
An Auto-tuning with Adaptation of A64 Scalable Vector Extension for SPIRAL

Naruya Kitai
Graduate School of Informatics,

Nagoya University
Furo-Cho, Chikusa-ku, Nagoya,

Aichi, JAPAN
kitai@hpc.itc.nagoya-u.ac.jp

Franz Franchetti
Department of Electrical and Computer Engineering

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh 15213, USA
franzf@ece.cmu.edu

Satoshi Ohshima
Information Technology Center,

Nagoya University
Furo-Cho, Chikusa-ku, Nagoya, Aichi, JAPAN

ohshima@cc.nagoya-u.ac.jp

Daisuke Takahashi
Center for Computational Sciences,

University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, JAPAN

daisuke@cs.tsukuba.ac.jp

Takahiro Katagiri
Information Technology Center,

Nagoya University
Furo-Cho, Chikusa-ku, Nagoya, Aichi, JAPAN

katagiri@cc.nagoya-u.ac.jp

Toru Nagai
Information Technology Center,

Nagoya University
Furo-cho, Chikusa-Ku, Nagoya, Aichi, JAPAN

nagai@nagoya-u.ac.jp

Abstract— In this paper, we propose an auto-tuning (AT)
system by adapting the A64 Scalable Vector Extension for
SPIRAL to generate discrete Fourier transform (DFT)
implementations. The performance of our method is evaluated
using the Supercomputer “Flow” at Nagoya University. The
A64 scalable vector extension applied DFT codes are up to 1.98
times faster than scalar DFT codes and up to 3.63 times higher
in terms of the SIMD instruction rate. In addition, we obtain a
factor of maximum speedup 2.32 by adapting proposed AT
system for loop unrolling.

Keywords— Auto-tuning; Discrete Fourier Transform;
SPIRAL; SIMD; A64 SVE;

I. INTRODUCTION

Computer architectures are becoming increasingly diverse,
with configurations varying greatly depending on the
environment, such as the number of CPU cores, memory
access speed, cache structure, and presence or absence of a
graphics processing unit (GPU). To achieve a high
performance, software tuning is important for numerical
software; however, optimizing the software for each
computing environment requires specialized knowledge of
the hardware as well as significant time and effort. In
addition, the performance of software tuned for one specific
environment may be degraded in another. In this case, the
software must be tuned again when the environment is
migrated. Furthermore, optimization by widely used
compilers is often insufficient for software developers.

Software auto-tuning (AT) for numerical computations [1]
is a technology that automates the tuning performance to
improve the software performance. By using AT technology,
software optimized for one computer environment is
expected to perform equally well in a different computer
environment. This is known as the performance portability
of the software. For this reason, many numerical software
packages with AT functions have been developed [2][3].
Furthermore, AT frameworks have been proposed for
creating numerical software with AT functions, including
OpenTuner [4], Xevolver [5], and FIBER [6] and ppOpen-
AT [7].

One effort to achieve high-performance software
portability is automatic code generation through the use of
an AT technique. Automatic code generation is applied to
computational kernels based on the mathematical
background to provide implementations of numerical
algorithms for various computing environments and
programming languages.

SPIRAL [8][9] is a program generation system that
automatically generates optimized implementations of
mathematical algorithms, including linear transforms such as
a discrete Fourier transform (DFT) and a discrete cosine
transform (DCT). In this paper, we propose a method for
applying the A64 Scalable Vector Extension (SVE) [13][14]
to DFT generation in SPIRAL. SPIRAL supports code
generation, to which SIMD instructions are explicitly applied.
For instance, Intel SSE, Intel AVE, and Arm NEON

instruction sets can be used. SPIRAL also supports the
generation of FFTE kernels using SVE [10]. However, we
need another way to support general codes using Arm SVE.

Hence the contribution of this paper is summarized as
follows.

First, we show effectiveness of Arm SVE optimization
through SPIRAL code generator by utilizing a DFT program.

Second, we show effectiveness of AT function by using
SPIRAL code generator in the DFT program.

The remainder of this paper is organized as follows.
Section II describes the SPIRAL code generator. Section III
details the Arm SVE. Section IV presents the adaptation of
the Arm SVE to DFT generation in SPIRAL. In addition,
flow of AT via SPIRAL code generator is explained. Section
V presents the results. Finally, some concluding remarks are
provided in Section VI.

