
HARDWARE IMPLEMENTATION OF THE DISCRETE FOURIER TRANSFORM

WITH NON-POWER-OF-TWO PROBLEM SIZE

Peter A. Milder, Franz Franchetti, James C. Hoe, and Markus Püschel

Carnegie Mellon University

Department of Electrical and Computer Engineering

Pittsburgh, PA, United States

ABSTRACT

In this paper, we examine several algorithms suitable for the

hardware implementation of the discrete Fourier transform

(DFT) with non-power-of two problem size. We incorporate

these algorithms into Spiral, a tool capable of performing au-

tomatic hardware implementation of transforms such as the

DFT. We discuss how each algorithm can be applied to gen-

erate different types of hardware structures, and we demon-

strate that our tool is able to produce hardware implementa-

tions of non-power-of-two sized DFTs over a wide range of

cost/performance tradeoff points.

Index Terms— Discrete Fourier transform, high-level

synthesis, Field programmable gate arrays, algorithms

1. INTRODUCTION

Transforms such as the discrete Fourier transform (DFT) are

very commonly used in signal processing, communications,

and scientific computing applications. However, they are dif-

ficult and time-consuming to implement in hardware because

of the large number of algorithmic and datapath options that

must be considered in order to tailor the implementation to a

particular application’s cost and performance requirements.

The right choices are highly dependent on the context. These

problems are worsened when the transform size is not a power

of two; algorithms become less regular and the relationships

between algorithm and hardware implementation become

more complicated. For these reasons, most existing work on

hardware implementations of the DFT with non-power-of-

two problem size focuses on building an implementation to

meet a specific application’s cost and performance goals, not

on creating a space of designs with different cost/performance

characteristics.

Contribution. In this paper we utilize a hardware genera-

tion framework based on Spiral [1, 2] to automatically pro-

duce hardware implementations of the DFT with non-power-

of-two problem size. We consider several algorithmic options

including the Bluestein [3] and mixed radix [4] algorithms,

and we examine their applicability to the mathematical frame-

work we use in hardware generation. Because designs are

implemented automatically, it is possible to evaluate many

more options than would likely be evaluated by hand, and

we demonstrate that the combination of options considered

allows the generation of a range of designs, each with a dif-

ferent tradeoff between cost and performance metrics.

Related work. Most previous work on hardware implementa-

tions of non-power-of-two sized DFTs has focused on produc-

ing a solution for a specific situation (a given problem size and

performance requirement). For example, [5] and [6] consider

the specific problem sizes and performance requirements of

the Digital Radio Mondiale (DRM) radio broadcasting stan-

dard, while [7] presents an FPGA-based pipeline design of a

3,780 point inverse DFT used in a digital television standard.

2. BACKGROUND

In this section, we present relevant background on the discrete

Fourier transform and fast Fourier transform algorithms.

Discrete Fourier transform. Computing the discrete Fourier

transform on n points is defined as the matrix-vector product

y = DFTn x, where x and y are n point input and output

vectors (respectively), and

DFTn = [ωkℓ
n ]0≤k,ℓ<n, ωn = e−2πi/n.

Fast Fourier transform. Fast Fourier transform (FFT) algo-

rithms allow the computation of DFTn in O(n log n) oper-

ations. Using the Kronecker product formalism developed

in [4], an FFT algorithm can be written as a formula that

represents a factorization of the dense DFTn matrix into a

product of structured sparse matrices. For example, the well-

known Cooley-Tukey FFT can be written as

DFTmn = (DFTm ⊗In)Tmn
n (Im ⊗ DFTn)Lmn

m . (1)

Lmn
m represents a stride permutation matrix that permutes its

input according to:

in + j 7→ jm + i, 0 ≤ i < m, 0 ≤ j < n.

Im is the m×m identity matrix, and ⊗ is the tensor product,

defined:

A ⊗ B = [ak,ℓB], where A = [ak,ℓ].



DFT2

x0

x3

x2

x1

i

y0

y3

y2

y1

DFT2

DFT2

DFT2

Fig. 1. Dataflow illustration of (1).

Lastly, Tmn
n is a diagonal matrix of “twiddle factors,” (as

specified in [8]). Figure 1 shows a dataflow interpretation of

the formula (1) when n = 2 and m = 2.

Automatic Hardware Generation. Spiral [1, 2] is an auto-

mated tool for the generation and optimization of hardware

and software implementations of transforms such as the DFT.

Spiral takes a given transform matrix (DFTn) and expands

it using one or more FFT algorithms, resulting in a formula.

