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Challenges
FFTW is de-facto standard interface for FFT
§ Vendor libraries support the FFTW 3.X interface:

Intel MKL, IBM ESSL, AMD ACML (end-of-life), Nvidia
cuFFT, Cray LibSci/CRAFFT

Some Issues:
§ No native support for accelerators (GPUs, Xeon PHI, 

FPGAs) and SIMT
§ Parallel/MPI version does not scale beyond 32 nodes
§ No analogue to LAPACK for spectral method

Future work: FFTX and SpectralPACK

LAPACK for spectral algorithms
§ Define FFTX as the analogue to BLAS

Define class of numerical algorithms to be 
supported by SpectralPACK
PDE solver classes (Green’s function, sparse in 
normal/k space,…), signal processing

§ Define SpectralPACK functions
circular convolutions, NUFFT, Poisson solvers, free 
space convolution

Numerical Linear Algebra Spectral Algorithms

LAPACK
LU factorization
Eigensolves
SVD
… 

BLAS
BLAS-1
BLAS-2
BLAS-3

SpectralPACK
Convolution
Correlation
Upsampling
Poisson solver
… 
FFTX
DFT, RDFT
1D, 2D, 3D,…
batch

FFTX backend: SPIRAL
FFTX powered by SPIRALExecutable

Other C/C++ Code
Platform/ISA
Plug-In:
CUDA

Platform/ISA
Plug-In:
OpenMP

Paradigm 
Plug-In:
GPU

Paradigm 
Plug-In:
Shared memory

FFT Codelets
CUDA

SPIRAL module:
Code synthesis, trade-offs
reconfiguration, statistics 

FFTX call site
fftx_plan(…)
fftx_execute(…)

FFTX call site
fftx_plan(…)
fftx_execute(…)

FFT Solvers
OpenMP

Core system:
SPIRAL engine

Extensible platform
and programming
model definitions

Automatically 
generated
FFTW-like library
components
DARPA BRASS

Platform-aware formal program synthesis
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Architectural 
parameters:
vector length, 
#processors, …

rewritingdefines

Kernel: 
problem size, 
algorithm choice

pick
search

abstraction abstraction

Model: common abstraction
= spaces of matching formulas

architecture
space

algorithm
space

optimization

Translating an OL expression into code

Expansion + backtracking

Recursive descent

Confluent term rewriting

Recursive descent

Recursive descent

Abstract code

OL specification

OL (dataflow) 
expression

Optimized Ʃ-OL 
expression 

Ʃ-OL (loop) 
expression

Optimized 
abstract code 

(icode)

C code

Confluent term rewriting
C code:

Output = 
Ruletree, expanded into
OL expression:

∑-OL:

Constraint Solver Input:

void dft8(_Complex double *Y, _Complex double *X) {
__m256d s38, s39, s40, s41,...
__m256d  *a17, *a18;
a17 = ((__m256d  *) X);
s38 = *(a17);
s39 = *((a17 + 2));
t38 = _mm256_add_pd(s38, s39);
t39 = _mm256_sub_pd(s38, s39);
...
s52 = _mm256_sub_pd(s45, s50);
*((a18 + 3)) = s52;

}

• Irregular domain decomposition
• Extension of adaptive sampling for 

irregular domains

Common characteristics of scientific codes:
• Usually in Fortran
• FFT-based simulations involve all-to-all communication
• High memory requirement 

Incompatibility with GPUs:
• GPUs haves small on-chip memory (~16GB max)
• Communication latencies in data movement

Solutions for porting code: 
• Domain decomposition (regular or irregular)
• Exploit properties of data and convolution kernel
• Sampling/ pruning used so that domain results fit on GPU 

memory

Combining performance with scaling scientific codes requires 
algorithm restructuring.255
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Table 1: Extremememory requirement ofMSCBasic Scheme
(serial version)

Input data size 323 643 1283 2563 5123 10243

Memory
required (GB) 0.07 0.55 4.44 35.5 284 2272

CPU
GPU

Load	domain	from	
main	memory

Compress	domain	
(all	tensor	

components)

Collect	update	from	
GPU

Decompress	tensor	
component

Domain-local	FFT,	
Convolution,	
Sampling

Compress	result	and	
copy	data	to	CPU

Copy	data	to	GPU

Synchronize

Offload

Figure 3: Flow diagram of the proposed method. The CPU
o�loads individual domains to the GPU for iterative update.

that a domain is an individual grain. The stress and strain �elds
within a grain are smooth and hence, compressible. A naïve regular
domain decomposition algorithm that ignores locations of grain
boundaries would present problems in scalability because a single
domain could contain parts of multiple grains, each of which has
certain properties and rank-2 tensor �elds at each point. Since
grain boundaries are regions of interest, the domain data cannot be
compressed due to a possible large loss in accuracy, and therefore
this method could su�er from a large data movement overhead
from the CPU to the GPU. Thus, our method aims to lower storage
and communication requirements by using grains as domains. The
work in [9] deals with error analysis due to domain compression
and savings in memory. In the following sections, we will describe
the domain-local sampling and result accumulation strategies used
in more detail.

2.2 Non-uniform FFTs and Pruned FFTs
Non-uniform FFTs and pruned FFTs can be used to reduce stor-
age of large FFTs, but have certain drawbacks, which make them
unattractive to use in the context of MASSIF.

When the data is irregularly sampled in either the time/space
or the frequency domain, the fundamental assumptions of the Dis-
crete Fourier Transform (DFT) are not satis�ed, and the FFT, a fast
algorithm to compute the DFT, does not apply. A number of algo-
rithms have been developed to overcome this limitation, and the

transform they perform is generally referred to as non-uniform
FFTs (NUFFT) [2], A fast implementation can be found in [8]. The
choice of the most e�cient algorithm however, depends on the
problem parameters. However, in the case of MASSIF, since high
frequency components are found at grain boundaries and low fre-
quency components dominate grain interiors, dropping samples
from the frequency domain could impact the solution accuracy.

When an FFT is being computed but only a small number of
points in the result are actually required, a pruned FFT [1], [15],
[14], is sometimes used. The data �ow of the pruned structure is
derived from the normal FFT structure by keeping only the branches
corresponding to non-zero inputs. Usually, pruning algorithms
require that the non-zero data are grouped together and may not
work well when the non-zero values are scattered in the grid. In our
case, we require the dense convolution result to be sampled sparsely
in sub-regions, since eliminating all samples in the sub-region will
lead to wrong computation. Hence, standard pruning techniques
will not work well here.

Hence, we propose a multi-resolution sampling pattern to reduce
storage while maintaining the ability to reconstruct solutions with
good accuracy. This has not been implemented for domain-local
scienti�c calculations, to the best of our knowledge.

2.3 Optimized FFT libraries and APIs
For most of today’s large science applications that depend on FFTs,
the implementation consists of transforming multidimensional
problems into a sequence of 1D FFT calls, with the latter being
performed by a library. Over the last decade or so, the FFTW API
became the de-facto standard FFT interface[5]. High performance
libraries by Intel (with its Math Kernel Library, MKL [7], and the
Cluster MKL), IBM (with ESSL [6] and PESSL), and Nvidia (with
cuFFT [13]) implement (at least a subset) of the FFTW interface.

