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Abstract— In this paper, we propose an auto-tuning (AT) 
system by adapting the A64 Scalable Vector Extension for 
SPIRAL to generate discrete Fourier transform (DFT) 
implementations. The performance of our method is evaluated 
using the Supercomputer “Flow” at Nagoya University. The 
A64 scalable vector extension applied DFT codes are up to 1.98 
times faster than scalar DFT codes and up to 3.63 times higher 
in terms of the SIMD instruction rate. In addition, we obtain a 
factor of maximum speedup 2.32 by adapting proposed AT 
system for loop unrolling.  

Keywords— Auto-tuning; Discrete Fourier Transform; 
SPIRAL; SIMD; A64 SVE;  

I. INTRODUCTION 

Computer architectures are becoming increasingly diverse, 
with configurations varying greatly depending on the 
environment, such as the number of CPU cores, memory 
access speed, cache structure, and presence or absence of a 
graphics processing unit (GPU). To achieve a high 
performance, software tuning is important for numerical 
software; however, optimizing the software for each 
computing environment requires specialized knowledge of 
the hardware as well as significant time and effort. In 
addition, the performance of software tuned for one specific 
environment may be degraded in another. In this case, the 
software must be tuned again when the environment is 
migrated. Furthermore, optimization by widely used 
compilers is often insufficient for software developers. 

Software auto-tuning (AT) for numerical computations [1] 
is a technology that automates the tuning performance to 
improve the software performance. By using AT technology, 
software optimized for one computer environment is 
expected to perform equally well in a different computer 
environment. This is known as the performance portability 
of the software. For this reason, many numerical software 
packages with AT functions have been developed [2][3]. 
Furthermore, AT frameworks have been proposed for 
creating numerical software with AT functions, including 
OpenTuner [4], Xevolver [5], and FIBER [6] and ppOpen-
AT [7]. 

One effort to achieve high-performance software 
portability is automatic code generation through the use of 
an AT technique. Automatic code generation is applied to 
computational kernels based on the mathematical 
background to provide implementations of numerical 
algorithms for various computing environments and 
programming languages.  

SPIRAL [8][9] is a program generation system that 
automatically generates optimized implementations of 
mathematical algorithms, including linear transforms such as 
a discrete Fourier transform (DFT) and a discrete cosine 
transform (DCT). In this paper, we propose a method for 
applying the A64 Scalable Vector Extension (SVE) [13][14] 
to DFT generation in SPIRAL. SPIRAL supports code 
generation, to which SIMD instructions are explicitly applied. 
For instance, Intel SSE, Intel AVE, and Arm NEON 



instruction sets can be used. SPIRAL also supports the 
generation of FFTE kernels using SVE [10]. However, we 
need another way to support general codes using Arm SVE.  

Hence the contribution of this paper is summarized as 
follows.  

First, we show effectiveness of Arm SVE optimization 
through SPIRAL code generator by utilizing a DFT program. 

Second, we show effectiveness of AT function by using 
SPIRAL code generator in the DFT program.  

The remainder of this paper is organized as follows. 
Section II describes the SPIRAL code generator. Section III 
details the Arm SVE. Section IV presents the adaptation of 
the Arm SVE to DFT generation in SPIRAL. In addition, 
flow of AT via SPIRAL code generator is explained. Section 
V presents the results. Finally, some concluding remarks are 
provided in Section VI. 

 

II. SPIRAL CODE GENERATOR 

A. Overview 

In this section, we describe the SPIRAL code generation 
system and DFT, which are the focus of this research. 
SPIRAL is a system that automatically generates 
implementations of mathematical algorithms. The code can 
be optimized to suit the computing environment. It has been 
under development at Carnegie Mellon University for more 
than 20 years. SPIRAL is still being developed in terms of 
the portability of numerical software. It provides high-
performance implementations for a wide range of hardware, 
including embedded systems, HPC, GPUs, and FPGAs. 
Although creating a high-performance library optimized for 
a computational environment requires a great deal of effort 
by engineers with a high level of expertise, the SPIRAL 
approach can reduce this effort. 

In addition to the choice of algorithm, SPIRAL optimizes 
the program by specifying optional parameters that define 
what kind of optimizations to apply, such as SIMD 
instructions and the degree of loop unrolling. The specified 
parameters were applied sequentially to the code generation 
procedure. Then, the parameters were reflected in the final 
generated code. The generated program is output as a file 
containing functions that implement the mathematical 
algorithm. The generated program can then be compiled and 
used similarly to a normal program file. 