II. SPIRAL CODE GENERATOR

A. Overview

In this section, we describe the SPIRAL code generation
system and DFT, which are the focus of this research.
SPIRAL is a system that automatically generates
implementations of mathematical algorithms. The code can
be optimized to suit the computing environment. It has been
under development at Carnegie Mellon University for more
than 20 years. SPIRAL is still being developed in terms of
the portability of numerical software. It provides high-
performance implementations for a wide range of hardware,
including embedded systems, HPC, GPUs, and FPGAs.
Although creating a high-performance library optimized for
a computational environment requires a great deal of effort
by engineers with a high level of expertise, the SPIRAL
approach can reduce this effort.

In addition to the choice of algorithm, SPIRAL optimizes
the program by specifying optional parameters that define
what kind of optimizations to apply, such as SIMD
instructions and the degree of loop unrolling. The specified
parameters were applied sequentially to the code generation
procedure. Then, the parameters were reflected in the final
generated code. The generated program is output as a file
containing functions that implement the mathematical
algorithm. The generated program can then be compiled and
used similarly to a normal program file.

B. Representation of DFT in Spiral

DFT is a Fourier transform of a sampled signal in both

the time and frequency domains and is widely used in
signal processing and other applications. The DFT for a
sample of n points 𝑥଴, 𝑥ଵ, … , 𝑥௡ିଵ is defined as follows:

 𝑦௞ ൌ෍ 𝜔௡௞௟𝑥௟
௡ିଵ

௟ୀ଴
 ሺ0 ൑ 𝑘 ൏ 𝑛ሻ, (1)

With

 𝜔௡ ൌ 𝑒
షమഏೕ
೙ . (2)

In addition, a fast Fourier transform (FFT), which can

perform the same transform as a DFT with fewer operations
and a faster speed, can be used [10]. In practice, a DFT is
almost always implemented using an FFT.

In SPIRAL, the DFT for a vector of length n is defined as
follows:

 𝐷𝐹𝑇௡: ℂ௡ → ℂ௡; 𝑥 ⟼ ൣ𝜔௡

௜௝൧
௜,௝
𝑥. (3)

Using (3), (1) can be expressed in the form of a vector
matrix product of vectors 𝑥 and 𝑦:

 𝑦 ൌ 𝐷𝐹𝑇௡𝑥. (4)

The FFT algorithm can be obtained by decomposing (4).
For example, the decimation-in-time Cooley-Tukey FFT
algorithm is expressed as

𝐷𝐹𝑇௡ → ሺ𝐷𝐹𝑇௞ ⨂ 𝐼௠ሻ𝑇௠௡ሺ𝐼௞⨂𝐷𝐹𝑇௠ሻ𝐿௞
௡ , 𝑛 ൌ 𝑘𝑚 (5)

where each operator and matrix are as defined below. The
Kronecker product of matrices A and B is

 𝐴 ⨂ 𝐵 ൌ ሾ𝑎௞,௟𝐵ሿ, for 𝐴 ൌ ൣ𝑎௞,௟൧. (6)

The identity matrix is

 𝐼௡ ൌ ሾ𝑖௞,௟ሿ, 𝑖௞,௟ ൌ ൜
1 ሺ𝑘 ൌ 𝑙ሻ
0 ሺ𝑘 ് 𝑙ሻ. (7)

The Twiddle matrix is

 𝑇௠௡ ൌ ሾ𝑡௞,௟ሿ, 𝑡௞,௟ ൌ ൜
𝜔௠௞ ሺ𝑘 ൌ 𝑙ሻ
0 ሺ𝑘 ് 𝑙ሻ

. (8)

Finally, the stride permutation matrix is

𝐿௞
௡ ൌ ሾ𝑙௜,௝ሿ,

𝑙௜,௝ ൌ ቄ 1 ሺ𝑘ሺ𝑖 𝑚𝑜𝑑 𝑚ሻ ൅ ⌊𝑗/𝑘⌋ ൌ 𝑛𝑖 ൅ 𝑗ሻ
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

(9)

In (5), DFTn is decomposed into an expression containing

a smaller DFTk and DFTm. By applying (5) recursively, the
DFT is decomposed into smaller and smaller units.
Finally, we need a rule that corresponds to the smallest unit,
DFT2, which is defined as follows:

 𝐷𝐹𝑇ଶ → 𝐹ଶ, 𝐹ଶ ൌ ቂ 1 1
 1 െ1

ቃ. (10)

This corresponds to the butterfly operation in FFT. If a
radix other than two is involved, the smallest unit generated
using an algorithm such as Rader’s FFT algorithm is
applied.

