduce our data structure and set intersection

algorithm in in more details.

B. Data Structure

FESIA is built on our segmented bitmap data structure. This

data structure encodes the elements of a set using a bitmap,

and groups the bits as well as the corresponding elements

of the bitmap into segments. Specifically, given a set of n
elements, its elements are mapped into a bitmap of size m
with a universal hash function h. With a properly designed h,

all elements can be uniformly distributed in the bitmap. For

clarity, we now assume all bitmaps have the same size m and

we will relax this assumption with a simple transformation at

the end of Section III-C. Every s elements of the bitmap are

grouped as a segment. Since the size of the bitmap can be less

than the number of elements in the set, more than one element

can be mapped to the same location in the bitmap. Therefore,

we associate a list to each segment such that elements mapped

to this segment are inserted into the list. Note that all elements

in a list are always kept in an increasing order.

We now introduce the details of our data structure, as shown

in Fig. 1. Bitmap is a 0/1 binary bit vector of size m. Size
is an array of size m/s, storing the size of each segment.

ReorderedSet is an array having all elements of a set but

with a different ordering. Intuitively, it is a concatenation of

all segments and the elements are sorted in an increasing order

within each segment. offset is an array of size m/s, storing

the starting index of each segment in ReorderedSet. We

now use the example in Fig. 1 to illustrate how the data

structure works.

Example 1. Suppose there are two sets: A = {1, 4,
15, 21, 32, 34}, and B = {2, 6, 12, 16, 21, 23}. The size of the
bitmap is 12, and we use function f(x) = x mod 12 as our
hash function. After mapping all elements into the bitmap, we
now have BitmapA = {010110001110}, sizeA = {2, 1, 3},
offsetA = {0, 2, 3}, ReorderedSetA = {1, 15, 4, 21, 32,
34}, BitmapB = {101010101001}, sizeB = {2, 2, 2},
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offsetB = {0, 2, 4}, and ReorderedSetB = {2, 12, 6,
16, 21, 23}.

C. Intersection Algorithm

For the ease of presentation, we discuss the intersection

algorithm of two sets in this section. The k-way intersection

will be discussed later in Section VI.

Our algorithm first compares the associated bitmaps to

quickly eliminate unmatched segments between two sets. It

streams through the two bitmaps, compares each bit to find

the segment pairs that intersect. Next, it intersects the lists

associated with those segments with our specialized intersec-

tion kernels. A kernel is a specialized intersection function

block for a certain size. We now use Example 1 to demonstrate

our intersection algorithm. In the first step, we compare the

bitmaps of the two sets with a bitwise AND operation to get

a list of segments. In Example 1, we compare BitmapA and

BitmapB with a bitwise AND operation, and the result is

{000010001000}. In the second step, we go through each

segment to compute the final intersection result, as shown

in Algorithm 1. This is because it’s possible to have false

positives, i.e., a segment whose bitmap intersects with another

one but they do not have common elements. In Example 1,

we focus on only non-zero segments, i.e., the second and the

third segment. Note that the elements mapped to these two

segments are {4}, {6, 16} and {21, 32, 34}, {21, 23}. Finally,

we use the 1-by-2 kernel to compare {4} against {6, 16}, and

the 2-by-3 kernel to compare {21, 23} against {21, 32, 34} to

compute the final result of the intersection. The details of these

kernels will be discussed in Section V.

Algorithm 1: The intersection algorithm in FESIA

Input: List LA, List LB , BitmapA, BitmapB ,

ReorderedSetA and ReorderedSetB

Output: the intersection size r
1 r = 0
2 N = m/s // the number of segments

3 for i ∈ 0 . . . N − 1 do
4 if BitmapAi

& BitmapBi
! = 0 then

5 r = r + Intersect(ReorderedSetAi ,

ReorderedSetBi
)

6 return r

Different bitmap sizes: For any pair of sets, there may exist

a pair of sets that have different bitmap sizes. When a bitmap

has a different size from the other one, our algorithm requires

that the bitmap size m1 of the larger set can be divided by

the bitmap size m2 of the smaller set. Therefore, the choice

of bitmap size in our algorithm is to round the bitmap size

to the nearest power of two. When we compare two bitmaps

with different sizes, the ith segment from the larger set only

needs to compare with the kth segment from the smaller set,

in which k = i mod m2.

D. Theoretical Analysis

We now give an analysis of the time complexity of our

intersection algorithm. For clarity, we start our analysis with

lists L1 and L2 with the same size n. We use w to denote the

word size and r to denote the intersection size.

Proposition 1. The time complexity of Algorithm 1 is
O(n/

√
w + r).