B. Representation of DFT in Spiral 

 
DFT is a Fourier transform of a sampled signal in both 

the time and frequency domains and is widely used in 
signal processing and other applications. The DFT for a 
sample of n points 𝑥଴, 𝑥ଵ, … , 𝑥௡ିଵ is defined as follows: 
 

 𝑦௞ ൌ෍ 𝜔௡௞௟𝑥௟
௡ିଵ

௟ୀ଴
 ሺ0 ൑  𝑘 ൏  𝑛ሻ, (1) 

 

With 
 

 𝜔௡  ൌ  𝑒
షమഏೕ
೙ . (2) 

 
In addition, a fast Fourier transform (FFT), which can 

perform the same transform as a DFT with fewer operations 
and a faster speed, can be used [10]. In practice, a DFT is 
almost always implemented using an FFT. 

In SPIRAL, the DFT for a vector of length n is defined as 
follows: 

 
 𝐷𝐹𝑇௡: ℂ௡  →  ℂ௡;  𝑥 ⟼  ൣ𝜔௡

௜௝൧
௜,௝
𝑥.  (3) 

 
Using (3), (1) can be expressed in the form of a vector 
matrix product of vectors 𝑥 and 𝑦: 
 

 𝑦 ൌ  𝐷𝐹𝑇௡𝑥. (4) 
 
The FFT algorithm can be obtained by decomposing (4). 
For example, the decimation-in-time Cooley-Tukey FFT 
algorithm is expressed as 
 

𝐷𝐹𝑇௡ → ሺ𝐷𝐹𝑇௞ ⨂ 𝐼௠ሻ𝑇௠௡ሺ𝐼௞⨂𝐷𝐹𝑇௠ሻ𝐿௞
௡ ,   𝑛 ൌ  𝑘𝑚 (5) 

 
where each operator and matrix are as defined below. The 
Kronecker product of matrices A and B is 
 

 𝐴 ⨂ 𝐵 ൌ  ሾ𝑎௞,௟𝐵ሿ,   for 𝐴 ൌ  ൣ𝑎௞,௟൧. (6) 
 
The identity matrix is 
 

 𝐼௡  ൌ  ሾ𝑖௞,௟ሿ,    𝑖௞,௟  ൌ  ൜
1 ሺ𝑘 ൌ  𝑙ሻ
0 ሺ𝑘 ്  𝑙ሻ. (7) 

 
The Twiddle matrix is 
 

 𝑇௠௡  ൌ  ሾ𝑡௞,௟ሿ,   𝑡௞,௟  ൌ  ൜
𝜔௠௞  ሺ𝑘 ൌ  𝑙ሻ
0     ሺ𝑘 ്  𝑙ሻ

. (8) 

 
Finally, the stride permutation matrix is 

 

𝐿௞
௡  ൌ  ሾ𝑙௜,௝ሿ, 

𝑙௜,௝  ൌ  ቄ 1 ሺ𝑘ሺ𝑖 𝑚𝑜𝑑 𝑚ሻ ൅ ⌊𝑗/𝑘⌋  ൌ  𝑛𝑖 ൅ 𝑗ሻ
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                      .

 
(9) 

 
In (5), DFTn is decomposed into an expression containing 

a smaller DFTk and DFTm. By applying (5) recursively, the 
DFT is decomposed into smaller and smaller units.  
Finally, we need a rule that corresponds to the smallest unit, 
DFT2, which is defined as follows: 
 

 𝐷𝐹𝑇ଶ  →  𝐹ଶ,   𝐹ଶ  ൌ  ቂ 1  1
 1 െ1

ቃ. (10) 

 



This corresponds to the butterfly operation in FFT. If a 
radix other than two is involved, the smallest unit generated 
using an algorithm such as Rader’s FFT algorithm is 
applied. 