In addition to (5), the following decompositions can be
applied [11]:

The decimation-in-frequency Cooley-Tukey FFT is

𝐷𝐹𝑇௡ → 𝐿௠௡ ሺ𝐼௞⨂𝐷𝐹𝑇௠ሻ𝑇௠௡ሺ𝐷𝐹𝑇௞ ⨂ 𝐼௠ሻ, 𝑛 ൌ 𝑘𝑚. (11)

The four-step FFT is

𝐷𝐹𝑇௡ → ሺ𝐷𝐹𝑇௞ ⨂ 𝐼௠ሻ𝑇௠௡𝐿௞
௡ሺ𝐷𝐹𝑇௠⨂𝐼௞ሻ, 𝑛 ൌ 𝑘𝑚. (12)

Finally, the six-step FFT is

𝐷𝐹𝑇௡ → 𝐿௞
௡ሺ𝐼௠⨂𝐷𝐹𝑇௞ሻ𝐿௠௡ 𝑇௠௡ሺ𝐼௞⨂𝐷𝐹𝑇௠ሻ𝐿௞

௡ ,
𝑛 ൌ 𝑘𝑚.

(13)

C. Process of Code Generation

In this section, we consider the case of generating DFT4
using SPIRAL as an example to explain the usage and
processing flow of the SPIRAL code generation.
Fig. 1 shows an example input for a user to generate code

using SPIRAL. Fig. 2 shows an overview of the internal
code generation process of SPIRAL when the input in Fig.
1 is given.

1
2
3
4
5

opts := SpiralDefaults;
transform := DFT(4);
ruletre := RandomRuleTree(transform, opts);
icode := CodeRuleTree(ruletree, opts);
PrintCode("DFT4", icode, opts);

Figure 1. Example input for generating DFT4 using SPIRAL.

The first step is to specify the transform for which the
code is to be generated. These notations are called the
operator language (OL).

In Fig. 1, the variable opts is assigned as SpiralDefaults,
which specifies the parameters to be used for code
generation. This information was used to determine the
optimization of the target transform.

The dataflow is then determined by expanding the
specified OL with breakdown rules, as shown in Eq. (5) and
Eq. (10). Because the data flow has a significant impact on
the performance of the generated code, the application
pattern of the breakdown rules is important.

RandomRuleTree() is a function for randomly selecting
the dataflow. However, it does not always select the optimal
dataflow. To determine the optimal value, an automatic
dataflow search using the performance measurements is
provided. The dataflow will eventually become a C

program through the formation of loop structures (Σ-OL)
and abstract code.

Figure 2. Internal process of code generation in SPIRAL.

III. ARM SCALABLE VECTOR EXTENSION

The Arm scalable vector extension is a SIMD extension
for Armv8-A architectures [15] and is being developed for
use in HPCs. Arm has a SIMD extension, NEON [16];
however, SVE is not a successor to NEON, but a completely
new vector instruction.

In traditional SIMD architectures such as NEON and
Intel’s Advanced Vector Extensions (AVX) [17], vector
registers are defined with a fixed length. In an SVE, however,
only the maximum length of the vector registers is defined,
allowing licensees to develop implementations with arbitrary
vector lengths. Specifically, the licensee can choose a vector
length of up to 2048 bits. Because of the variable vector
length, software implementations using an SVE should be
written in a new programming style called Vector Length
Agnostic (VLA) programming [18]. VLA is a programming
model that does not have a fixed vector length, and almost
all SVE instructions are implemented by hiding the vector
length through predicates to realize VLA operations.

As examples of VLA programming, Figs. 3 and 4 show
programs that demonstrate the same behavior with and
without SVE instructions, respectively. The Arm C
Language Extension (ACLE) [19] provides an interface to
the SVE for the C/C++ language, as shown in Fig. 4.