However, due to increasing complexity of node architectures
and memory heirarchies that are to varying extents user-controlled,
mode complex mappings of multidimensional FFT-based applica-
tions are needed to the core 1D FFTs in order to maximize the e�ec-
tive use of the �oating point capabilities and minimize data move-
ment across the memory hierarchy. Some of these are simply not
expressible in the current FFTW interface; others can be expressed,
but with great e�ort on the part of the applications programmer, and
often with an outcome of not yielding the theoretically-predicted
performance due to unexpected and opaque behavior of the FFT
library software. Also, current support of FFTW is limited and ex-
panding the feature set of FFTW to enable more e�ective use of new
architectures is not feasible. Hence, new alternatives are emerging.

The FFTX interface [4] is a new framework for building FFT-
based applications which proposes to overcome the above limi-
tations. In particular, FFTX provides a backwards-compatible ap-
proach that builds on the FFTW interface but extends it to enable
extraction of high-performance on exascale machines. The FFTX
API can express complex mappings of multidimensional data to
well-optimized FFT-based kernels, while a SPIRAL-based code gen-
eration back-end [3] handles optimizations across various hardware
platforms. Thus, the advantage of FFTX is that it e�ectively decou-
ples algorithm speci�cation and code optimization. Thus, we believe
using APIs like FFTX that make algorithm speci�cation much easier
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Green’s	
function
(Data)

InputOutput

Rank	4	
tensor

Rank	2	
tensor

Rank	2	
tensor

Contraction

:=

(a)

Stride=1
Stride=2
Stride=4

(b)

Figure 6: (a) Tensor contraction. The cubes represent the 3D
data grid. A rank-2 or rank-4 tensor is present at each point
(x ,�,z). (b) Decay of convolution result with distance from
domain.

In our case, d = 3 and the construction of the octree is based
on sample density of a cell instead of occupancy. We use spread of
the Green’s function and the size of the domain as parameters to
construct the octree. We maintain a pre-determined sample den-
sity around the domain, which decreases with distance from the
domain. The �gure 8 shows the octree-derived sampling pattern
after convolving a cubical domain in the 3D data cube with the
Green’s function. The sampling rate decreases as the distance from
the domain increases. This is due to the dampening e�ect of the
Green’s function operator outside the domain. The octree down-
samples cells in the volume aggressively with increased distance
from the domain, thus reducing the memory required to store the
result on the GPU.

Domain
2h 4h

2h 4h

2h 2h

4h 4h

2h

4h 4h

4h

8h

8h8h

Creation	of	octree

Figure 7: Octree decomposition sampling pattern, with sam-
pling rates dependent on sampling density criteria.h is the
sampling interval on the domain, which corresponds to sam-
pling at full resolution. The cells around it have decreased
sampling rate, i.e., larger sampling interval. The number of
points in each cell is dependent on the pre-determined sam-
pling density.

Compact Encoding. The octree is encoded by an object S which
speci�es the (x ,�, z) coordinates of the left corner point of each cell
and the sampling rate used inside the cell. Larger cells may cover

Figure 8: Sample locations when a domain of size
32 ⇥ 32 ⇥ 32 embedded in a cube of size 128 ⇥ 128 ⇥ 128
with a smooth �eld in the interior, convolved with Green’s
function and sampled using the octree importance sam-
pling method. The domain located within the large cube is
sampled at full resolution. The octree is constructed using
knowledge of convolution patterns derived from domain
size and Green’s function properties.

a larger volume with a lower sampling rate (fewer points). Thus,
S maps the array of data values stored on the GPU to locations of
the sampled points. The data array and corresponding octree S are
copied from the GPU (device) to the CPU (host). After computation
for all domains is complete for a particular iteration, the sparsely
sampled points are interpolated and accumulation of results gives
the updated stress for that iteration. Our method for combining
results from various domains which are encoded with di�erent
octrees is discussed next.

Accumulating results.
After convolution has been computed over domainm, the convo-

lution result in the exterior of the domain is captured by the octree
sampling descriptor Sm corresponding to domainm, and a list of
data values at sampled points. Once all domains are processed,
the results must be accumulated locally before proceeding to the
next iteration (see Fig. ??). This entails exchanging the sampling
descriptors and data points between GPUs on which local domain
computations reside. In this section, we develop an algorithm for
accumulating the results on each domain. Our method allows us
to lower memory requirement by not materializing the full data
volume on the CPU, but rather delivering local updates to the nodes
on which domains reside.

First, let us de�ne some notation used to describe the algorithm.
Let D be total number of domains that the 3D volume is divided
into. Let �m be the support of domainm, and � (i+1)

m (�m ) be the
initial value of domainm at the beginning of the (i + 1)th iteration.
�

(i )
m (�m ) is the convolution result over domain m at the end of
iteration i . � (i )

k (�m ) is the convolution result over the support of
domainm obtained from domaink , wherek 2 {1, . . . ,D}, butk ,m.
We do not denote the tensor components of � here for simplicity
of notation, but accumulation is done for each stress component.
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//GPU side, compute on individual domain
#define NUMSUBPLANS 5
plan subplans[NUMSUBPLANS];
plan p; // top-level plan
//... Initialize ....

// create zero-initialized temporary
// n x n x n array with 3 x 3 tensor at each point
tmp1 = create_zero_temp(cube_size, tensor_size);

// copy k x k x k input domain into n x n x n tmp1
subplans[0] = copy_plan(domain, tmp1);// (from, to)

// DFT on the input
tmp2 = create_complex_temp(size_tmp1);
subplans[1] = dft_plan(tmp1);

//Tensor contraction
//In this case we know that output size is the same as tmp2
tmp3 = create_zero_temp(size_tmp2);
subplans[2] = tensor_contraction_plan(tmp2, data, tmp3,

dimensions_to_contract);//(in,data,out,info)

// iDFT on the contracted output
tmp4 = create_complex_temp(size_tmp3);
subplans[3] = inverse_dft_plan(tmp3, tmp4);

//The next plans apply adaptive sampling
subplans[4] = plan_sample(tmp4, final_output, Octree_S); // (from, to ,

Octree_descriptor)

// create the top level plan. this copies the sub-plan pointers
p = plan_compose(NUMSUBPLANS, subplans);

// plan to be used with execute()
return p;

Figure 11: Collection of subplans, which compose a single
plan in an API such as FFTX, for porting MASSIF to GPUs.
Octree-based sampling pattern is encoded by a descriptor S .

//CPU side, accumulate over all domains

#define NUMSUBPLANS 3
plan subplans[NUMSUBPLANS];
plan accum; // top-level accumulate plan

// n x n x n array with 3 x 3 tensor at each point
temp = create_zero_temp(cube_size, tensor_size);

//smaller temp arrays
output_cube = create_zero_temp( domain_d_size, tensor_size);
net_output_cube = create_zero_temp( domain_d_size, tensor_size);

for j in [1,...,D] except d:

subplans[0] = plan_decode_octree(S[j], data_array, temp); //decode octree.
copy into temp

subplans[1]= plan_multires_interpolate( S[j], temp, domain_d, output_cube
,output_size);

//descriptor, input cube (samples missing), filter (only interpolate that
region), outputcube, outputsize

subplan[2] = plan_sum(output_cube, net_output_cube);

// create the top level plan
accum = plan_compose(NUMSUBPLANS, subplans);

// plan to be used with execute()
return accum;

Figure 12: Accumulation algorithm expressed as a collection
of subplans.

the example of a triangular domain in Fig. 13. There are two main
areas to be sampled: around the corner points and parallel to the
sides. Sampling can be described using a combination of cartesian
coordinates and radial coordinates, while maintaining required
sample density. Irregular space partitioning data structures such
as KDtrees can be used to denote regions of varying sampling den-
sity. Sampling criteria may also be given by closed-form functions.
The function will encode sampling density around the domain as a
function of distance from the domain, but the space sub-divisions
need not be cubes with dimensions equal to some power of two, as
is the case with octrees.