In addition to (5), the following decompositions can be 
applied [11]:  

The decimation-in-frequency Cooley-Tukey FFT is 
 

𝐷𝐹𝑇௡ → 𝐿௠௡ ሺ𝐼௞⨂𝐷𝐹𝑇௠ሻ𝑇௠௡ሺ𝐷𝐹𝑇௞ ⨂ 𝐼௠ሻ, 𝑛 ൌ  𝑘𝑚. (11) 

 
The four-step FFT is 
 

𝐷𝐹𝑇௡ → ሺ𝐷𝐹𝑇௞ ⨂ 𝐼௠ሻ𝑇௠௡𝐿௞
௡ሺ𝐷𝐹𝑇௠⨂𝐼௞ሻ, 𝑛 ൌ  𝑘𝑚. (12) 

 
Finally, the six-step FFT is 
 

𝐷𝐹𝑇௡ → 𝐿௞
௡ሺ𝐼௠⨂𝐷𝐹𝑇௞ሻ𝐿௠௡ 𝑇௠௡ሺ𝐼௞⨂𝐷𝐹𝑇௠ሻ𝐿௞

௡ ,  
𝑛 ൌ  𝑘𝑚. 

(13) 

 

C. Process of Code Generation 

In this section, we consider the case of generating DFT4 
using SPIRAL as an example to explain the usage and 
processing flow of the SPIRAL code generation.  
Fig. 1 shows an example input for a user to generate code 

using SPIRAL. Fig. 2 shows an overview of the internal 
code generation process of SPIRAL when the input in Fig. 
1 is given. 
 

1 
2 
3 
4 
5 

opts := SpiralDefaults; 
transform := DFT(4); 
ruletre := RandomRuleTree(transform, opts); 
icode := CodeRuleTree(ruletree, opts); 
PrintCode("DFT4", icode, opts); 

Figure 1. Example input for generating DFT4 using SPIRAL. 
 

The first step is to specify the transform for which the 
code is to be generated. These notations are called the 
operator language (OL).  

In Fig. 1, the variable opts is assigned as SpiralDefaults, 
which specifies the parameters to be used for code 
generation. This information was used to determine the 
optimization of the target transform.  

The dataflow is then determined by expanding the 
specified OL with breakdown rules, as shown in Eq. (5) and 
Eq. (10). Because the data flow has a significant impact on 
the performance of the generated code, the application 
pattern of the breakdown rules is important. 

RandomRuleTree() is a function for randomly selecting 
the dataflow. However, it does not always select the optimal 
dataflow. To determine the optimal value, an automatic 
dataflow search using the performance measurements is 
provided. The dataflow will eventually become a C 

program through the formation of loop structures (Σ-OL) 
and abstract code. 
 

 

Figure 2. Internal process of code generation in SPIRAL. 

 

III. ARM SCALABLE VECTOR EXTENSION 

The Arm scalable vector extension is a SIMD extension 
for Armv8-A architectures [15] and is being developed for 
use in HPCs. Arm has a SIMD extension, NEON [16]; 
however, SVE is not a successor to NEON, but a completely 
new vector instruction. 

In traditional SIMD architectures such as NEON and 
Intel’s Advanced Vector Extensions (AVX) [17], vector 
registers are defined with a fixed length. In an SVE, however, 
only the maximum length of the vector registers is defined, 
allowing licensees to develop implementations with arbitrary 
vector lengths. Specifically, the licensee can choose a vector 
length of up to 2048 bits. Because of the variable vector 
length, software implementations using an SVE should be 
written in a new programming style called Vector Length 
Agnostic (VLA) programming [18]. VLA is a programming 
model that does not have a fixed vector length, and almost 
all SVE instructions are implemented by hiding the vector 
length through predicates to realize VLA operations.  

As examples of VLA programming, Figs. 3 and 4 show 
programs that demonstrate the same behavior with and 
without SVE instructions, respectively. The Arm C 
Language Extension (ACLE) [19] provides an interface to 
the SVE for the C/C++ language, as shown in Fig. 4. 
 

Constraint Solver Input 
(OL Specification) 

OL Expression 
(Dataflow) 

𝐷𝐹𝑇ସ 

𝐷𝐹𝑇௡ → ሺ𝐷𝐹𝑇௞⨂𝐼௠ሻ𝑇௠௡ሺ𝐼௞⨂𝐷𝐹𝑇௠ሻ𝐿௞
௡   

𝐷𝐹𝑇ଶ  →  𝐹ଶ 

Σ-OL 

ሺ𝐹ଶ⨂𝐼ଶሻ𝑇ଶସሺ𝐼ଶ⨂𝐹ଶሻ𝐿ଶସ  

Abstract Code 

C Code 

void DFT4(double *Y, double *X) { 
    double t57, t58, t59, t60, 
t61 
    t57 = (*(X) + *((X + 4))); 
    t58 = (*(X + 1) + *((X + 
5))); 
    t59 = (*(X) ‐ *((X + 4))); 
    t60 = (*(X + 1) ‐ *((X + 
5))); 
    ... 
    *((Y + 2)) = (t59 ‐ t64); 
    *((Y + 3)) = (t60 + t63); 
    *((Y + 6)) = (t59 + t64); 
    *((Y + 7)) = (t60 – t63); 
} 