Constraint Solver Input
(OL Specification)

OL Expression
(Dataflow)

𝐷𝐹𝑇ସ

𝐷𝐹𝑇௡ → ሺ𝐷𝐹𝑇௞⨂𝐼௠ሻ𝑇௠௡ሺ𝐼௞⨂𝐷𝐹𝑇௠ሻ𝐿௞
௡

𝐷𝐹𝑇ଶ → 𝐹ଶ

Σ-OL

ሺ𝐹ଶ⨂𝐼ଶሻ𝑇ଶସሺ𝐼ଶ⨂𝐹ଶሻ𝐿ଶସ

Abstract Code

C Code

void DFT4(double *Y, double *X) {
 double t57, t58, t59, t60,
t61
 t57 = (*(X) + *((X + 4)));
 t58 = (*(X + 1) + *((X +
5)));
 t59 = (*(X) ‐ *((X + 4)));
 t60 = (*(X + 1) ‐ *((X +
5)));
 ...
 *((Y + 2)) = (t59 ‐ t64);
 *((Y + 3)) = (t60 + t63);
 *((Y + 6)) = (t59 + t64);
 *((Y + 7)) = (t60 – t63);
}

1
2
3
4
5

int64_t i = 0;
do {
 z[i] = x[i] + y[i];
 i++;
} while(i<N);

Figure 3. Example of a program without SVE instructions.

1

2

3

4

5

6

7

8

9

10

int64_t i = 0;

svbool_t pg = svwhilelt_b64(i, N);

do {

svfloat64_t x_sve = svld1(pg, &x[i]);

svfloat64_t y_sve = svld1(pg, &y[i]);

svfloat64_t z_sve = svadd_x(pg, x_sve, y_sve);

svst1(pg, &z[i], z_sve);

i += svcntd();

pg = svwhilelt_b64(i, N);

} while(svptest_any(svptrue_b64(), pg));

Figure 4. Example of a program with SVE instructions.

In Fig. 4, the process is to add the values of arrays x and y

together and store them in array z. The followings explain
how the program shown in Fig. 4 works, where svbool_t and
svfloat64_t are vector types and store the number of elements
corresponding to the vector length of the processor.

The follows are explanations for Fig.4.

Line 2: In the predicate type variable (pg), valid
elements are assigned true values, and invalid
elements are assigned false values. In
addition, svwhilelt_b64() is a function that
controls the loop iteration and determines
whether the process has deviated from the
loop range. For elements that deviate from
the range, a false value is assigned to the
predicate such that the elements will not be
executed through the functions.

Lines
4-5:

Load the values from the arrays into the
vectors.

Line 6: Add vectors to each other and assign them to
a vector.

Line 7: Store the values from a vector into an array.
Line 8: Add the number of elements stored in the

vector to the loop variable.
Line 9: Update the predicate variable to determine

the loop continuation.
Line

10:
If all values of the predicate are false, the
loop terminates. If the predicate contains a
true value, there are still elements to be
processed.

IV. ADAPTATION OF THE ARM SVE FOR SPIRAL

A. Code Generation

SPIRAL supports a code generation by applying SIMD
instructions with fixed vector lengths, such as Intel’s AVX
and Arm NEON, and many functions for an efficient code
generation assume fixed-length vectors. However, the vector
length of the SVE is variable, and these functions therefore
cannot be used. Thus, in this study, we developed a script to
convert the scalar C code into an efficient SVE code, which
tentatively supports the generation of the SVE code.

Figs. 5 and 6 show the flow of the code generation by
applying AVX and SVE, respectively. Fig. 6 applies SIMD
instructions using standard SPIRAL functions, and Fig. 5
applies the SVE conversion script (SVE converter)
implemented in this study.

Figure 5. Flow of code generation applying SVE.

The SVE conversion script can also be applied to

automatic dataflow searches. By applying the script, the
dataflow optimized for the SVE-applied program can be
selected.

The following is a summary of the SVE conversion script.
1. Set the innermost loop as the loop to be vectorized.

The loop structure is used to convert to the SVE code.
In the case of nested loops, the innermost loop is
parameterized. The structure of the loop is rewritten as
shown in Fig. 4, and the predicate is set. If the array
load/store does not allow continuous access, we specify
the stride (offset) of the access.