Proof. There are two steps in the algorithm: (1) bitwise AND
on the two bitmaps, and (2) Computing the intersection on the

matched segments. The time spent in bitwise AND on the two

bitmaps is linearly proportional to m, the size of a bitmap.

SIMD allows us to conduct the bitwise operation in parallel.

Given the SIMD width w, the time for the bitwise operation

is m/w. Let’s now analyze the time spent in computing the

intersection on the matched segments, which depends on the

number of matched segments. There are two types of matches:

(1) the true matches, and (2) the false positive matches. The

number of true matches equals the intersection size r. A false-

positive match happens when there are elements in both lists

mapped to the same segment but they are not identical.

More precisely, the number of true matches is

E(IT ) = r

while the expected number of false positive matches is:

E(IFP) =
∑

e1∈L1,e2∈L2
e1 �=e2

P (h(e1) = h(e2)) ≤
(
n

2

)
× 1

m

=
n(n− 1)

2m

Note that E(IFP ) depends on the choice of m, which affects

the time complexity of Algorithm 1. For example, when m =
1, the time spent in the second step is O(n2). When m = n2,

the time spent in the second step is O(1). However, the time

spent in the first step now becomes O(n2). When m = n
√
w,

E(IFP) equals to n/
√
w. Therefore, we have the total number

of both true and false positive matches:

E(I) = E(IT ) + E(IFP) = n/
√
w + r

In summary, when m = n
√
w, the time complexity of

Algorithm 1 is O(n/
√
w+r). It achieves the same theoretical

bound as in Fast [4]. As we will show in later sections, due to

the use of SIMD instructions, our approach also has the best

performance in practice.

IV. BITMAP-LEVEL INTERSECTION

In this section, we discuss how to use SIMD instructions

to conduct the bitmap-level intersection, which prunes out the

unmatched elements. The discussion of segment-level inter-

section that computes the final intersection will be discussed

in Section V.

Given two sets and the corresponding two bitmaps

BitmapA and BitmapB , there are three steps in the bitmap-

level intersection to generate a list of segments where one

bitmap intersects with the other:

1468



Step 1: Bitwise AND on bitmaps: The key idea is to perform a

bitwise AND operation on bitmaps BitmapA and BitmapB

with SIMD instructions. The SIMD instruction that we use

is the vandps instruction, which operates on w bits at the

same time. Note that w is the SIMD width of the processor

and it’s a multiple of the segment size s. For example, if

w = 256 and s = 8, a single vandps instruction can perform

the bitwise AND operation on 256/8 = 32 segments in parallel.

Step 2: Segment transformation: We next summarize the

output of bitwise AND operation from the step above by

applying a transformation on each segment, i.e., every s bits

in the bitwise AND output. A collection of SIMD comparison

instructions (e.g., pcmpeqw, pcmpeqq, etc) are provided on

Intel processors such that comparisons can be performed on

every 8, 16, 32, or 64 bits at the same time. Similar instructions

are also provided on other processors, such as ARM or IBM

Power processors.

With the support of these SIMD instructions, we can use a

single instruction to compare s bits with integer 0 for multiple

segments at the same time. Note that the SIMD instruction we

use depends on the value of s, i.e., different values of s lead

to the use of different SIMD instructions. The output for each

segment also has s bits. Suppose s = 16 and if one segment

intersects with the other one, the result is 0xFFFF. Otherwise,

the result is 0x0000.

Step 3: Non-zero segment index extraction: We now pick the

segments with value 0xFFFF. Given a list of segments, we use

the pextrb instruction to extract the non-zero segments. The

instruction uses 1-bit to represent the output for each segment.

Suppose the segment size s = 16 and there are two segments

0xFFFF0000. We will get 0x2 (i.e., 10 in the binary format)

after applying the instruction on the two segments above.

We next use the tzcnt instruction to extract the index of

bits that are set to one. Given an integer, the tzcnt instruction

returns the number of trailing zeros (i.e., the index of the least-

significant 1-bit). Then we set this bit to zero. We iteratively

apply the above process until all the ones are extracted.

V. SEGMENT-LEVEL INTERSECTION

In the previous section, we discussed how to use bitmap

intersection to generate a list of pairs of segments that may

have common elements. In this section, we focus on using

SIMD instructions to accelerate intersection for each pair of

segments.