A1

A2

Figure 13: Irregular domain sampling rough example

6 CONCLUSION
We have described a domain decomposition algorithm that adapts
MASSIF to GPUs. Our main contribution is formulating the domain-
local computation and accumulation algorithms for individual do-
mains residing on GPUs. Our results show that the octree-based
sampling technique gives a result that is in agreement with the
original, uncompressed result. We then express the speci�cations
of our algorithm using descriptors and API calls to motivate the
potential for user-friendly APIs which provide back-ends such as
SPIRAL for high performance implementations.
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//GPU side, compute on individual domain
#define NUMSUBPLANS 5
plan subplans[NUMSUBPLANS];
plan p; // top-level plan
//... Initialize ....

// create zero-initialized temporary
// n x n x n array with 3 x 3 tensor at each point
tmp1 = create_zero_temp(cube_size, tensor_size);

// copy k x k x k input domain into n x n x n tmp1
subplans[0] = copy_plan(domain, tmp1);// (from, to)

// DFT on the input
tmp2 = create_complex_temp(size_tmp1);
subplans[1] = dft_plan(tmp1);

//Tensor contraction
//In this case we know that output size is the same as tmp2
tmp3 = create_zero_temp(size_tmp2);
subplans[2] = tensor_contraction_plan(tmp2, data, tmp3,

dimensions_to_contract);//(in,data,out,info)

// iDFT on the contracted output
tmp4 = create_complex_temp(size_tmp3);
subplans[3] = inverse_dft_plan(tmp3, tmp4);

//The next plans apply adaptive sampling
subplans[4] = plan_sample(tmp4, final_output, Octree_S); // (from, to ,

Octree_descriptor)

// create the top level plan. this copies the sub-plan pointers
p = plan_compose(NUMSUBPLANS, subplans);

// plan to be used with execute()
return p;

Figure 11: Collection of subplans, which compose a single
plan in an API such as FFTX, for porting MASSIF to GPUs.
Octree-based sampling pattern is encoded by a descriptor S .

//CPU side, accumulate over all domains

#define NUMSUBPLANS 3
plan subplans[NUMSUBPLANS];
plan accum; // top-level accumulate plan

// n x n x n array with 3 x 3 tensor at each point
temp = create_zero_temp(cube_size, tensor_size);

//smaller temp arrays
output_cube = create_zero_temp( domain_d_size, tensor_size);
net_output_cube = create_zero_temp( domain_d_size, tensor_size);

for j in [1,...,D] except d:

subplans[0] = plan_decode_octree(S[j], data_array, temp); //decode octree.
copy into temp

subplans[1]= plan_multires_interpolate( S[j], temp, domain_d, output_cube
,output_size);

//descriptor, input cube (samples missing), filter (only interpolate that
region), outputcube, outputsize

subplan[2] = plan_sum(output_cube, net_output_cube);

// create the top level plan
accum = plan_compose(NUMSUBPLANS, subplans);

// plan to be used with execute()
return accum;

Figure 12: Accumulation algorithm expressed as a collection
of subplans.

the example of a triangular domain in Fig. 13. There are two main
areas to be sampled: around the corner points and parallel to the
sides. Sampling can be described using a combination of cartesian
coordinates and radial coordinates, while maintaining required
sample density. Irregular space partitioning data structures such
as KDtrees can be used to denote regions of varying sampling den-
sity. Sampling criteria may also be given by closed-form functions.
The function will encode sampling density around the domain as a
function of distance from the domain, but the space sub-divisions
need not be cubes with dimensions equal to some power of two, as
is the case with octrees.

A1

A2

Figure 13: Irregular domain sampling rough example

6 CONCLUSION
We have described a domain decomposition algorithm that adapts
MASSIF to GPUs. Our main contribution is formulating the domain-
local computation and accumulation algorithms for individual do-
mains residing on GPUs. Our results show that the octree-based
sampling technique gives a result that is in agreement with the
original, uncompressed result. We then express the speci�cations
of our algorithm using descriptors and API calls to motivate the
potential for user-friendly APIs which provide back-ends such as
SPIRAL for high performance implementations.
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Figure 6: (a) Tensor contraction. The cubes represent the 3D
data grid. A rank-2 or rank-4 tensor is present at each point
(x ,�,z). (b) Decay of convolution result with distance from
domain.

In our case, d = 3 and the construction of the octree is based
on sample density of a cell instead of occupancy. We use spread of
the Green’s function and the size of the domain as parameters to
construct the octree. We maintain a pre-determined sample den-
sity around the domain, which decreases with distance from the
domain. The �gure 8 shows the octree-derived sampling pattern
after convolving a cubical domain in the 3D data cube with the
Green’s function. The sampling rate decreases as the distance from
the domain increases. This is due to the dampening e�ect of the
Green’s function operator outside the domain. The octree down-
samples cells in the volume aggressively with increased distance
from the domain, thus reducing the memory required to store the
result on the GPU.

Domain
2h 4h

2h 4h

2h 2h

4h 4h

2h

4h 4h

4h

8h

8h8h

Creation	of	octree

Figure 7: Octree decomposition sampling pattern, with sam-
pling rates dependent on sampling density criteria.h is the
sampling interval on the domain, which corresponds to sam-
pling at full resolution. The cells around it have decreased
sampling rate, i.e., larger sampling interval. The number of
points in each cell is dependent on the pre-determined sam-
pling density.

Compact Encoding. The octree is encoded by an object S which
speci�es the (x ,�, z) coordinates of the left corner point of each cell
and the sampling rate used inside the cell. Larger cells may cover

Figure 8: Sample locations when a domain of size
32 ⇥ 32 ⇥ 32 embedded in a cube of size 128 ⇥ 128 ⇥ 128
with a smooth �eld in the interior, convolved with Green’s
function and sampled using the octree importance sam-
pling method. The domain located within the large cube is
sampled at full resolution. The octree is constructed using
knowledge of convolution patterns derived from domain
size and Green’s function properties.

a larger volume with a lower sampling rate (fewer points). Thus,
S maps the array of data values stored on the GPU to locations of
the sampled points. The data array and corresponding octree S are
copied from the GPU (device) to the CPU (host). After computation
for all domains is complete for a particular iteration, the sparsely
sampled points are interpolated and accumulation of results gives
the updated stress for that iteration. Our method for combining
results from various domains which are encoded with di�erent
octrees is discussed next.

Accumulating results.
After convolution has been computed over domainm, the convo-

lution result in the exterior of the domain is captured by the octree
sampling descriptor Sm corresponding to domainm, and a list of
data values at sampled points. Once all domains are processed,
the results must be accumulated locally before proceeding to the
next iteration (see Fig. ??). This entails exchanging the sampling
descriptors and data points between GPUs on which local domain
computations reside. In this section, we develop an algorithm for
accumulating the results on each domain. Our method allows us
to lower memory requirement by not materializing the full data
volume on the CPU, but rather delivering local updates to the nodes
on which domains reside.