1 
2 
3 
4 
5 

int64_t i = 0; 
do {                                       
    z[i] = x[i] + y[i]; 
    i++; 
} while(i<N); 

Figure 3. Example of a program without SVE instructions. 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

int64_t i = 0; 

svbool_t pg = svwhilelt_b64(i, N); 

do { 

svfloat64_t x_sve = svld1(pg, &x[i]); 

svfloat64_t y_sve = svld1(pg, &y[i]); 

svfloat64_t z_sve = svadd_x(pg, x_sve, y_sve); 

svst1(pg, &z[i], z_sve); 

i += svcntd(); 

pg = svwhilelt_b64(i, N); 

} while(svptest_any(svptrue_b64(), pg)); 

Figure 4. Example of a program with SVE instructions. 

 
In Fig. 4, the process is to add the values of arrays x and y 

together and store them in array z. The followings explain 
how the program shown in Fig. 4 works, where svbool_t and 
svfloat64_t are vector types and store the number of elements 
corresponding to the vector length of the processor.  

The follows are explanations for Fig.4. 
 

Line 2:  In the predicate type variable (pg), valid 
elements are assigned true values, and invalid 
elements are assigned false values. In 
addition, svwhilelt_b64() is a function that 
controls the loop iteration and determines 
whether the process has deviated from the 
loop range. For elements that deviate from 
the range, a false value is assigned to the 
predicate such that the elements will not be 
executed through the functions. 

Lines  
4-5: 

Load the values from the arrays into the 
vectors. 

Line 6: Add vectors to each other and assign them to 
a vector. 

Line 7: Store the values from a vector into an array. 
Line 8: Add the number of elements stored in the 

vector to the loop variable. 
Line 9: Update the predicate variable to determine 

the loop continuation. 
Line 

10: 
If all values of the predicate are false, the 
loop terminates. If the predicate contains a 
true value, there are still elements to be 
processed. 

 

IV. ADAPTATION OF THE ARM SVE FOR SPIRAL 

A. Code Generation 

SPIRAL supports a code generation by applying SIMD 
instructions with fixed vector lengths, such as Intel’s AVX 
and Arm NEON, and many functions for an efficient code 
generation assume fixed-length vectors. However, the vector 
length of the SVE is variable, and these functions therefore 
cannot be used. Thus, in this study, we developed a script to 
convert the scalar C code into an efficient SVE code, which 
tentatively supports the generation of the SVE code. 

Figs. 5 and 6 show the flow of the code generation by 
applying AVX and SVE, respectively. Fig. 6 applies SIMD 
instructions using standard SPIRAL functions, and Fig. 5 
applies the SVE conversion script (SVE converter) 
implemented in this study. 

 

 

Figure 5. Flow of code generation applying SVE. 

 
The SVE conversion script can also be applied to 

automatic dataflow searches. By applying the script, the 
dataflow optimized for the SVE-applied program can be 
selected. 

The following is a summary of the SVE conversion script. 
1. Set the innermost loop as the loop to be vectorized. 

The loop structure is used to convert to the SVE code. 
In the case of nested loops, the innermost loop is 
parameterized. The structure of the loop is rewritten as 
shown in Fig. 4, and the predicate is set. If the array 
load/store does not allow continuous access, we specify 
the stride (offset) of the access. 

Constraint Solver 
Input 

(OL Specification) 

OL Expression 
(Dataflow) 

Σ-OL 

Abstract Code 

SVE Converter 

SVE Code 

C Code 

𝐷𝐹𝑇  

ሺሺ𝐹ଶ⨂𝐼ଶሻ𝑇ଶ
ସሺ𝐼ଶ⨂𝐹ଶሻ𝐿ଶ

ସ⨂𝐼ଶሻ𝑇ଶ
଼ሺ𝐼ସ⨂𝐹ଶሻ𝐿ସ

଼
 

void DFT8 
(double *Y, double *X) { 
static double T29[16]; 
for (int i191 = 0; i191 <= 

7; i19 
double t542, t543, t544, t54 
int a205, a206, a207, a208, 
a141 = (2*i3); 
a142 = (a141 + 1); 
... 
}

void DFT8(float64_t *Y, 
float64_t  
    svbool_t pg1; 
    static float64_t 
T29[16]; 
    int64_t i191 = 0; 
    pg1 = 
svwhilelt_b64(i191, (in 
    do { 
        svfloat64x2_t 
loadx2v1, l 

...