Suppose there are N segments from the output of bitmap

intersection, which are indexed by i1 . . . iN . The task in

this step is to find the intersection size with elements

from ReorderedSetA,i1 . . .ReorderedSetA,iN and

ReorderedSetB,i1 . . .ReorderedSetB,iN . Prior work

has proposed different ways to vectorize set intersections

with SIMD instructions, but most of them target the general

intersection problem in which the input size is sufficiently

large. However, in our segment-level intersection, the number

of elements in each segment are usually very small. Therefore,

a solution to the general intersection problem may suffer from

undesirable performance. As a result, we design specialized

SIMD intersection kernels for inputs with small sizes. These

specialized kernels are more efficient, since they are able

to avoid unnecessary computations. For example, if one set

has two elements and the other set has four elements, a

general SIMD set intersection approach usually assumes that

both sets have four elements, which introduces unnecessary

computations.

In this section, we will first discuss how to dispatch each

segment to the corresponding specialized intersection kernel

in Section V-A. The implementation of each kernel will be

described later in Section V-B.

A. Runtime Dispatch

To achieve the best performance, we have implemented and

compiled set intersection kernels in advance for all possible

scenarios. For example, if there are at most S elements in

a segment, we will have (S + 1)2 different set intersection

kernels, i.e., from 0-by-0 up to n-by-n set intersection. Note

that some kernels may never be used, e.g., kernel 0-by-i
(0 ≤ i ≤ n). With all set intersection kernels, a runtime

dispatch mechanism is needed, which allows us to use the

correct set intersection kernel given different input segment

sizes (i.e., sizeA,ik and sizeB,ik ). We now describe how

the runtime dispatch mechanism is implemented with switch

statement. Note that the GCC compiler will generate a table

in assembly instead of a sequence of if-else statements, which

are prohibitively expensive.

1 /* the dispatch control code */
2 int ctrl = ((Sa << 3) | Sb);
3 /* jump to a specialized intersection kernel */
4 switch(ctrl & 0x7F){
5 /* Each specialized kernel is a macro */
6 case 0: break; //kernel0x0
7 case 1: break; //kernel0x1
8 case 2: break; //kernel0x2
9 /* case 3 to 62 are omitted .... */

10 case 63: Kernel7x7; break;
11 default: GeneralIntersection(); break;
12 }

Listing 2. The jump table for specialized kernels

We implement and place all set intersection kernels in

memory. Their starting addresses are referenced by a jump

table as shown in Algorithm 1. The entries of the jump

table are managed in a way such that a correct entry can

be easily located through a control code, which is computed

through simple arithmetic computation given a pair of segment

sizes. Given the kth pair of segments A and B from a

list of segments, we use Sa and Sb to denote their sizes

sizeA,ik and sizeB,ik . The control code for the jump table

is computed by concatenating the two integers Sa and Sb.

We now use a concrete example to show how we compute

the control code. Assume that there are 64 different set

intersection kernels (from 0-by-0 up to 7-by-7 set intersection)

in Listing 2. Since the maximum segment size is 7, it’s

sufficient to use three bits to represent Sa or Sb. As a result, we

concatenate Sa and Sb into one integer through the following

statement: ctrl ← (Sa � ⌈
logS2

⌉
)|Sb.
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c2 = _mm_cmp_epi32(v2, vb);

v3 = _mm_set1_epi32(A[2]);
c3 = _mm_cmp_epi32(v3, vb);

v4 = _mm_set1_epi32(A[3]);
c4 = _mm_cmp_epi32(v4, vb);

cmp = 
_mm_or_si128(_mm_or_si128(c1, 
c2), _mm_or_si128(c3, c4));
mask = _mm_movemask_ps(cmp);
count += _mm_popcnt_32(mask);
return count;

0x0F

0xFF

… … … 0x0F 0xFF… …

4x4 intersect Specialized 2x4 code 

Fig. 2. Illustrating the difference between a general and a specialized SIMD set intersection kernels. A general kernel is shown on the left-hand side, which
is implemented with SSE-128 instructions and can be used for any intersection with input size less than 4-by-4. A specialized 2-by-4 kernel is shown on the
right-hand side, which reduces unnecessary computation and memory accesses (highlighted in purple).

In summary, bits 3 to 5 of the control code indicate size

Sa. Similarly, bits 0 to 2 of the control code indicate size Sb.

B. Specialized vs. General Set Intersection Kernels

The reasons that a specialized set intersection kernel

achieves better performance than a general one are twofold:

(1) less computations, and (2)more efficient memory access.

We illustrate the difference between a general and specialized

set intersection kernel in Fig. 2. We show a general 4-by-

4 intersection kernel on the left-hand side of the figure. The

general kernel is implemented with the SSE-128 instructions

and can be used for any pair of sets with input size smaller

than 4-by-4 (e.g., 2-by-4). However, it is not as efficient as

the specialized 2-by-4 intersection kernel, which is shown on

the right-hand side of the figure. The specialized kernel on

the right-side of Fig. 2 is also implemented with the SSE-

128 instructions but it avoids unnecessary computations and

memory accesses (highlighted in purple in the figure).