In [1], we extend the Kronecker formalism to enable the de-

scription of a rich space of hardware architectures by explic-

itly specifying sequential reuse of computational elements

within the formula. This allows Spiral to automatically gener-

ate many possible hardware implementations of a transform

of a given size, each with different trade-offs between vari-

ous costs (e.g., circuit area) and performance metrics (e.g.,

throughput, latency).

Figure 2(a) shows a datapath with no sequential reuse. It

contains three repeated stages, each with four parallel compu-

tation blocks labeled A2. It processes eight data elements in

parallel. Next, Figure 2(b) employs streaming reuse to stream

the data vector through the system over multiple cycles at a

fixed rate. We call this rate the streaming width (two in this

example).1 In Figure 2(c), the three computation stages have

been collapsed to a single stage using a technique called it-

erative reuse. Now, the data vector must feed back and pass

through the computation block multiple times.

By using different amounts of sequential reuse, different

cost/performance trade-offs can be obtained. The more reuse

employed, the smaller a datapath will be, but it will be com-

mensurately slower.

3. NON-POWER-OF-TWO FFT ALGORITHMS

In this section, we discuss four FFT algorithms that we use

with our formula-driven generation framework to implement

the DFT with non-power-of-two problem size.

Pease FFT and Iterative FFT. The Pease FFT [11] and Itera-

tive FFT are commonly used FFT algorithms that decompose

an rt point DFT into DFTs on r points, where r is called the

radix. Both algorithms can be derived from (1). The radix-r

Pease and Iterative FFTs are (respectively):

DFTrt =

(

t−1
∏

ℓ=0

Lrt

r (Irt−1 ⊗ DFTr)D
rt

ℓ

)

Rrt

r (2)

DFTrt =

(

t−1
∏

ℓ=0

(Irℓ ⊗ DFTr ⊗Irt−ℓ−1)Ert

ℓ

)

Rrt

r (3)

1Permutations on streaming data require the use of memory; we imple-

ment them as in [9, 10].

0

one 

vector, 

size 8

A2

A2

A2

A2

A2

A2

A2

A2

A2

A2

A2

A2

1

2

3

4

5

6

7

(a) Example combinational datapath.

4 cycles

2 words
per cycle

one streamed vector, size 8

0 A2 A2 A21

2

3

4

5

6

7

(b) Datapath employing streaming reuse.

2

A
2

(c) Datapath employing iterative reuse.

Fig. 2. Illustration of sequential reuse techniques. All three

perform the same computation, but with differing cost and

performance.

Matrix Rrt

r is the base-r digit reversal permutation on rt

points. When r = 2, this is called the “bit reversal permuta-

tion.” D and E are diagonal matrices of twiddle factors. The

remaining matrices are as defined in Section 2.

Streaming reuse can be applied to both algorithms (as

in Figure 2(b)), but only (2) can be used for iterative reuse

(as in Figure 2(c)). When using these algorithms to gener-

ate streaming hardware, the streaming width must be a power

of r. So, as r increases, the space of datapaths that can be

generated by these formulas decreases.

Mixed radix FFT. The mixed radix FFT algorithm (based

on (1)) breaks down a DFT of size rksℓ into multiple DFTs

of sizes rk and sℓ:

DFTrksℓ = Lrksℓ

rk (Isℓ ⊗ DFTrk)Lrksℓ

sℓ T rksℓ

sℓ

· (Irk ⊗ DFTsℓ)Lrksℓ

rk . (4)

Then, the DFTrk and DFTsℓ matrices can be recursively de-

composed using radix r and s algorithms (2) or (3). In gen-

eral, the two stages must be built independently—they can not

be collapsed into one iterative reuse stage (as in Figure 2(c)).

The structure of this algorithm imposes an additional re-

striction on the applicable streaming width: it must evenly

divide the problem size rk · sℓ, and it must be a multiple of

r · s. Thus, as the radices r and s get larger, the datapath

options become more restricted.

This algorithm can also be applied recursively to break

a problem into three or more radices, but as the number of

radices increases, the streaming width becomes more re-

stricted, limiting flexibility.

Bluestein FFT. The Bluestein FFT [3] is a convolution-based

algorithm for any problem size n. The algorithm performs the



DFT by scaling the input vector and convolving it with pre-

computed coefficients. The convolution of two n length sig-

nals can be performed as point-wise multiplication of length

m > 2n − 1 in the frequency domain. This allows a DFT

of any given size to be computed using DFTs of two-power

size, at the expense of additional operations. We can view this

algorithm as:

DFTn = D
(2)
n×m DFT−1

m D(1)
m DFTm D

(0)
m×n, (5)

where m = 2⌈log2
(n)⌉+1 is the smallest power of two greater

than 2n − 1, and the D matrices are diagonal matrices that

scale the vector by constant values. D
(0)
m×n and D

(2)
n×m are

rectangular matrices, so in addition to scaling the data, D(0)

extends the input data vector from n points to m points (by

zero padding), and D(2) shortens the output data vector from

m points to n points (by discarding unneeded data).