2. Apply SVE operations to a vectorized loop. 
Replace the scalar load, store, add, subtract, and 
multiply operations using SVE operations. 

3. Modify duplicate loads to load them concurrently. 
In the code generated by the SPIRAL, when an array 
element needs to be accessed multiple times, it is 
accessed each time instead of storing the array in a 
variable. However, when the SVE operation is used, the 
performance is better when the number of read 
operations is reduced. 

4. Load an array of n-element structures into n vectors. 
The SVE has operations for loading two to four element 
structures of an array at a time (svld2, svld3, svld4). 
This provides a better performance than loading a 
single element two to four times, but it can only be used 
if the memory accesses are contiguous. Combining 
multiple loads can often form continuous access, and 
this can be applied to improve the performance. 

 

 

Figure 6. Flow of code generation applying AVX. 

 

B. Auto-tuning 

With respect to the code generation applying SVE in Fig.5, 
flow of AT is explained in Fig.7. 

According to Fig. 7, after specifying constraint solver 
input, a search module is called. In the search module, 
organized files are made in the inside profiler in SPIRAL. 
With the organized files, SVE converter explained in Section 
IV.A is called to make organized file. This file contains SVE 
code. Finally, performance measurement for the target 
program, is made. After that, we have performance score. 
The score is feed bucked to the first step in the search module.  

Original implementation is not considered for mutual 
exclusion of the output organized files. This is not good for 
parallel search of parameters for AT. To solve this problem, 
we modified the code to control the output files in parallel. 
Hence our auto-tuning system can search multi parameters 
simultaneously to shorten AT time. 

 

 

Figure 7. Flow of Auto-tuning by adapting code generation of SVE.  

 

V. PERFORMANCE EVALUATION 

A. Environment 

To evaluate the performance of the proposed SVE 
instruction adaptation, we compared it with the performance 
of a program generated using standard SPIRAL functions. In 
the experiments, we used the “Flow” Type I subsystem 
(FX1000), a supercomputer installed at the Information 
Technology Center of Nagoya University, to evaluate the 
performance. The hardware and software configurations are 
shown in Table I and Table II, respectively. All programs 
used in the performance comparison were computed using 
only one core on a single node. 
 

Table I. Hardware configuration of “Flow” Type I subsystem 
Machine Name FUJITSU Supercomputer 

PRIMEHPC FX1000 
CPU Processor Name FUJITSU Processor A64FX 

ISA Arm v8.2 + SVE 
Frequency 2.2 GHz 

SIMD Width 512 bit 
Number of Cores 48 compute cores and 2/4 assistant 

cores 
L1I Cache Size 3 MiB (64 KiB/core) 

L1D Cache Size 3 MiB (64 KiB/core) 
L2 Cache Size 32 MiB (8 MiB x 4) 

ሺሺ𝐹ଶ⨂𝐼ଶሻ𝑇ଶ
ସሺ𝐼ଶ⨂𝐹ଶሻ𝐿ଶ

ସ⨂ሬሬሬ⃗ 𝐼ଶሻ𝑇ଶ
଼ሺ𝐼ଶ⨂𝐿ଶ

ସሺ .. 

 

C Code 

void DFT8(double *Y, double 
*X) { 
    __m256d  *a45, *a46; 
    __m256d s211, s212, 
s213, s21 
    a45 = ((__m256d  *) X); 
    s211 = *(a45); 
    s212 = *((a45 + 1)); 
    s213 = 
_mm256_permute2f128_pd 
    ... 
    *((a46 + 7)) = s280; 
} 

AVX(2-way ℂ) 

vec(2) vec(2) 
OL Expression 

(Dataflow) 

Σ-OL 

Abstract Code 

Constraint Solver Input 
(OL Specification) 

𝐷𝐹𝑇  

 