First, let us de�ne some notation used to describe the algorithm.
Let D be total number of domains that the 3D volume is divided
into. Let �m be the support of domainm, and � (i+1)

m (�m ) be the
initial value of domainm at the beginning of the (i + 1)th iteration.
�

(i )
m (�m ) is the convolution result over domain m at the end of
iteration i . � (i )

k (�m ) is the convolution result over the support of
domainm obtained from domaink , wherek 2 {1, . . . ,D}, butk ,m.
We do not denote the tensor components of � here for simplicity
of notation, but accumulation is done for each stress component.
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Algorithm innovations such as compression or sampling reduce
communication and memory requirements, but it is highly di�-
cult to optimize these operations across various heterogeneous
platforms during implementation. The widely-used FFTW inter-
face [5] is not able to express some of these special pruning and
sampling patterns and hence the user cannot leverage the highly
optimized FFTW library for parallel computations. We develop new
descriptors for multi-resolution sampling and suggest their use
with suitable APIs for a user-friendly approach to implementing
this method. We use the example of a new API, FFTX [3], still in
early stages of development, to show that there is potential for de-
velopment of such extensions which can help e�ciently implement
domain decomposition algorithms on heterogeneous environments.

Thus, our contributions in this paper are:

• proposing an octree-based multi-resolution sampling strat-
egy for domain-local convolution results
• developing amulti-resolution accumulation algorithm across
the domains, which are processed individually on GPUs
• suggesting methods for high performance implementation
of the algorithm speci�cations using a user-friendly API.

The paper is organized as follows. The background section de-
scribes the original MASSIF simulation and discuss challenges in
scalability for existing Fortran code, followed by some background
on FFTX. Then, we describe our proposed domain decomposition
method which adapts MASSIF for implementation on GPUs. In par-
ticular, we focus on domain-local FFTs and sampling techniques to
store and accumulate the result in each iteration. The results section
contains �rst order performance models in three heterogeneous
environments: a large memory node, a node in the NVIDIA DGX2
workstation, and a node on the Summit supercomcputer (ORNL).
We also discuss use of APIs like FFTX and suggest extensions which
will allow the processing of irregular domains.

2 BACKGROUND
2.1 MASSIF Simulation
The Micromechanical Analysis of Stress-Strain Inhomogeneities
with Fourier transforms (MASSIF) is an FFT-based stress-strain
simulation method for composites [12], [11], [10], [16]. The method
discretizes amicrostructure (arrangement of grains in the composite
material, as seen in Fig. 1) on a regular three dimensional (3D) grid,
and a partial di�erential equation (PDE) with periodic boundary
conditions is formulated using the stress-strain constitutive relation
and equilibrium conditions. FFTs are used for solving the PDE
iteratively using the method of Green’s functions. FFTs are used to
perform convolutions with the Green’s function operator, which is
a rank-4 tensor at each grid point. Convolution in each iteration
requires computation of 3D FFTs of tensor �elds, thus requiring
extensive storage.

The pseudocode for MASSIF kernel is as given below. Strain and
stress �elds are rank-2 tensors at 3-D grid point x , and are denoted
by � (x) and � (x) respectively. Cmnk` (x) is the rank-4 sti�ness ten-
sor at x. E is initial average strain. The Green’s operator in Fourier
space at frequency point ��� is �̂mnk` (��� ). The convergence error is
es and tolerance error is etol. ��k` is the computed perturbation in
component (k, `) of the strain tensor. Superscripts indicate iteration

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number
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Figure 1: Illustration a possible composite microstructure,
composed of individual grains.

Boundaries	are	critical	
regions		of		interest

Figure 2: Single component of stress �eld tensor in a sample
composite microstructure simulated using MASSIF. The im-
age shows behavior of stress at the grain boundary between
3 grains, which is a region of interest.

number. The iterative scheme continues till convergence is reached.
This is a single time step simulation.

Algorithm 1 MASSIF Inner loop
1: Initialize:

�

0  E, �

0
mn (x)  Cmnk` (x) : �0k` (x)

2: while es > etol do
3: �̂

(i )
mn (��� )  FFT(� (i )

mn (x))
4: Check convergence
5: ��̂ (i+1)k` (��� )  �̂k`mn (��� ) : �̂

(i )
mn (��� )

6: Update strain: �̂ (i+1)k` (��� )  �̂

(i )
k` (��� ) � ��̂ (i+1)k` (��� )

7: �

(i+1)
k` (x)  iFFT(�̂ (i+1)k` (��� ))

8: Update stress: � (i+1)
mn (x)  Cmnk` (x) : �

(i+1)
k` (x)

In Algorithm 1, line 3 computes the FFT of the stress �eld. Next,
line 4 checks convergence in Fourier domain for computational
e�ciency as advised in [10]. Line 5 computes a Fourier domain
convolution and tensor contraction with the Green’s function oper-
ator. Fourier domain strain is updated on line 6. This is followed by
an inverse FFT on the updated strain �eld. Finally, line 8 updates
the stress in the entire volume as per the stress-strain constitutive
relation. The memory requirement of the serial code is as seen in
table 1. The maximum size simulated currently with MPI and FFTW
is 1, 024 ⇥ 1, 024 ⇥ 1, 024 with a memory requirement of more than
2TB, and for larger sizes, the memory required is prohibitively large.
Scaling and accelerating the MASSIF simulation has a wide range
of applications where micromechanical properties of polycrystals
are studied.

To reducememory requirements, our method, originally outlined
in [9] and outlined in ??, proposes domain decomposition such
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Algorithm innovations such as compression or sampling reduce
communication and memory requirements, but it is highly di�-
cult to optimize these operations across various heterogeneous
platforms during implementation. The widely-used FFTW inter-
face [5] is not able to express some of these special pruning and
sampling patterns and hence the user cannot leverage the highly
optimized FFTW library for parallel computations. We develop new
descriptors for multi-resolution sampling and suggest their use
with suitable APIs for a user-friendly approach to implementing
this method. We use the example of a new API, FFTX [3], still in
early stages of development, to show that there is potential for de-
velopment of such extensions which can help e�ciently implement
domain decomposition algorithms on heterogeneous environments.

Thus, our contributions in this paper are:

• proposing an octree-based multi-resolution sampling strat-
egy for domain-local convolution results
• developing amulti-resolution accumulation algorithm across
the domains, which are processed individually on GPUs
• suggesting methods for high performance implementation
of the algorithm speci�cations using a user-friendly API.

The paper is organized as follows. The background section de-
scribes the original MASSIF simulation and discuss challenges in
scalability for existing Fortran code, followed by some background
on FFTX. Then, we describe our proposed domain decomposition
method which adapts MASSIF for implementation on GPUs. In par-
ticular, we focus on domain-local FFTs and sampling techniques to
store and accumulate the result in each iteration. The results section
contains �rst order performance models in three heterogeneous
environments: a large memory node, a node in the NVIDIA DGX2
workstation, and a node on the Summit supercomcputer (ORNL).
We also discuss use of APIs like FFTX and suggest extensions which
will allow the processing of irregular domains.

2 BACKGROUND
2.1 MASSIF Simulation
The Micromechanical Analysis of Stress-Strain Inhomogeneities
with Fourier transforms (MASSIF) is an FFT-based stress-strain
simulation method for composites [12], [11], [10], [16]. The method
discretizes amicrostructure (arrangement of grains in the composite
material, as seen in Fig. 1) on a regular three dimensional (3D) grid,
and a partial di�erential equation (PDE) with periodic boundary
conditions is formulated using the stress-strain constitutive relation
and equilibrium conditions. FFTs are used for solving the PDE
iteratively using the method of Green’s functions. FFTs are used to
perform convolutions with the Green’s function operator, which is
a rank-4 tensor at each grid point. Convolution in each iteration
requires computation of 3D FFTs of tensor �elds, thus requiring
extensive storage.