In addition, specialized kernels can take more advantage

of data reuse. For example, when the set size is larger than

the vector length, some elements may be used in multiple

comparisons. With a specialized kernel, these elements can

be put in registers to avoid redundant memory accesses and

minimize the cost of comparisons at the same time.

C. Implementing Specialized Intersection Kernels with SIMD

We now describe how we implement the specialized inter-

section kernels with SIMD for different input sizes. We start

with a scenario in which the size of both input sets equals to

the vector length (i.e., Sa = Sb = V ). Note that Sa and Sb

denote the sizes of the input sets and V = w/Se, in which w
is the SIMD word width and Se is the size of each element

in the set.

V -by-V set intersection (Sa = Sb = V ): We first describe

the key idea of implementing a V × V intersection kernel,

which performs a complete all pair comparisons between all

V elements of the two input sets. Our SIMD implementation

iteratively picks one element from set A and compares it with

with all V elements in set B simultaneously. Note that the

comparison results of all V elements of set A are combined

together into a single vector (e.g., cmp as shown in Fig. 2).

There are four types of SSE instructions on 32-bit in-

tegers in our SIMD implementation, namely, (1) load:

_mm_load_si128, (2) broadcast: _mm_set1_epi32,

(3) compare: _mm_cmp_epi32, and (4) bitwise OR:

_mm_or_si128. We now describe the details as follow. First,

the V elements of set B are loaded into one vector register vb.

Second, each element of set A is broadcast to a different vector

vi (i = 1, 2, 3, 4), and is compared with vb. The comparison

result between vi and set vb is stored in vector ci. Finally, the

four comparison results c1, . . . , c4 are combined together into

one mask register with a bitwise OR instruction.

We next describe how we implement the specialized inter-

section kernels for other input sizes. Without loss of generality,

we divide all intersection kernels into three categories based

their input sizes: (1) small-by-small set intersection (Sa ≤
Sb ≤ V ): the size of both input sets is less than the vector

length, (2) small-by-larger set intersection (Sa ≤ V < Sb):

the size of one input size is less than the vector length, and

the size of the other input size is larger than the vector length,

and (3) large-by-large set intersection (V < Sa ≤ Sb): the

size of both input sets is larger than the vector length.

Small-by-small set intersection (Sa ≤ Sb ≤ V ): When

Sa and Sb are both less than the vector length V , the im-

plementation of our specialized kernels removes unnecessary

operations, as shown in Fig. 2. Compared to the general 4-

by-4, the specialized 2-by-4 kernel does not need to perform

complete 4-by-4 comparisons. Instead, it only compares be-

tween the two elements in set A and the four elements in

set B, which only takes two broadcasts, two comparisons

and one bitwise OR instruction. In summary, the number of

comparisons and memory access operations in the specialized

kernel is only half of that as in the general 4-by-4 kernel.

1470



Fig. 3. Illustrating the specialized kernels: (1) a 2-by-7 intersection kernel (small-by-large), (2) a 4-by-5 intersection kernel (small-by-large and Sb is slightly
larger than V ), and (3) a 6-by-6 intersection kernel (large-by-large).

Small-by-large set intersection (Sa ≤ V < Sb): The kernels

for small-by-small intersections can be used to build the

specialized kernels for small-by-large intersections, in which

the size of one set is less than the vector length V and

the size of the other set is larger than the vector length V
(Sa ≤ V ≤ Sb). The key idea is that we first compare all

elements in set A with the first V elements of set B.

We now use the 2-by-7 set intersection (as shown in the

left side of Fig. 3) as an example. We start with comparing

the two elements in set A against the first four elements in

set B. In particular, two elements A1 and A2 are broadcast

into vector registers v1 and v2. They are next compared with

the first 4 elements in set B in vector register vb. Line 7-9

combines the comparison results together through a bitwise OR
operation. We next apply the the same process to compare the

two elements in set A with the remaining three elements in

set B, by loading the three elements into one vector register

all together, as shown at line 10-15. Note that two elements

A1 and A2 can be reused from registers v1 and v2.

Compared to the general kernel, this specialized kernel re-

duces computation, has better data reuse and avoids redundant

loads. In summary, the number of broadcasts in the specialized

kernel equals to the size of the small set (i.e., Sa = 2). The

number of loads equals to the size of the large set divided by

the SIMD width (i.e.,
⌈
Sb/w

⌉
=

⌈
7/4

⌉
= 2). The number

of comparisons is 2Sa, since each element in the small set

requires two comparisons with the large set.