Constraint Solver Input 
(OL Specification) 𝐷𝐹𝑇ସ 

Autotuning System 

Search Module 

Target Programs 

Profiler 

Organized files 

SVE Converter 

Organized files (SVE) 

Targets 
(Performance 
Measurement) 

Performance Score 

Constraint Solver Output 
(OL Expression, Rule-tree) 

ሺ𝐹ଶ⨂𝐼ଶሻ𝑇ଶସሺ𝐼ଶ⨂𝐹ଶሻ𝐿ଶସ  



Compute 
Node 

Number of 
CPUs 

1 

Memory HBM2, 32 GiB 
Peak Flops 3.4T (Double), 6.8T (Single), 

13.5T (Half) 
Number of Nodes 2,304 

 
Table II. Software information used in performance measurement 
Compiler fccpx (FCC) 4.2.1 20200820 

clang: Fujitsu C/C++ Compiler 4.2.1 (Aug 25 2020 
11:42:20) (based on LLVM 7.1.0) 

Option -Nclang -mcpu=a64fx+sve -Ofast 
SPIRAL 8.2.0 

Python 3.6.8 

 
The inputs to SPIRAL for generating a program referred 

to as SVE-applied DFT (the proposed method) and scalar 
DFT programs used in the performance comparison are 
shown in Fig. 8 and Fig. 9, respectively, where the variable 
‘SIZE’ denotes the size of data and ‘N’ an integer between 
4 and 20. 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

SIZE := 2^N; 
opts := SpiralDefaults; 
opts.target := rec(); 
opts.target.name := "flow-fx-sve"; 
transform := DFT(SIZE, -1); 
best := DP(transform, rec(), opts); 
ruletree := best[1].ruletree; 
icode := CodeRuleTree(ruletree, opts); 
PrintCode("dft", icode, opts); 
Figure 8. Inputs to generate the SVE-applied DFT program. 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 

SIZE := 2^N; 
opts := SpiralDefaults; 
opts.target := rec(); 
opts.target.name := "flow-fx"; 
transform := DFT(SIZE, -1); 
best := DP(transform, rec(), opts); 
ruletree := best[1].ruletree; 
icode := CodeRuleTree(ruletree, opts); 
PrintCode("dft", icode, opts); 

Figure 9. Inputs used to generate scalar DFT program. 

 

B. Comparison of Computaton Performance with DFT 

A comparison of the computational performance of the 
DFT codes generated from Fig. 8 and Fig. 9 is shown in 
Fig. 11. A comparison of the SIMD instruction rates is 
shown in Fig. 12.  

The SIMD instruction rates are the ratios of the number 
of SIMD instructions to the total number of instructions 
executed. 
 

 
Figure 10. Evaluation of computational performance. 

 

 
Figure 11: Evaluation of SIMD instruction rates. 

 
In the comparison of the computational performance, the 

SVE-applied DFT shows a performance that is up to 1.98 
times better. The largest value was obtained for SIZE = 27. 

Except for the cases of SIZE=24 and 25, the overall 
performance of SVE-applied DFT is better than that of 
scalar DFT. The SIMD instruction rate of the SVE-applied 
DFT is up to 3.63 times higher than that of scalar DFT.  

The largest value was obtained for SIZE = 28, and is also 
more than 2 times higher than the SIMD instruction rate of 
scalar DFT, except for the cases of SIZE = 24, 25, and 216. 
 

C. Effect of Auto-tuning for Loop Unrollings 

Next, we evaluate the AT function in Fig.7. The target of 
the AT is depth of loop unrolling. In this experiment, the 
depths are set from 8 to 1024.  

Originally, SPIRAL provides an AT system with 
Dynamic Programming (DP). We use the original system to 
do AT. But we use parallel search system as explained in 
Section IV.B.  

The search of the loop unrolling can be specified as 
follows for  input files in SPIRAL: 

 
best := DP(transform, rec(globalUnrolling := true, 

globalUnrollingMax := 1024), opts); 
 

AT results in the SVE applied DFT is shown in Fig. 12. 
 



 
Figure 12: Evaluation of AT for loop unrolling. Target of depths of loop 

unrolling are from 8 to 1024.  

 
In Fig. 12, effect of AT for loop unrolling is not small. 

Especially, it has large benefit from 8 for the N. The 
maximum speedup to fixed loop depth (depth=32) is 1.53 
times in the case of SIZE=29. 