The pseudocode for MASSIF kernel is as given below. Strain and
stress �elds are rank-2 tensors at 3-D grid point x , and are denoted
by � (x) and � (x) respectively. Cmnk` (x) is the rank-4 sti�ness ten-
sor at x. E is initial average strain. The Green’s operator in Fourier
space at frequency point ��� is �̂mnk` (��� ). The convergence error is
es and tolerance error is etol. ��k` is the computed perturbation in
component (k, `) of the strain tensor. Superscripts indicate iteration

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number
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Figure 1: Illustration a possible composite microstructure,
composed of individual grains.

Boundaries	are	critical	
regions		of		interest

Figure 2: Single component of stress �eld tensor in a sample
composite microstructure simulated using MASSIF. The im-
age shows behavior of stress at the grain boundary between
3 grains, which is a region of interest.

number. The iterative scheme continues till convergence is reached.
This is a single time step simulation.

Algorithm 1 MASSIF Inner loop
1: Initialize:

�

0  E, �

0
mn (x)  Cmnk` (x) : �0k` (x)

2: while es > etol do
3: �̂

(i )
mn (��� )  FFT(� (i )

mn (x))
4: Check convergence
5: ��̂ (i+1)k` (��� )  �̂k`mn (��� ) : �̂

(i )
mn (��� )

6: Update strain: �̂ (i+1)k` (��� )  �̂

(i )
k` (��� ) � ��̂ (i+1)k` (��� )

7: �

(i+1)
k` (x)  iFFT(�̂ (i+1)k` (��� ))

8: Update stress: � (i+1)
mn (x)  Cmnk` (x) : �

(i+1)
k` (x)

In Algorithm 1, line 3 computes the FFT of the stress �eld. Next,
line 4 checks convergence in Fourier domain for computational
e�ciency as advised in [10]. Line 5 computes a Fourier domain
convolution and tensor contraction with the Green’s function oper-
ator. Fourier domain strain is updated on line 6. This is followed by
an inverse FFT on the updated strain �eld. Finally, line 8 updates
the stress in the entire volume as per the stress-strain constitutive
relation. The memory requirement of the serial code is as seen in
table 1. The maximum size simulated currently with MPI and FFTW
is 1, 024 ⇥ 1, 024 ⇥ 1, 024 with a memory requirement of more than
2TB, and for larger sizes, the memory required is prohibitively large.
Scaling and accelerating the MASSIF simulation has a wide range
of applications where micromechanical properties of polycrystals
are studied.

To reducememory requirements, our method, originally outlined
in [9] and outlined in ??, proposes domain decomposition such
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Algorithm innovations such as compression or sampling reduce
communication and memory requirements, but it is highly di�-
cult to optimize these operations across various heterogeneous
platforms during implementation. The widely-used FFTW inter-
face [5] is not able to express some of these special pruning and
sampling patterns and hence the user cannot leverage the highly
optimized FFTW library for parallel computations. We develop new
descriptors for multi-resolution sampling and suggest their use
with suitable APIs for a user-friendly approach to implementing
this method. We use the example of a new API, FFTX [3], still in
early stages of development, to show that there is potential for de-
velopment of such extensions which can help e�ciently implement
domain decomposition algorithms on heterogeneous environments.

Thus, our contributions in this paper are:

• proposing an octree-based multi-resolution sampling strat-
egy for domain-local convolution results
• developing amulti-resolution accumulation algorithm across
the domains, which are processed individually on GPUs
• suggesting methods for high performance implementation
of the algorithm speci�cations using a user-friendly API.

The paper is organized as follows. The background section de-
scribes the original MASSIF simulation and discuss challenges in
scalability for existing Fortran code, followed by some background
on FFTX. Then, we describe our proposed domain decomposition
method which adapts MASSIF for implementation on GPUs. In par-
ticular, we focus on domain-local FFTs and sampling techniques to
store and accumulate the result in each iteration. The results section
contains �rst order performance models in three heterogeneous
environments: a large memory node, a node in the NVIDIA DGX2
workstation, and a node on the Summit supercomcputer (ORNL).
We also discuss use of APIs like FFTX and suggest extensions which
will allow the processing of irregular domains.

2 BACKGROUND
2.1 MASSIF Simulation
The Micromechanical Analysis of Stress-Strain Inhomogeneities
with Fourier transforms (MASSIF) is an FFT-based stress-strain
simulation method for composites [12], [11], [10], [16]. The method
discretizes amicrostructure (arrangement of grains in the composite
material, as seen in Fig. 1) on a regular three dimensional (3D) grid,
and a partial di�erential equation (PDE) with periodic boundary
conditions is formulated using the stress-strain constitutive relation
and equilibrium conditions. FFTs are used for solving the PDE
iteratively using the method of Green’s functions. FFTs are used to
perform convolutions with the Green’s function operator, which is
a rank-4 tensor at each grid point. Convolution in each iteration
requires computation of 3D FFTs of tensor �elds, thus requiring
extensive storage.

The pseudocode for MASSIF kernel is as given below. Strain and
stress �elds are rank-2 tensors at 3-D grid point x , and are denoted
by � (x) and � (x) respectively. Cmnk` (x) is the rank-4 sti�ness ten-
sor at x. E is initial average strain. The Green’s operator in Fourier
space at frequency point ��� is �̂mnk` (��� ). The convergence error is
es and tolerance error is etol. ��k` is the computed perturbation in
component (k, `) of the strain tensor. Superscripts indicate iteration

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number
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Figure 1: Illustration a possible composite microstructure,
composed of individual grains.

Boundaries	are	critical	
regions		of		interest

Figure 2: Single component of stress �eld tensor in a sample
composite microstructure simulated using MASSIF. The im-
age shows behavior of stress at the grain boundary between
3 grains, which is a region of interest.

number. The iterative scheme continues till convergence is reached.
This is a single time step simulation.

Algorithm 1 MASSIF Inner loop
1: Initialize:

�

0  E, �

0
mn (x)  Cmnk` (x) : �0k` (x)

2: while es > etol do
3: �̂

(i )
mn (��� )  FFT(� (i )

mn (x))
4: Check convergence
5: ��̂ (i+1)k` (��� )  �̂k`mn (��� ) : �̂

(i )
mn (��� )

6: Update strain: �̂ (i+1)k` (��� )  �̂

(i )
k` (��� ) � ��̂ (i+1)k` (��� )

7: �

(i+1)
k` (x)  iFFT(�̂ (i+1)k` (��� ))

8: Update stress: � (i+1)
mn (x)  Cmnk` (x) : �

(i+1)
k` (x)

In Algorithm 1, line 3 computes the FFT of the stress �eld. Next,
line 4 checks convergence in Fourier domain for computational
e�ciency as advised in [10]. Line 5 computes a Fourier domain
convolution and tensor contraction with the Green’s function oper-
ator. Fourier domain strain is updated on line 6. This is followed by
an inverse FFT on the updated strain �eld. Finally, line 8 updates
the stress in the entire volume as per the stress-strain constitutive
relation. The memory requirement of the serial code is as seen in
table 1. The maximum size simulated currently with MPI and FFTW
is 1, 024 ⇥ 1, 024 ⇥ 1, 024 with a memory requirement of more than
2TB, and for larger sizes, the memory required is prohibitively large.
Scaling and accelerating the MASSIF simulation has a wide range
of applications where micromechanical properties of polycrystals
are studied.