However, this specialized kernel may be sub-optimal for

some cases due to more comparisons. For example, when the

size of set A is 4 and the size of set B is only slightly larger

than the vector size V (e.g., Sb = 5), the fifth element in set

B requires four comparisons against set A. This is because the

four elements A1, . . . , A4 are in four different vector registers

due to broadcast operations. The Intersect4by5 example in

the middle of Fig. 3 illustrates a better way to implement

such scenario. First, set A is loaded into a vector register.

Second, elements in set B are broadcast and compared with

this register. In total, the number of comparisons is only five

instead of eight.

Large-by-large set intersection (V < Sa ≤ Sb): The

implementation of our specialized kernels is built on top of

small-by-large and small-by-large kernels, when both Sa and

Sb are larger than the vector length V .

Let’s now take the 6-by-6 set intersection (as shown in the

right side of Fig. 3) as an example. We first apply a 4-by-4

intersection to compare the first V elements between set A and

set B. There are two scenarios in the second step: (1) A4 ≤
B4: To maximize data reuse, it is more efficient to load all

elements from set B into one vector and broadcast all elements

from set A. Therefore, we apply a 2-by-6 intersection between

the fifth and sixth element of set A and all six elements of

set B. The example in the right side of Fig. 3 corresponds to

this scenario. (2) A4 > B4: This is the symmetric scenario.

Therefore, it is more efficient to load all elements from set A
into one vector and broadcast all elements from set B. Note

that we have implemented both kernels above, and use the

correct one based on the comparison result between A4 and

B4 in runtime.

VI. DISCUSSION

In this section, we first describe how our approach is used

for k-way intersection and its time complexity. We next discuss

the case for input with dramatically different sizes and how

to extend our approach to exploit multicore parallelism and

wider vector width.

k-way intersection: Similar to the process of set intersection

between two sets, our approach can also leverage the seg-

mented bitmaps to quickly prune the mismatches among k
sets. Given k sets L1, L2, . . . , Lk, we now describe the two-

step set intersection as follows: (1) for each set Li, there is

a corresponding Bitmapi. In this step, we compare the k
bitmaps (i.e., Bitmap1 . . .Bitmapk) using a bitwise AND
operation to quickly filter out segments whose bitmaps do not

have intersection with others. As discussed in Section III, the

output is a list of non-zero segments; (2) we next apply the

specialized k-way intersection kernels to the list of segments to
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perform the intersections over their associated elements. Since

the expensive k-way intersection kernels are only performed

on the matched segments (i.e., output from the first step),

the complexity of the k-way set intersection with our data

structure is proportional to the intersection size, instead of

the entire input size. The performance advantage is more

significant when the final intersection size is small.

We now give a theoretical analysis of the time complexity

of our k-way intersection approach. For clarity, we assume the

size of each set is n and we use w to denote the word size

and r to denote the intersection size.

Proposition 2. The time complexity of the k-way intersection
algorithm is O(kn/

√
w + r).

Proof. There are two steps in the algorithm: (1) bitwise AND
on k bitmaps, and (2) computing the intersection on the

matched segments. The analysis for the time spent in each step

is similar to what we discussed in Proposition 1. Therefore,

the time for the bitwise operation with SIMD instructions is

O(k ∗ m/w). The time spent in the second step depends on

the number of false positive matches. As in Proposition 1, we

have the expected number of false positive matches:

E(IFP) =
∑

e1∈L1,...,ek∈Lk

P (h(e1) = · · · = h(ek)) =
nk

mk−1

In summary, when m = n
√
w, we have the total number of

both true and false positive matches:

E(I) = E(IT ) + E(IFP) = n/
√
w

k−1
+ r

In summary, the time complexity of the k-way intersection

algorithm is O(kn/
√
w + r).

Input with dramatically different sizes: When two sets have

dramatically different sizes (i.e., n1 � n2), we adapt our

approach to a different strategy such that we can achieve

the same time complexity as in a hash-based method, i.e.

O(min(n1, n2)) = O(n1). The key idea is that we go through

each element in the smaller set and check the existence of

the element in the larger set. Note that if the larger set

has the element, then the element must be in segment v
mod m2, in which m2 is the size of larger set’s bitmap. If

the corresponding bit in the bitmap is not set, meaning the

element is not in the larger set, all subsequent comparisons

are avoided. Otherwise, the element is compared against all

the elements mapped to that position.

Multicore parallelism: Our set intersection approach can

be easily extended to exploit more parallelism on multicore

processors, since there are no cross-iteration dependencies.

The bitmaps of input sets can be partitioned and distributed

onto different CPU cores such that each core can indepen-

dently perform the bitwise AND operation on its partition and

use specialized kernels to compute the intersection result on

the matched segments. Note that when the two input sets have

dramatically different sizes, we only partition and distribute

the elements in the small set so that each core can next perform

our approach agains the bitmap of the large set independently.