 

D. Comaprison of Performance with FFTE 

We also compared the computational performance of the 
proposed method with that of FFTE on the SVE [10], which 
uses SPIRAL to generate DFT kernels using a different 
approach.  

We used ffte-7.0-spiral.tgz (updated 2020-08-20), which 
is available at http://www.ffte.jp/ (accessed: 2021-01-01).  

The input to SPIRAL to generate a program referred to as 
SVE-applied DFT2 is shown in Fig. 13.  
The degree of loop unrolling was automatically tuned to 

improve the performance as shown in the previous section. 
The results are shown in Fig. 14.  

The computational performance of our approach was up 
to 11.0 times better than that of FFTE on the SVE. The 
largest value was obtained for SIZE = 24. Except for SIZE = 
26 and 212, the performance was higher than that of FFTE 
on the SVE.  

As one of the reasons for this result the SIMD instruction 
rate of our approach is usually higher than that of the FFTE 
on the SVE, as shown in Fig. 15.  

Although a higher SIMD instruction rate does not 
necessarily indicate a better computational performance, it 
is an important measure of the computational efficiency. In 
addition, it is important to note here that a simple 
comparison is not possible because the FFTE on the SVE 
works on DFTs of any size, whereas our approach generates 
code that focuses on DFTs of a specific size. 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

SIZE := 2^N; 
opts := SpiralDefaults; 
opts.target := rec(); 
opts.target.name := "flow-fx-sve"; 
transform := DFT(SIZE, -1); 
best := DP(transform, 

rec(globalUnrolling := true,  
globalUnrollingMax := 1024), opts); 

ruletree := best[1].ruletree; 
icode := CodeRuleTree(ruletree, opts); 
PrintCode("dft", icode, opts); 

Figure 13. Inputs used to generate SVE-applied DFT2 program. 

 

 
Figure 14. Comparison of computational performance 

with FFTE on SVE. 

 

 
Figure 15. Comparison of SIMD instruction rates 

with FFTE on SVE. 

 

E. Comaprison of Performance with FFTW 

In this section, we compare opensource library for FFT.  
We used fftw3.3.8, which is a pre-install library in the 
supercomputer “Flow” Type I Subsystem. The environment 
of complication in the supercomputer “Flow” Type I 
subsystem is as summarized as follows: 
 

 clang: Fujitsu C/C++ Compiler 4.2.1  
(Aug 25 2020 11:42:20) (based on LLVM 7.1.0) 

 Compiler option: -Nclang -std=gnu99  
-mcpu=a64fx+sve -Ofast 

 



Fig. 16 shows the result of comparison with the 
FFTW3.3.8 library. 

 

 
Figure 16. Comparison of computational performance 

with FFTW3.3.8. 

 
According to Fig. 16, performance of SVE applied DFT2 

is superior to library of FFTW3.3.8. The maximum speedup 
is 2.32 time in the case of SIZE=29. 

One of reasons for the difference in Fig. 16 comes from 
computer optimization ability. Again, our system is very 
specialized for A64 SVE adaptation, and based on code 
optimization via SPIRAL. Hence, we can conclude that our 
proposed system has crucial optimization ability for the 
target program. 
 

VI. CONCLUSION 

We proposed an auto-tuning system by adapting the A64 
scalable vector extension for SPIRAL to generate DFT 
implementations.  

Using the Flow supercomputer at the Information 
Technology Center, Nagoya University, we evaluated the 
performance of programs generated using standard SPIRAL 
methods (scalar DFT) and our approach (SVE-applied 
DFT).  

The result of performance evaluation is summarized as 
follows.  

First, the SVE-applied DFT codes are up to 1.98 times 
faster than the scalar DFT code, with up to a 3.63 times 
higher SIMD instruction rate.  

Second, in the comparison of the computational 
performance with the FFTE on the SVE, which generated 
DFT kernels with the SVE using different approaches 
available in SPIRAL, the results showed that SVE-applied 
DFT is up to 11.0 times faster. 

Third, we obtain maximum speedup of 2.32 time by 
adapting AT for loop unrolling to a case of fixed depth of 
loop unrolling.  

Through this study, SVE was applied using Python 
scripts. However, if we can implement the function to 
generate the SVE codes with the same process as fixed-
length vector SIMD instructions such as Intel’s AVX, we 
will be able to generate further optimized SVE codes using 

SPIRAL. Further studies are needed in order to achieve this 
function. 
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