To reducememory requirements, our method, originally outlined
in [9] and outlined in ??, proposes domain decomposition such

2

Case study: MASSIF
• Hooke’s law simulation
• Partial Differential Equation solved by 

Green’s function method
• FFT-based convolution and tensor 

contraction between rank-2 tensors and 
rank-4 Green’s function

Modernized FFTW-style interface
§ Backwards compatible to FFTW 2.X 

and 3.X
§ Small  number of new features, 

familiar interface 

Code generation backend using SPIRAL
§ Library/application kernels are 

interpreted as specifications in DSL
extract semantics from source code and 
known library semantics

§ Compilation and advanced 
performance optimization 
cross-call and cross library optimization, 
accelerator off-loading,…

§ Reference library implementation and 
bindings to vendor libraries

FFTX is..
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Tensor contraction 
at each grid point

FFT, tensor contraction and 
sampling

Accumulation

Future work: MASSIF

Approach: Green’s function

Solution: φ(.) = convolution of RHS ρ(.) with Green’s function G(.).
Efficient through FFTs (frequency domain)

Other FFT-based simulations

Proposed algorithmic solution:
• Domain decomposition with grains are 

domains
• Domain-local FFT followed by convolution 

and tensor contraction
• Green’s function computed on-the-fly to 

avoid storage
• Adaptive sampling of dense convolution 

result to fit problem on GPU memory

Complex data mappings! How to get 
maximum performance on various 
platforms?

DGX-2
Source: 
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Summit
Source: 
ORNL

Solution: Emerging interfaces like 
FFTX, extension of FFTW, enables 
algorithm specification as 
composition of sub-plans

Complex data patterns may 
need to be expressed, 
FFTW currently falls short. 
But, extensions like FFTX 
could add new descriptors.

MSC-Basic	Algorithm	is	an	FFT-based	algorithm	[1]	for	
calculating	local	stress	and	strain	in	composite	materials.

The	algorithm		solves	a	PDE:

It	requires	large	amounts	of	memory	and	has	a	high	
communication	overhead	which	becomes	a	bottleneck.	

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number
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Approach	overview

Stress	in	crystals
Boundaries	are	critical	
regions		of	 interest

Motivation

MSC-Basic	Scheme	requires	very	large	memory	as	
problem	size	scales

0

500

1000

1500

2000

2500

32 64 128 256 512 1024

Memory	usage	(in	Gb)	for	different	grid	sizes

I.	MSC-Alternate	Scheme
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Large	Scale	FFT-Based	Stress-Strain	Simulations	with	Irregular	Domain	Decomposition	
Anuva Kulkarni,	Franz	Franchetti (Advisor),	Jelena Kovačević (Advisor)

II.	Data	models	 Result	highlights
Initialize
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Communication
reduced	by	modeling

MSC-Alternate
Scheme

Proposed	Method

Communication
reduced	by	modeling

More	on	the	nature	of	Green’s	functions:	
We	observe	that	99%	energy	of	the	space-domain	
Green’s	function	is	concentrated	at	central	peak,	in	
a	n3 volume,	n<<N.	Hence,	Green’s	function	can	be	
truncated	before	convolution.	
An	Ewald-type	method	may	be	employed	to	avoid	
the	1%	error,	since	errors	accumulate	in	the	
iterative	PDE	solver.

Right:
N	=	512
Slice	of	3D	
component	of	
space-domain
Green’s	function

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number
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Example	datasets:	regular	and	irregular	shaped	grains

Stress	and	strain	fields	calculated	by	MSC	– Basic	Scheme	
and	MSC– Alternate	Scheme	are	in	agreement

Data	compression	used	to	model	grain	interior	can	
reduce	communication.																						

Next	Phase
• Algorithm	development:	

o Energy-preserving	truncation	of	the	Green’s	
operator	in	space	domain

o Grain	boundary	interactions
• Performance	test:	GPU	implementation	and	quantify	

savings	in	communication

[1]		H.	Moulinec and	P.	Suquet.	1998.	A	numerical	method	for	computing	the	over- all	
response	of	nonlinear	composites	with	complex	microstructure.	Computer	methods	
in	applied	mechanics	and	engineering	157,	1-2	(1998),	69–94.	
[2]	R.	A.	Lebensohn.	2001.	N-site	modeling	of	a	3D	viscoplastic polycrystal using	fast	
Fourier	transform.	Acta Materialia 49,	14	(2001),	2723–2737.	

The	authors	would	like	to	thank	Dr.	Anthony	Rollett,	Dr.	Vahid Tari	and	the	staff	at	the	
Pittsburgh	Supercomputing	Center	for	all	their	assistance	and	collaboration	with	this	
project.

Initialize

Convergence	test

Distribute	data	to	
GPUs

Compute	strain	
field	update	

Gather	data	from	
GPUs

Get	full	stress	
and	strain	field

CPU	action

Iteration
Communication
action

Model	
parameters

Full	data	
field

compress

Compress	data	
before	
communication

Approx.
models
for	

smooth	
regions

Dataset	1 Dataset	2
Dataset	1

Dataset	2

Programmed	in	FORTRAN, difficult	to	run	on	accelerators	
due	to	memory	requirement.	

Increasing	grid	resolution	is	desirable.	However,	larger	
problem	sizes	must	be	run	with	parallelized	code. This	
requires	large	parallel	FFT	computations	which	means	
high	memory	usage	and	all-all	communication.

Problem	scale:
• 3x3	stress	and	strain	tensor	at	each	grid	point
• 9	FFTs	of	size	N3

Grid	size:	323 to	10243
Memory	requirement	
increases	32.4k times!

Solution:
Decompose	material	into	irregular	domains,	which	are	
the	grains
• memory	requirement	is	reduced	significantly
• all-all	communication	can	be	eliminated

CPU

GPU GPU GPU GPU

process
grain	1	

process
grain	2	

process
grain	3	

process
grain	4	

Nearest	neighbor
communication	
only

Each	grain	(domain)	is	assigned	to	a	GPU.	For	small	
grains,	single	GPU	can	process	multiple	grains.	
Distribution	will	be	done	using	appropriate	load	balance.	

The next section describes more details of MSC-Basic Scheme
and MSC-Alternate Scheme. This is followed by some proof-of-
concept results.

2 METHOD
In this section, we describe both simulation methods in more detail.
First, we include a short description of tensor notation.

2.1 Tensors and Tensor Notation
Einstein notation is used to represent tensor components and op-
erations. Subscripts denote the tensor components. Eg., Ai j refers
to component (i, j ) of the rank-2 tensor A. Repetition of indices
implies a summation over those particular indices. An important
tensor operation is the contraction of indices (denoted by ‘:’), which
forms lower rank tensors from higher rank tensors. This is done
by a sum over repeated indices after multiplication. Thus, Ci jkl :
Di j =

P
i

P
j
Ci jklDi j = Ekl and yields a rank-2 tensor.

2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (��� ) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l ) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].