Wider vector width: Intel is introducing the AVX512 instruc-

tions the Skylake and Cannonlake architecture. As discussed

earlier, there is a bitwise AND operation in the first step, which

can have linear speedups with wider SIMD width. In addition,

our specialized kernels are also designed to support arbitrary

vector length V . However, directly applying our approach

with wider SIMD instructions leads to significant performance

degradation. This is because increasing segment size s leads

to more elements in a segment on average. As the segment

size goes up, more specialized intersection kernels for larger

sizes are needed. As a result, the complexity of the jump table

goes up as well. When the size of the jump table exceeds

the instruction cache size, severe performance degradation will

happen.

To reduce the number of specialized intersection kernels

in the jump table, some specialized intersection are omitted

and not implemented. In particular, instead of enumerating

intersection kernels for all size pairs, we only implement

intersection kernels at some sampled sizes (e.g., the even

sizes). For a segment whose size falls in between those

sampled sizes, its size is rounded up to the next larger size,

meaning we will use a slightly larger specialized kernel for this

segment. Although this causes some redundant computations,

it significantly reduces the number of intersection kernels in

the jump table.

VII. EXPERIMENTS

In this section, we study the performance of our approach

compared to the state-of-the art set intersection algorithms on

both synthetic and real-world datasets.

A. Experimental Setup

Platforms: We implement our algorithms on platforms with

SSE/AVX/AVX512 instructions and compare with state-of-

the-art set intersection methods. We use two Intel platforms in

our evaluation: (1) Intel E5-2695, which is a Haswell architec-

ture and supports SSE(128-bit) and AVX(256-bit) instructions,

and (2) Intel i7-7820X, which is a Skylake architecture and

has the latest AVX512 instruction support in addition to SSE

and AVX instructions.

Datasets: We perform the evaluation on both synthetic and

real-world datasets [19], [20], focusing on how the following

three key factors: (1) input size (n), (2) selectivity (r/n), and

(3) skew in the input sizes (n1/n2). Note that if the original

input data is unordered, our approach sorts the elements of

each segment after hashing all elements into the bitmap.

Methods: We study and compare the performance of our

approach with the following state-of-the-art implementations:

(1) Scalar: This is an optimized scalar merge implementation

similar to the code in Listing 1, but it replaces the expensive

if-else branch statements with conditional moves, (2) Shuf-

fling [13]: This is a SIMD implementation for set intersection

and it is similar to what is presented in Fig. 2. It uses the SIMD

shuffling instruction to perform all pair-wise comparisons

between two input vectors by creating all variations of one

vector. (3) scalarGalloping [18]: This is a binary-search based
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TABLE II
L1 INSTRUCTION CACHE MISS

SIMD Kernels AVX512 AVX512-stride4 AVX512-stride8

Code size (bytes) 520k 48k 12k
L1 icache miss # 50,009 43,178 34,596

intersection method. (4) SIMDGalloping [2]: A SIMD opti-

mized version of scalarGalloping, and (5) BMiss [1]: A merge-

based intersection approach with SIMD and optimizations on

reducing branch mispredictions. The experiments on synthetic

data are single-threaded. The multi-thread speedup is provided

in Fig. 13. Note that the data structure of our approach is

built offline and the construction time is not included in all

experiments. The time to build the data structure on real world

datasets is reported in Section VII-F.

B. Result of Specialized Intersection Kernels

As discussed in Section V, our system adopts different

strategies and generates specialized kernels for intersections

with different sizes. The specialized kernels can take advantage

of SIMD instructions, which perform fewer memory accesses,

shuffle and comparison computations.

We now study the performance of our specialized in-

tersection kernels compared to the generalized SIMD im-

plementation. Fig. 4 shows the result of SSE kernels. We

generated kernel sizes from 1-by-1 up to 7-by-7, which is

twice larger than the SSE SIMD width. We can observe that

our specialized kernels are up to 70% faster than the general

SIMD intersection implementation. Similarly, Fig. 5 shows the

result of AVX kernels. The kernel size goes up to 15-by-15

and the specialized kernels are faster than the general AVX

intersection implementation in all scenarios. The performance

advantage is even more significant when the size of one set

is much larger than the other set. Fig. 6 shows the result for

AVX512 kernels, which are up to 6.7x faster than the general

SIMD intersection implementation.