Constraint Solver
Input

(OL Specification)

OL Expression
(Dataflow)

Σ-OL

Abstract Code

SVE Converter

SVE Code

C Code

𝐷𝐹𝑇

ሺሺ𝐹ଶ⨂𝐼ଶሻ𝑇ଶ
ସሺ𝐼ଶ⨂𝐹ଶሻ𝐿ଶ

ସ⨂𝐼ଶሻ𝑇ଶ
଼ሺ𝐼ସ⨂𝐹ଶሻ𝐿ସ

଼

void DFT8
(double *Y, double *X) {
static double T29[16];
for (int i191 = 0; i191 <=

7; i19
double t542, t543, t544, t54
int a205, a206, a207, a208,
a141 = (2*i3);
a142 = (a141 + 1);
...
}

void DFT8(float64_t *Y,
float64_t
 svbool_t pg1;
 static float64_t
T29[16];
 int64_t i191 = 0;
 pg1 =
svwhilelt_b64(i191, (in
 do {
 svfloat64x2_t
loadx2v1, l

...

2. Apply SVE operations to a vectorized loop.
Replace the scalar load, store, add, subtract, and
multiply operations using SVE operations.

3. Modify duplicate loads to load them concurrently.
In the code generated by the SPIRAL, when an array
element needs to be accessed multiple times, it is
accessed each time instead of storing the array in a
variable. However, when the SVE operation is used, the
performance is better when the number of read
operations is reduced.

4. Load an array of n-element structures into n vectors.
The SVE has operations for loading two to four element
structures of an array at a time (svld2, svld3, svld4).
This provides a better performance than loading a
single element two to four times, but it can only be used
if the memory accesses are contiguous. Combining
multiple loads can often form continuous access, and
this can be applied to improve the performance.

Figure 6. Flow of code generation applying AVX.

B. Auto-tuning

With respect to the code generation applying SVE in Fig.5,
flow of AT is explained in Fig.7.

According to Fig. 7, after specifying constraint solver
input, a search module is called. In the search module,
organized files are made in the inside profiler in SPIRAL.
With the organized files, SVE converter explained in Section
IV.A is called to make organized file. This file contains SVE
code. Finally, performance measurement for the target
program, is made. After that, we have performance score.
The score is feed bucked to the first step in the search module.

Original implementation is not considered for mutual
exclusion of the output organized files. This is not good for
parallel search of parameters for AT. To solve this problem,
we modified the code to control the output files in parallel.
Hence our auto-tuning system can search multi parameters
simultaneously to shorten AT time.

Figure 7. Flow of Auto-tuning by adapting code generation of SVE.

V. PERFORMANCE EVALUATION

A. Environment

To evaluate the performance of the proposed SVE
instruction adaptation, we compared it with the performance
of a program generated using standard SPIRAL functions. In
the experiments, we used the “Flow” Type I subsystem
(FX1000), a supercomputer installed at the Information
Technology Center of Nagoya University, to evaluate the
performance. The hardware and software configurations are
shown in Table I and Table II, respectively. All programs
used in the performance comparison were computed using
only one core on a single node.

Table I. Hardware configuration of “Flow” Type I subsystem
Machine Name FUJITSU Supercomputer

PRIMEHPC FX1000
CPU Processor Name FUJITSU Processor A64FX

ISA Arm v8.2 + SVE
Frequency 2.2 GHz

SIMD Width 512 bit
Number of Cores 48 compute cores and 2/4 assistant

cores
L1I Cache Size 3 MiB (64 KiB/core)

L1D Cache Size 3 MiB (64 KiB/core)
L2 Cache Size 32 MiB (8 MiB x 4)

ሺሺ𝐹ଶ⨂𝐼ଶሻ𝑇ଶ
ସሺ𝐼ଶ⨂𝐹ଶሻ𝐿ଶ

ସ⨂ሬሬሬ⃗ 𝐼ଶሻ𝑇ଶ
଼ሺ𝐼ଶ⨂𝐿ଶ

ସሺ ..