Algorithm 1MSC Basic Scheme
procedure I���������
�0  E, � 0

mn (x)  Cmnkl (x) : �0kl (x)

while es > etol do
�̂ imn (��� ) = FFT(� imn (x))
Check convergence
��̂i+1kl (��� ) = �̂klmn (��� ) : �̂ imn (��� )

Update strain: �̂i+1kl (��� )  �̂ikl (��� ) � ��̂i+1kl (��� )

�i+1kl (x)  IFFT(�̂i+1kl (��� ))

Update stress: � i+1mn (x)  Cmnkl (x) : �i+1kl (x)

2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for
various microstructures in a copper dataset. Table 2 shows error for

Algorithm 2 MSC Alternate Scheme
procedure I���������
�0  E, � 0

mn (x)  Cmnkl (x) : �0kl (x)

while es > etol do
for each grain j 2 G do

(�̂ imn (��� ))j = FFT((� imn (x))j )
Check convergence
Update strain: �(�̂i+1kl (��� ))j = �̂klmn (��� ) : (�̂ imn (��� ))j

�(�i+1kl (x))j = IFFT(�(�̂i+1kl (x))j )

Gather step: ��i+1kl =
P
j
�(�i+1kl )j

Update strain: �i+1kl (x)  �ikl (x) � ��i+1kl (x)
Update stress: � i+1mn (x)  Cmnkl (x) : �i+1kl (x)

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

Iter.
#

% error in stress % error in strain

323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.97 % 0.066 % 0.18 % 1.02 % 0.096 % 0.13 %

Stress Component
��� 11 ��� 22 ��� 33

Approx.
Error %

0.099 0.1039 0.0599

3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation to
�elds in grain interior have been considered but the next phase will
also carefully look at the grain boundary interactions, which must
happen at full resolution. Future work also includes a GPU imple-
mentation that achieves savings in communication by transmitting
models for �elds in grains rather than the full tensor �elds.
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Figure 1: Proposed method
tensor operation is the contraction of indices (denoted by ‘:’), which
forms lower rank tensors from higher rank tensors. This is done
by a sum over repeated indices after multiplication. Thus, Ci jkl :
Di j =

P
i

P
j
Ci jklDi j = Ekl and yields a rank-2 tensor.

2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (��� ) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l ) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].

Algorithm 1MSC Basic Scheme
1: Initialize:

�0  E,
� 0
mn (x)  Cmnkl (x) : �0kl (x)

2: while es > etol do
3: �̂ imn (��� )  FFT(� imn (x))
4: Check convergence
5: ��̂i+1kl (��� )  �̂klmn (��� ) : �̂ imn (��� )

6: Update strain: �̂i+1kl (��� )  �̂ikl (��� ) � ��̂i+1kl (��� )

7: �i+1kl (x)  IFFT(�̂i+1kl (��� ))

8: Update stress: � i+1mn (x)  Cmnkl (x) : �i+1kl (x)

2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for

Algorithm 2 MSC Alternate Scheme
1: Initialize:

�0  E,
� 0
mn (x)  Cmnkl (x) : �0kl (x)

2: while es > etol do
3: for each grain j 2 G do
4: (�̂ imn (��� ))j  FFT((� imn (x))j )
5: Check convergence
6: Update strain: �(�̂i+1kl (��� ))j  �̂klmn (��� ) : (�̂ imn (��� ))j

7: �(�i+1kl (x))j  IFFT(�(�̂i+1kl (x))j )

8: Gather step: ��i+1kl  
P
j
�(�i+1kl )j

9: Update strain: �i+1kl (x)  �ikl (x) � ��i+1kl (x)
10: Update stress: � i+1mn (x)  Cmnkl (x) : �i+1kl (x)

various microstructures in a copper dataset. Table 2 shows error for
3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

Iter.
#

% error in stress % error in strain
323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.972 % 0.066 % 0.180 % 1.020 % 0.096 % 0.130 %

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation
to �elds in grain interior have been considered here, and the next
phase will carefully look at the grain boundary interactions, which
must happen at full resolution. Future work also includes a GPU
implementation that achieves savings in communication by trans-
mitting models for �elds in grains in place of full tensor �elds.
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forms lower rank tensors from higher rank tensors. This is done
by a sum over repeated indices after multiplication. Thus, Ci jkl :
Di j =
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Ci jklDi j = Ekl and yields a rank-2 tensor.

2.2 MSC-Basic Scheme
The pseudocode for this method is as given below. � (x) and � (x)
refer to the strain and stress tensor �elds at point x respectively.
Ci jkl (x) is the rank-4 sti�ness tensor. E is initial average strain.
�̂mnkl (��� ) is the Green’s operator in Fourier space at frequency
point ��� . The convergence error is es and tolerance error is etol .
��kl is the computed perturbation in component (k, l ) of the strain
tensor. Superscripts indicate iteration number. The iterative scheme
continues till convergence is reached. For more details, refer to [2].

Algorithm 1MSC Basic Scheme
1: Initialize:

�0  E,
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mn (x)  Cmnkl (x) : �0kl (x)

2: while es > etol do
3: �̂ imn (��� )  FFT(� imn (x))
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2.3 MSC-Alternate Scheme
In MSC-Alternate Scheme, each grain is processed independently
using a smaller FFT and the results are combined into the orig-
inal volume at the end of each iteration. A stress update step is
performed by contraction of the sti�ness tensor with the updated
strain �eld. In the next iteration, the updated stress �eld is again
decomposed into grains and distributed. GivenG grains in the com-
posite, let (� i (x))j be the stress in grain j 2 G. The pseudocode for
MSC-Alternate Scheme is given by Algorithm 2.

A MATLAB demo implementation computes error between the
outputs of the MSC-Basic Scheme and MSC-Alternate Scheme for

Algorithm 2 MSC Alternate Scheme
1: Initialize:

�0  E,
� 0
mn (x)  Cmnkl (x) : �0kl (x)

2: while es > etol do
3: for each grain j 2 G do
4: (�̂ imn (��� ))j  FFT((� imn (x))j )
5: Check convergence
6: Update strain: �(�̂i+1kl (��� ))j  �̂klmn (��� ) : (�̂ imn (��� ))j

7: �(�i+1kl (x))j  IFFT(�(�̂i+1kl (x))j )

8: Gather step: ��i+1kl  
P
j
�(�i+1kl )j

9: Update strain: �i+1kl (x)  �ikl (x) � ��i+1kl (x)
10: Update stress: � i+1mn (x)  Cmnkl (x) : �i+1kl (x)

various microstructures in a copper dataset. Table 2 shows error for
3 grid sizes, 323, 643 and 1283 for di�erent numbers of iterations.
We conclude that output MSC-Alternate Scheme is in excellent
agreement with that of MSC-Basic Scheme.

Iter.
#

% error in stress % error in strain
323 643 1283 323 643 1283

1 0.013 % 0.004 % 0.002% 0.012 % 0.003 % 0.003 %
5 0.972 % 0.066 % 0.180 % 1.020 % 0.096 % 0.130 %

Table 2: Error in full �eld in MSC-Alternate Scheme for dif-
ferent grids, copper microstructure

2.4 Reduced Communication
An important observation is that the stress and strain �elds in the
grain interior are smooth but undergo more variation at the grain
boundaries. Hence, a model can be �t to the �elds in the grain
interior while leaving the �elds at the boundary uncompressed as
approximations at the boundary lead to large errors. Due to lack of
space however, modeling results are not described here.

3 CONCLUSIONS
This work demonstrates an alternate scheme designed to reduce
memory requirements of MSC-Basic Scheme. Instead of one large
3-D FFT, we perform smaller FFTs in parallel on each of the grains
of the composite. Our preliminary results show that the accuracy
of stress and strain is not signi�cantly a�ected by using MSC-
Alternate Scheme instead of MSC-Basic Scheme. Approximation
to �elds in grain interior have been considered here, and the next
phase will carefully look at the grain boundary interactions, which
must happen at full resolution. Future work also includes a GPU
implementation that achieves savings in communication by trans-
mitting models for �elds in grains in place of full tensor �elds.
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Algorithm innovations such as compression or sampling reduce
communication and memory requirements, but it is highly di�-
cult to optimize these operations across various heterogeneous
platforms during implementation. The widely-used FFTW inter-
face [5] is not able to express some of these special pruning and
sampling patterns and hence the user cannot leverage the highly
optimized FFTW library for parallel computations. We develop new
descriptors for multi-resolution sampling and suggest their use
with suitable APIs for a user-friendly approach to implementing
this method. We use the example of a new API, FFTX [3], still in
early stages of development, to show that there is potential for de-
velopment of such extensions which can help e�ciently implement
domain decomposition algorithms on heterogeneous environments.