Kernel size and cache miss: By allowing sub-sampling of the

kernel combinations, we can reduce the total number of kernels

and improve the instruction cache hit rate. For example, as

shown in Table II, for AVX512 instructions on the Skylake

processor, if the kernel combinations are chosen in a stride

of 4 (i.e., 4-by-4, 4-by-8, etc), compared to generating all the

kernel combinations, the code size can be reduced by 90%

and the number of L1 instruction cache misses on synthetic

intersection data is reduced by 13%. Note that the total number

of instructions remains the same. If the kernels are generated

in a stride of 8, the code size can be reduced by 98% and L1

instruction cache misses is reduced by 30%.

C. Effect of Varying the Input Size

We next study the performance of different intersection

approaches with a varying input size. In this experiment, we

evaluate each intersection method with two synthetic sets.

In addition, we make the size of input sets identical and

their intersection size be 1% of the input size. We vary the

number of elements in input from 400K to 3.2M. Note that

our approach is implemented on two different Intel processors

with three different SIMD instruction sets: (1) SSE, (2)AVX,

and (3)AVX512. The performance of our SSE, AVX imple-

mentation is measured on an Intel Haswell architecture, which

is reported in Fig. 7(a). The performance of our AVX512

implementation is measured on an Intel Skylake architecture,

which is reported in Fig. 7(b).

In Fig. 7, the y-axis shows the CPU time in million

cycles (i.e., the lower, the better). We can observe that the

relative performance of these methods remains consistent as

we increase the input size. On the Haswell architecture, our

SSE and AVX implementation can achieve up to 7.6x speedup

compared to scalar methods, and 1.4x-3.5x speedup compared

to other SIMD methods. On the Skylake architecture, our

AVX512 implementation can achieve 2-4x speedup compared

to other SIMD methods. On both architectures, Scalar and

ScalarGalloping are the slowest, since scalar implementations

cannot leverage data-level parallelism. SIMDGalloping per-

forms poorly as well, because it is based on binary search and

has higher complexity when two input set sizes are similar.

D. Effect of Varying the Selectivity

Selectivity is the metric that describes how large the inter-

section size is relative to the input size. It is defined as the

ratio of the intersection size divided by the input size (i.e.,

r/n). We now study the performance of different intersection

approaches when varying the selectivity. In this experiment,

we fix the size of the two input sets to one million and

report the relative speedup of different approaches to the Scalar

intersection method in Fig. 8 and Fig. 9.

Fig. 8 shows the performance of each approach on the

Haswell architecture using SSE and AVX instructions. We

observe that our approach can achieve up to 7.6x speedups

compared to state-of-the-art Scalar intersection methods, and

1.8x speedups compared to state-of-the-art SIMD intersection

methods. Fig. 9 shows the performance of each approach

on the Skylake architecture using AVX512 instructions. We

observe that our approach can achieve up to 6x speedups com-

pared to state-of-the-art Scalar intersection methods, and 1.4-

3x speedups compared to state-of-the-art SIMD intersection

methods.

In addition, we see that the our method’s speedup is higher

when the selectivity becomes lower. Note that in most real-

world scenarios, the intersection size is usually less than 10%

of the input set (i.e., selectivity is less than 0.1).

k-way intersection: We also study the performance of each

method on three-way intersection. We fix the input size to

one million as in the experiment above, and report the result

in Fig. 10. The y-axis is the relative speedup to the Scalar

method. The x-axis shows the set density, which describes how

clustered the elements are distributed among a given range.

For example, elements in a dense set are randomly drew from

a small range, while a sparse set have elements drew from

a larger range. Density can affect the intersection size. For

example, two dense sets are more likely to have common
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Fig. 4. Speedups of SSE kernels Fig. 5. Speedups of AVX kernels Fig. 6. Speedups of AVX 512 kernels
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Fig. 7. Performance comparison with a varying input size

elements. When k = 3, the selectivity is proportional to the

third power of set density.

We can observe that FESIA can achieve up to 17.8x

speedups compared to scalar intersection methods on 3-way

intersection, and up to 4.8x speedups compared to state-of-the-

art SIMD set intersection approaches. The speedup is higher

when the density is lower. When the density is zero, the

maximum speedup achieved in 3-way intersection is higher

than that in 2-way intersection, which shows the speedup

of our approach is more prominent with a larger k. This is

because multi-way comparisons are more expensive for larger

k. However, our approach can avoid the cost of unnecessary

multi-way comparisons through cheap bitmap intersections.

E. Performance of Two Sets with Different Sizes

We now study the performance of each approach when the

two input sets have different sizes. In this experiment, we

fix the size of the larger input size to one million and the

selectivity to 0.1. The x-axis is the skew, i.e., the ratio of

the smaller set size to the larger set size (n1/n2). The y-axis

is the relative speedup to the Scalar method. Note that our

approach can adapt to different strategies depending on the

value of skew. We use FESIAmerge to denote the strategy we

use when the input has a similar size and FESIAhash to denote

the strategy we use when the input has dramatically different

sizes. We report the performance of both strategies in Fig. 11.