C Code

void DFT8(double *Y, double
*X) {
 __m256d *a45, *a46;
 __m256d s211, s212,
s213, s21
 a45 = ((__m256d *) X);
 s211 = *(a45);
 s212 = *((a45 + 1));
 s213 =
_mm256_permute2f128_pd
 ...
 *((a46 + 7)) = s280;
}

AVX(2-way ℂ)

vec(2) vec(2)
OL Expression

(Dataflow)

Σ-OL

Abstract Code

Constraint Solver Input
(OL Specification)

𝐷𝐹𝑇

Constraint Solver Input
(OL Specification) 𝐷𝐹𝑇ସ

Autotuning System

Search Module

Target Programs

Profiler

Organized files

SVE Converter

Organized files (SVE)

Targets
(Performance
Measurement)

Performance Score

Constraint Solver Output
(OL Expression, Rule-tree)

ሺ𝐹ଶ⨂𝐼ଶሻ𝑇ଶସሺ𝐼ଶ⨂𝐹ଶሻ𝐿ଶସ

Compute
Node

Number of
CPUs

1

Memory HBM2, 32 GiB
Peak Flops 3.4T (Double), 6.8T (Single),

13.5T (Half)
Number of Nodes 2,304

Table II. Software information used in performance measurement
Compiler fccpx (FCC) 4.2.1 20200820

clang: Fujitsu C/C++ Compiler 4.2.1 (Aug 25 2020
11:42:20) (based on LLVM 7.1.0)

Option -Nclang -mcpu=a64fx+sve -Ofast
SPIRAL 8.2.0

Python 3.6.8

The inputs to SPIRAL for generating a program referred

to as SVE-applied DFT (the proposed method) and scalar
DFT programs used in the performance comparison are
shown in Fig. 8 and Fig. 9, respectively, where the variable
‘SIZE’ denotes the size of data and ‘N’ an integer between
4 and 20.

1
2
3
4
5
6
7
8
9

SIZE := 2^N;
opts := SpiralDefaults;
opts.target := rec();
opts.target.name := "flow-fx-sve";
transform := DFT(SIZE, -1);
best := DP(transform, rec(), opts);
ruletree := best[1].ruletree;
icode := CodeRuleTree(ruletree, opts);
PrintCode("dft", icode, opts);
Figure 8. Inputs to generate the SVE-applied DFT program.

1
2
3
4
5
6
7
8
9

SIZE := 2^N;
opts := SpiralDefaults;
opts.target := rec();
opts.target.name := "flow-fx";
transform := DFT(SIZE, -1);
best := DP(transform, rec(), opts);
ruletree := best[1].ruletree;
icode := CodeRuleTree(ruletree, opts);
PrintCode("dft", icode, opts);

Figure 9. Inputs used to generate scalar DFT program.

B. Comparison of Computaton Performance with DFT

A comparison of the computational performance of the
DFT codes generated from Fig. 8 and Fig. 9 is shown in
Fig. 11. A comparison of the SIMD instruction rates is
shown in Fig. 12.

The SIMD instruction rates are the ratios of the number
of SIMD instructions to the total number of instructions
executed.

Figure 10. Evaluation of computational performance.

Figure 11: Evaluation of SIMD instruction rates.

In the comparison of the computational performance, the

SVE-applied DFT shows a performance that is up to 1.98
times better. The largest value was obtained for SIZE = 27.

Except for the cases of SIZE=24 and 25, the overall
performance of SVE-applied DFT is better than that of
scalar DFT. The SIMD instruction rate of the SVE-applied
DFT is up to 3.63 times higher than that of scalar DFT.

The largest value was obtained for SIZE = 28, and is also
more than 2 times higher than the SIMD instruction rate of
scalar DFT, except for the cases of SIZE = 24, 25, and 216.

C. Effect of Auto-tuning for Loop Unrollings

Next, we evaluate the AT function in Fig.7. The target of
the AT is depth of loop unrolling. In this experiment, the
depths are set from 8 to 1024.

Originally, SPIRAL provides an AT system with
Dynamic Programming (DP). We use the original system to
do AT. But we use parallel search system as explained in
Section IV.B.

The search of the loop unrolling can be specified as
follows for input files in SPIRAL:

best := DP(transform, rec(globalUnrolling := true,

globalUnrollingMax := 1024), opts);

AT results in the SVE applied DFT is shown in Fig. 12.

Figure 12: Evaluation of AT for loop unrolling. Target of depths of loop

unrolling are from 8 to 1024.

In Fig. 12, effect of AT for loop unrolling is not small.

Especially, it has large benefit from 8 for the N. The
maximum speedup to fixed loop depth (depth=32) is 1.53
times in the case of SIZE=29.

D. Comaprison of Performance with FFTE

We also compared the computational performance of the
proposed method with that of FFTE on the SVE [10], which
uses SPIRAL to generate DFT kernels using a different
approach.