Thus, our contributions in this paper are:

• proposing an octree-based multi-resolution sampling strat-
egy for domain-local convolution results
• developing amulti-resolution accumulation algorithm across
the domains, which are processed individually on GPUs
• suggesting methods for high performance implementation
of the algorithm speci�cations using a user-friendly API.

The paper is organized as follows. The background section de-
scribes the original MASSIF simulation and discuss challenges in
scalability for existing Fortran code, followed by some background
on FFTX. Then, we describe our proposed domain decomposition
method which adapts MASSIF for implementation on GPUs. In par-
ticular, we focus on domain-local FFTs and sampling techniques to
store and accumulate the result in each iteration. The results section
contains �rst order performance models in three heterogeneous
environments: a large memory node, a node in the NVIDIA DGX2
workstation, and a node on the Summit supercomcputer (ORNL).
We also discuss use of APIs like FFTX and suggest extensions which
will allow the processing of irregular domains.

2 BACKGROUND
2.1 MASSIF Simulation
The Micromechanical Analysis of Stress-Strain Inhomogeneities
with Fourier transforms (MASSIF) is an FFT-based stress-strain
simulation method for composites [12], [11], [10], [16]. The method
discretizes amicrostructure (arrangement of grains in the composite
material, as seen in Fig. 1) on a regular three dimensional (3D) grid,
and a partial di�erential equation (PDE) with periodic boundary
conditions is formulated using the stress-strain constitutive relation
and equilibrium conditions. FFTs are used for solving the PDE
iteratively using the method of Green’s functions. FFTs are used to
perform convolutions with the Green’s function operator, which is
a rank-4 tensor at each grid point. Convolution in each iteration
requires computation of 3D FFTs of tensor �elds, thus requiring
extensive storage.

The pseudocode for MASSIF kernel is as given below. Strain and
stress �elds are rank-2 tensors at 3-D grid point x , and are denoted
by � (x) and � (x) respectively. Cmnk` (x) is the rank-4 sti�ness ten-
sor at x. E is initial average strain. The Green’s operator in Fourier
space at frequency point ��� is �̂mnk` (��� ). The convergence error is
es and tolerance error is etol. ��k` is the computed perturbation in
component (k, `) of the strain tensor. Superscripts indicate iteration

Figure 3 uses the finite element mesh as a means to view the ff-HEDM dataset. In
this case, each element in the mesh is assigned a unique ff-HEDM grain, and multiple
elements are assembled to represent the grains. The grains are then a voxellated repre-
sentation of the actual grain, where in this case no distortion has been introduced to
smooth the grain boundaries. The color of each grain represents the Grain ID field in
the ff-HEDM data. Since only the ff-HEDM data are used in this representation, the
exact morphology of the grains is not available as the element-to-grain assignment is
similar to a 3D Voronoi representation of the grain structure, differing due to the vox-
ellated nature of the elements. As the mesh density trends to infinity, the representa-
tion would converge toward an exact Voronoi representation.
Figure 4 uses the same finite element mesh to show the 69 grains used to align the

nf-HEDM data with the ff-HEDM data. In this case, the morphology of the grains is

Fig. 3 The ff-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number

Fig. 4 The nf-HEDM data viewed on the accompanying finite element mesh. Color represents a grain
identification number
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Figure 1: Illustration a possible composite microstructure,
composed of individual grains.

Boundaries	are	critical	
regions		of		interest

Figure 2: Single component of stress �eld tensor in a sample
composite microstructure simulated using MASSIF. The im-
age shows behavior of stress at the grain boundary between
3 grains, which is a region of interest.

number. The iterative scheme continues till convergence is reached.
This is a single time step simulation.

Algorithm 1 MASSIF Inner loop
1: Initialize:

�

0  E, �

0
mn (x)  Cmnk` (x) : �0k` (x)

2: while es > etol do
3: �̂

(i )
mn (��� )  FFT(� (i )

mn (x))
4: Check convergence
5: ��̂ (i+1)k` (��� )  �̂k`mn (��� ) : �̂

(i )
mn (��� )

6: Update strain: �̂ (i+1)k` (��� )  �̂

(i )
k` (��� ) � ��̂ (i+1)k` (��� )

7: �

(i+1)
k` (x)  iFFT(�̂ (i+1)k` (��� ))

8: Update stress: � (i+1)
mn (x)  Cmnk` (x) : �

(i+1)
k` (x)

In Algorithm 1, line 3 computes the FFT of the stress �eld. Next,
line 4 checks convergence in Fourier domain for computational
e�ciency as advised in [10]. Line 5 computes a Fourier domain
convolution and tensor contraction with the Green’s function oper-
ator. Fourier domain strain is updated on line 6. This is followed by
an inverse FFT on the updated strain �eld. Finally, line 8 updates
the stress in the entire volume as per the stress-strain constitutive
relation. The memory requirement of the serial code is as seen in
table 1. The maximum size simulated currently with MPI and FFTW
is 1, 024 ⇥ 1, 024 ⇥ 1, 024 with a memory requirement of more than
2TB, and for larger sizes, the memory required is prohibitively large.
Scaling and accelerating the MASSIF simulation has a wide range
of applications where micromechanical properties of polycrystals
are studied.

To reducememory requirements, our method, originally outlined
in [9] and outlined in ??, proposes domain decomposition such

2

sparse	samples

X	dimension	FFT Y dimension	FFT Z	dimension	FFT
(pencil-wise)

Z	dimension	iFFT
(pencil-wise)

Green’s		function	
pencil

Convolution
result	pencil

X	dimension	iFFTY dimension	iFFT

Decompose
into	

domains
Resides	in	main	

memory

Domain-local	FFT	&
Convolution	with	
Green’s	function

Dense	cube

zeros non-zeros	but	
decaying	field

Lighter	color	indicates	lower	
sample	density	region

Domain-local	FFT	&
Convolution	with	
Green’s	function

Dense	cube

Adaptive
sampling

(Lighter	color	indicates	lower	
sample	density	region)

Accumulation

Pipeline	of	
processing	each	
domain	in	one	
iteration	of	the	
GPU-adapted	
MASSIF	inner	
loop

zeros

non-zeros	
but	

decaying	
field

Domain-local	FFT	&
Convolution	with	
Green’s	function

Dense	cube

Adaptive
sampling

(Lighter	color	indicates	lower	
sample	density	region)

Accumulation

Pipeline	of	
processing	each	
domain	in	one	
iteration	of	the	
GPU-adapted	
MASSIF	inner	
loop

zeros

non-zeros	
but	

decaying	
field

Domain-local	FFT	&
Convolution	with	
Green’s	function

Dense	cube

Adaptive
sampling

(Lighter	color	indicates	lower	
sample	density	region)

Accumulation

Pipeline	of	
processing	each	
domain	in	one	
iteration	of	the	
GPU-adapted	
MASSIF	inner	
loop

zeros

non-zeros	
but	

decaying	
field

Accumulation	on	local	domain

+ ++

Adaptive
sampling

Proceed	to	
next	iteration

Pre-
determined
sampling	
criteria

Known	
domain
geometries

Properties	of	
Green’s	
function

Process	each	
separately

Exchange	samples
from	other	local
computation