Theoretically, when the skew is small (n1 � n2), the

hash-based method has the lowest average complexity and

the merge based method has the highest average complexity.

The complexity of the binary search method is between the

two above. When the skew is large (n1 ∼ n2), the average

complexity of the merge method is comparable with the hash-

based method, and the binary search method has the highest

complexity.
As shown in Fig. 11, the actual performance of the inter-

section methods can match the theoretical analysis. When the

skew is small, our method based on hash (i.e., FESIAhash) has

the best performance, which is 2-3x faster than the binary-

search based method SIMDGalloping, while SIMDGalloping

is faster than the two SIMD merge-based methods (Shuffling

and BMiss). As the skew goes up to more than 1/4, FESIAmerge

starts to outperform FESIAhash and it achieves the best perfor-

mance among all approaches. For other methods, the SIMD

merge-based method can outperform methods based on binary

search.
In summary, FESIA can adapt to different strategies given

different skew in input, and achieves better performance than

other approaches. All other approaches only perform well

when the skew is either small or large.

F. Performance on Real-World Datasets
We next study the performance of each intersection ap-

proach on two real-world tasks: (1) a database query task,
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Fig. 8. Performance on different selectivity on Intel Haswell

Fig. 9. Performance on different selectivity on Intel Skylake

Fig. 10. Performance of three-way intersection
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Fig. 12. Results on the database query task

and (2) a triangle counting task in graph analytics [6].

The database query task: In Fig. 12, we report the result

of each approach on a real-life dataset called WebDocs from

the Frequent Itemset Mining Dataset Repository [19]. The

WebDocs dataset is a web crawl dataset built from a collection

of web HTML documents. The whole collection has about

1.7 million documents with 5,267,656 distinct items. The data

structure’s construction time on this dataset is 77.7s.

To simulate the low selectivity of real-world queries, we

generate random queries from the dataset and keep the set

intersection size below 20% of the input size. We show the

result of set intersection with two input sets and three input sets

on the top of Fig. 12. We observe that our approach achieves

close to 4x speedup compared to the Scalar method, 2x

speedup compared to the SIMD Shuffling, and 3.8x speedup

compared to SIMDGalloping. The bottom of Fig. 12 shows the

performance of each approach when the sizes of input sets are

skewed. Overall, we observe that our approach has an up to

3x speedup compared to other approaches.

The triangle counting task: We now study the performance of

each approach on the triangle counting task with three graph

analytics datasets. The three datasets are from the Stanford

Large Network Dataset Collection [20] and we report the

details of each dataset in Table III. In Fig. 13, we can observe

that our approach can achieve up to 12x speedup compared
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TABLE III
THE DETAILS OF EACH GRAPH DATASET

Dataset # of nodes # of edges construction time

Patents 3,774,768 16,518,948 0.25s
HepPh 34,546 421,578 0.004s
LiveJournal 3,997,962 34,681,189 0.38s
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Fig. 13. Results on the triangle counting task

Fig. 14. Performance breakdown on varying bitmap size and segment size

to the Scalar method and up to 1.7x speedup compared to the

SIMD Shuffling approach. In addition, the speedup can scale

linearly with the number of CPU cores.

G. Performance Breakdown

In this experiment, we study how much time is spent in

each step in our approach with different bitmap sizes (m)

and segment sizes (s) and report the result in Fig. 14. The

input set size is 200kB and the selectivity is zero. As we

can observe, when we decrease the segment size (s) with

a constant bitmap size (m), the time spent in the bitmap

intersection (step 1) increases while the time spent in the

segment intersection (step 2) decreases. This is because our

approach iterates over the bitmap segment by segment in

step 1, and the time is proportional to the number of segments.

Smaller s leads to more segments and longer processing time.

Meanwhile, smaller s also reduces the intersection time in

step 2, since it takes less time for segment intersection.

VIII. CONCLUSION

In this paper, we presented FESIA, an efficient SIMD-

vectorized approach for set intersection on modern CPUs. In

many real-world tasks such as database queries and graph

analytics, the intersection size is usually orders of magnitude

smaller than the size of the input sets. FESIA leverages this

observation by adopting a bitmap-based approach to efficiently

prune necessary comparisons and refine a list of smaller

segments with intersecting elements. These segments are later

processed by specialized SIMD kernels for final intersection.

Experiments on both real-world and synthetic datasets show

that our approach can achieve an order of magnitude speedup

compared to scalar set intersection methods and be up to 4x

faster than state-of-the-art SIMD implementations.
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