We used ffte-7.0-spiral.tgz (updated 2020-08-20), which
is available at http://www.ffte.jp/ (accessed: 2021-01-01).

The input to SPIRAL to generate a program referred to as
SVE-applied DFT2 is shown in Fig. 13.
The degree of loop unrolling was automatically tuned to

improve the performance as shown in the previous section.
The results are shown in Fig. 14.

The computational performance of our approach was up
to 11.0 times better than that of FFTE on the SVE. The
largest value was obtained for SIZE = 24. Except for SIZE =
26 and 212, the performance was higher than that of FFTE
on the SVE.

As one of the reasons for this result the SIMD instruction
rate of our approach is usually higher than that of the FFTE
on the SVE, as shown in Fig. 15.

Although a higher SIMD instruction rate does not
necessarily indicate a better computational performance, it
is an important measure of the computational efficiency. In
addition, it is important to note here that a simple
comparison is not possible because the FFTE on the SVE
works on DFTs of any size, whereas our approach generates
code that focuses on DFTs of a specific size.

1
2
3
4
5
6
7
8
9

10
11

SIZE := 2^N;
opts := SpiralDefaults;
opts.target := rec();
opts.target.name := "flow-fx-sve";
transform := DFT(SIZE, -1);
best := DP(transform,

rec(globalUnrolling := true,
globalUnrollingMax := 1024), opts);

ruletree := best[1].ruletree;
icode := CodeRuleTree(ruletree, opts);
PrintCode("dft", icode, opts);

Figure 13. Inputs used to generate SVE-applied DFT2 program.

Figure 14. Comparison of computational performance

with FFTE on SVE.

Figure 15. Comparison of SIMD instruction rates

with FFTE on SVE.

E. Comaprison of Performance with FFTW

In this section, we compare opensource library for FFT.
We used fftw3.3.8, which is a pre-install library in the
supercomputer “Flow” Type I Subsystem. The environment
of complication in the supercomputer “Flow” Type I
subsystem is as summarized as follows:

 clang: Fujitsu C/C++ Compiler 4.2.1
(Aug 25 2020 11:42:20) (based on LLVM 7.1.0)

 Compiler option: -Nclang -std=gnu99
-mcpu=a64fx+sve -Ofast

Fig. 16 shows the result of comparison with the
FFTW3.3.8 library.

Figure 16. Comparison of computational performance

with FFTW3.3.8.

According to Fig. 16, performance of SVE applied DFT2

is superior to library of FFTW3.3.8. The maximum speedup
is 2.32 time in the case of SIZE=29.

One of reasons for the difference in Fig. 16 comes from
computer optimization ability. Again, our system is very
specialized for A64 SVE adaptation, and based on code
optimization via SPIRAL. Hence, we can conclude that our
proposed system has crucial optimization ability for the
target program.

VI. CONCLUSION

We proposed an auto-tuning system by adapting the A64
scalable vector extension for SPIRAL to generate DFT
implementations.

Using the Flow supercomputer at the Information
Technology Center, Nagoya University, we evaluated the
performance of programs generated using standard SPIRAL
methods (scalar DFT) and our approach (SVE-applied
DFT).

The result of performance evaluation is summarized as
follows.

First, the SVE-applied DFT codes are up to 1.98 times
faster than the scalar DFT code, with up to a 3.63 times
higher SIMD instruction rate.

Second, in the comparison of the computational
performance with the FFTE on the SVE, which generated
DFT kernels with the SVE using different approaches
available in SPIRAL, the results showed that SVE-applied
DFT is up to 11.0 times faster.

Third, we obtain maximum speedup of 2.32 time by
adapting AT for loop unrolling to a case of fixed depth of
loop unrolling.

Through this study, SVE was applied using Python
scripts. However, if we can implement the function to
generate the SVE codes with the same process as fixed-
length vector SIMD instructions such as Intel’s AVX, we
will be able to generate further optimized SVE codes using

SPIRAL. Further studies are needed in order to achieve this
function.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI (Grant No.
JP19H05662).

REFERENCES
[1] K. Naono, K. Teranishi, J. Cavazos, R. Suda (Eds.), “Software

Automatic Tuning: From concepts to State-of-the-Art Results,”
2010, pp. 3-15.