The Bluestein FFT algorithm has a higher operation count

than the other algorithms considered, but its structure is more

regular than (4); the forward and inverse DFTn can be col-

lapsed into one logic block, allowing the datapath to exhibit

iterative reuse if desired (as in Figure 2(c)). In Section 4 we

will see that this allows the Bluestein algorithm to produce

smaller hardware implementations than the mixed radix FFT,

while the mixed radix algorithm is able to obtain higher per-

formance at the cost of added logic.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the designs generated from (2),

(3), (4), and (5). We compare the effects of each algorithm

and illustrate how the algorithmic options affect the quality

and types of datapaths that can be implemented within our

framework. Our experiments evaluate the designs imple-

mented on a Xilinx Virtex-5 FPGA (field-programmable gate

array), but the designs produced by our tool are not FPGA-

specific; they are also suitable for implementation as an ASIC

(application-specific integrated circuit).

Experimental Setup. Given a transform of a specific size, a

set of algorithmic options, and hardware directives that spec-

ify the desired datapath characteristics, Spiral automatically

generates a corresponding pipelined hardware implementa-

tion in synthesizable register-transfer level Verilog. In these

experiments, we generate designs that operate on 16 bit fixed

point data words (for each of the real and imaginary parts of

complex data), but Spiral is able to generate designs for any

precision fixed-point or single precision floating point.

In these experiments, we generate and evaluate all of the

options presented above with a streaming width up to 32. We

use Xilinx ISE to synthesize and place/route each design for

a Xilinx Virtex-5 LX 330 FPGA. When a memory structure

is needed, we utilize an on-chip block RAM when we will

utilize 2KB or more, otherwise we build the memory out of

FPGA logic elements. (This threshold is also a controllable

parameter in our generation tool.)

The set of algorithms and datapaths we consider depends

on the problem size. Here, we consider four values of n that

illustrate four different classes of problem size. In Figure 3,

we examine the throughput performance (in million samples

per second) versus FPGA area consumed (in Virtex-5 slices)

for each design. A similar tradeoff evaluation can be per-

formed for other cost or performance metrics, such as latency.

Large prime size. First, Figure 3(a) shows throughput ver-

sus area for implementations of DFT499. Because 499 is a

large prime number, the only applicable option among those

we consider is the Bluestein FFT algorithm. Each black circle

represents one Bluestein-based datapath, and the black line il-

lustrates the designs in the Pareto-optimal set—the set of best

tradeoff points among those evaluated. The slowest design re-

quires approximately 1,500 slices and has a throughput of 11

million samples per second (MSPS). The fastest is 18× larger

but 60× faster.

Composite number with larger prime factors. Next,

Figure 3(b) shows results for DFT405. In addition to the

Bluestein algorithm, the mixed radix FFT algorithm applies

to this problem; it decomposes DFT405 into DFT34 and

DFT5. This provides two additional designs (with streaming

width of 3 · 5 = 15), shown as white triangles. Although the

larger of these designs provides a much higher throughput

than a similarly sized Bluestein-derived design, it is impor-

tant to note that the cross-over point (where the mixed-radix

designs become the better choice) is quite large (at approx-

imately 15,000 slices). So, if design requirements require a

smaller, lower throughput core, the Bluestein algorithm is a

better choice.

Composite number with smaller prime factors. Third, Fig-

ure 3(c) illustrates throughput and area for DFT432. Similar

to the previous example, DFT432 can be implemented using

the mixed radix algorithm. However, unlike DFT405, we can

decompose DFT432 into smaller radices: 2 and 3 (because

432 = 24 × 33). Since the radices are smaller, the mixed

radix algorithm can be used with more options for streaming

width, leading to a wider set of Pareto-optimal designs than

for DFT432. The Bluestein designs are still the best choice for

the smallest/slowest designs, but the cross-over point (about

9,000 slices) is lower than in the previous example.

Power of small prime. Lastly, Figure 3(d) shows results

for DFT243 = DFT35 . Now, the mixed radix algorithm is

unneeded; because the problem size is a power of three, the

radix-3 Pease and Iterative FFTs are applied directly (shown

as white triangles). Here, the cores built with the radix-3 al-

gorithms surpass the performance of the Bluestein cores at a

much lower area than in the other problems, since the single-

radix design can be built with less logic than in the previous

multi-radix designs.