[2] M. Frigo, S. G. Johnson, “FFTW: An Adaptive Software
Architecture for the FFT,” Proc. the International Conference on
Acoustics, Speech, and Signal Processing, vol. 3, 1998, pp. 1381-
1384.

[3] R. C. Whaley, A. Petitet, J. J. Dongarra, “Automated empirical
optimizations of software and the ATLAS Project,” Parallel
Computing, vol. 27, issue 1-2, 2001, pp. 3-35.

[4] J. Ansel, S. Kamil, K. Veeramachaneni, U. O'Reilly, S.
Amarasinghe, “OpenTuner: An Extensible Framework for Program
Autotuning,” Proc. 23rd International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2014, pp. 303-
315.

[5] H. Takizawa, S. Hirasawa, Y. Hayashi, R. Egawa, H. Kobayashi,
“Xevolver: An XML-based Code Translation Framework for
Supporting HPC Application Migration,” Proc. IEEE International
Conference on High Performance Computing (HiPC), 2014, pp. 1-
11.

[6] T. Katagiri, K. Kise, H. Honda, T. Yuba, “FIBER: A Generalized
Framework for Auto-tuning Software,” Lecture Notes in Computer
Science, vol. 2858, 2003, pp. 146-159.

[7] T. Katagiri, D. Takahashi, "Japanese Autotuning Research:
Autotuning Languages and FFT", Proc. the IEEE, vol. 106, issue
11, 2018, pp. 2056 - 2067.

[8] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B.
Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen,
R. W. Johnson, N. Rizzolo, “SPIRAL: Code Generation for DSP
Transforms,” Proc. the IEEE, special issue on “Program Generation,
Optimization, and Adaptation”, vol. 93, no. 2, 2005, pp. 232-275.

[9] F. Franchetti, T. Low, T. Popovici, R. Veras, D. G. Spampinato, J.
Johnson, M. Püschel, J. C. Hoe and J. M. F. Moura, “SPIRAL:
Extreme Performance Portability,” Proc. the IEEE, special issue on
“From High Level Specification to High Performance Code”, Vol.
106, No. 11, 2018, pp. 1935-1968.

[10] D. Takahashi, F. Franchetti, “FFTE on SVE: SPIRAL-Generated
Kernels,” Proc. International Conference on High Performance
Computing in Asia-Pacific Region (HPCAsia), 2020, pp.114-122.

[11] J. W. Cooley, J. W. Tukey, “An Algorithm for the Machine
Calculation of Complex Fourier Series,” Math. Comp., vol. 19, 1965,
pp. 297-301.

[12] F. Franchetti, M. Püschel, “Encyclopedia of Parallel Computing,”
Boston, MA: Springer, chapter “Fast Fourier Transform”, 2011.

[13] “Arm® Architecture Reference Manual Supplement The Scalable
Vector Extension (SVE), for Armv8-A”, http://developer.arm.com/-
/media/Files/DDI0584A_h_SVE.zip, (accessed 2021-01-01).

[14] “What is the Scalable Vector Extension? | Porting and Optimizing
HPC Applications for Arm SVE Version 2.1”,
https://developer.arm.com/documentation/101726/0210/Learn-
about-the-Scalable-Vector-Extension--SVE-/What-is-the-Scalable-
Vector-Extension-, (accessed 2021-01-01).

[15] “Arm Architecture Reference Manual Armv8, for Armv8-A
architecture profile”, https://developer.arm.com/documentation
/ddi0487/fc, (accessed 2021-01-01).

[16] “SIMD ISAs | NEON – Arm Developer”,
https://developer.arm.com/architectures/instruction-sets/simd-
isas/neon, (accessed 2021-01-01).

[17] “Introduction to Intel Advanced Vector Extensions”,
https://software.intel.com/content/dam/develop/external/us/en/docu
ments/intro-to-intel-avx-183287.pdf, (accessed 2021-01-01).

[18] “Vector Length Agnostic (VLA) programming | Porting and
Optimizing HPC Applications for Arm SVE Version 2.1”,

https://developer.arm.com/documentation/101726/0200/SVE-
Vector-Length-Agnostic-programming/Vector-Length-Agnostic--
VLA--programming, (accessed 2021-01-01).

[19] “Arm C Language Extensions for SVE version 00bet6”,
https://developer.arm.com/documentation/100987/0000/, (accessed
2021-01-01).