These results show that our framework produces designs

with a range of cost/performance trade-offs. However, the

range of performance that can be obtained depends on the



0 

100 

200 

300 

400 

500 

600 

700 

0 5,000 10,000 15,000 20,000 25,000 30,000 
area [slices] 

Bluestein FFT 

(a) DFT 499 (16 bit fixed point) on Xilinx Virtex-5 FPGA 
throughput [million samples per second] 

0 

500 

1000 

1500 

2000 

2500 

3000 

0 5,000 10,000 15,000 20,000 25,000 30,000 
area [slices] 

Mixed-Radix FFT 

Bluestein FFT 

(b) DFT 405 (16 bit fixed point) on Xilinx Virtex-5 FPGA 
throughput [million samples per second] 

0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

0 5,000 10,000 15,000 20,000 25,000 30,000 
area [slices] 

Mixed-Radix FFT 

Bluestein FFT 

(c) DFT 432 (16 bit fixed point) on Xilinx Virtex-5 FPGA 
throughput [million samples per second] 

0 

500 

1000 

1500 

2000 

2500 

0 5,000 10,000 15,000 20,000 25,000 
area [slices] 

Radix-3 FFT 

Bluestein FFT 

(d) DFT 243 (16 bit fixed point) on Xilinx Virtex-5 FPGA 
throughput [million samples per second] 

Fig. 3. Throughput (y-axis) versus area (x-axis) for DFT499, DFT405, DFT432, and DFT243.

composition of the problem size, which affects the set of al-

gorithms that are applicable.

5. CONCLUSION

In this paper, we explore hardware implementation of the dis-

crete Fourier transform with problem sizes that are not powers

of two. We discuss several algorithms for this class of prob-

lems that fit within our automatic hardware generation frame-

work. We show how different algorithms can be applied to

DFTs of different problem sizes, and we discuss the types of

hardware structures that may be generated for each. Lastly,

we provide an evaluation of designs generated using the al-

gorithmic and datapath options described, and show that the

options considered allow the tool to produce designs over a

range of cost/performance tradeoff points.

6. REFERENCES

[1] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Püschel,

“Formal datapath representation and manipulation for

implementing DSP transforms,” in Proc. Design Au-

tomation Conference, 2008, pp. 385–390.

[2] M. Püschel et al., “SPIRAL: Code generation for DSP

transforms,” Proc. of the IEEE, vol. 93, no. 2, pp. 232–

275, 2005.

[3] L. I. Bluestein, “A linear filtering approach to computa-

tion of discrete Fourier transform,” IEEE Tranactions on

Audio and Electroacoustics, vol. 18, no. 4, pp. 451–455,

1970.

[4] C. Van Loan, Computational Frameworks for the Fast

Fourier Transform, SIAM, 1992.

[5] M. D. van de Burgwal, P. T. Wolkotte, and G. J. M. Smit,

“Non-power-of-two FFTs: Exploring the flexibility of

the Montium TP,” International Journal of Reconfig-

urable Computing, to appear.

[6] D.-S. Kim, S.-S. Lee, J.-Y. Song, K.-Y. Wang, and D.-

J. Chung, “Design of a mixed prime factor FFT for

portable digital radio mondiale receiver,” IEEE Transac-

tions on Consumer Electronics, vol. 54, no. 4, pp. 1590–

1594, 2008.

[7] Z.-X. Yang, Y.-P. Hu, C.-Y. Pan, and L. Yang, “Design

of a 3780-point IFFT processor for TDS-OFDM,” IEEE

Transactions on Broadcasting, vol. 48, no. 1, pp. 57–61,

2002.

[8] J. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolim-

ieri, “A methodology for designing, modifying, and im-

plementing Fourier transform algorithms on various ar-

chitectures,” IEEE Trans. Circuits and Systems, vol. 9,

pp. 449–500, 1990.

[9] M. Püschel, P. A. Milder, and J. C. Hoe, “Permuting

streaming data using RAMs,” Journal of the ACM, vol.

56, no. 2, pp. 10:1–10:34, 2009.

[10] P. A. Milder, J. C. Hoe, and M. Püschel, “Automatic

generation of streaming datapaths for arbitrary fixed per-

mutations,” in Proc. Design, Automation and Test in

Europe, 2009, pp. 1118–1123.

[11] M. C. Pease, “An adaptation of the fast Fourier trans-

form for parallel processing,” Journal of the ACM, vol.

15, no. 2, April 1968.


