
Twiddle Factor Generation for a Vectorized Number
Theoretic Transform

Patrick Brinich∗ Naifeng Zhang† Austin Ebel‡ Franz Franchetti† and Jeremy Johnson∗
∗Drexel University {pjb338, johnsojr}@drexel.edu

†Carnegie Mellon University {naifengz, franzf}@cmu.edu
‡New York University abe5240@nyu.edu

I. INTRODUCTION

Implementations of Fast Fourier Transforms often precom-
pute some or all of the twiddle factors, trading space for
efficient reuse and stability. Similar trade-offs arise when
implementing Number Theoretic Transforms. We present an
approach for generating twiddle factors for vectorized Number
Theoretic Transforms using a small number of precomputed
twiddle factors.

Contributions. Our key contributions are:
• A matrix factorization representing a Korn-Lambiotte [1]

NTT with a formal description of its twiddle factors
alongside a mathematical formulation for generating said
twiddle factors from precomputed tables using O(

√
n)

space
• An implementation of the algorithm with twiddle factor

generation using the SPIRAL [2] system for specialized
hardware [3].

II. APPROACH

The Number Theoretic Transform (NTT) generalizes the
Discrete Fourier Transform by working over a ring with roots
of unity, such as the integers modulo a prime. Existing Fast
Fourier Transforms can be extended to accommodate this new
setting. In particular, the Korn-Lambiotte FFT is an efficient
algorithm for large vector machines [1]. This algorithm can be
generalized for a radix-r NTT of size n = rt parameterized
on an nth root of unity ω. Described as a matrix factorization
in the style of Van Loan [4],

NTTrt = Rrt ·
t∏

c=1

Lrt

rt−1 (NTTr ⊗ Irt−1)Drt,c, (1)

where Lrt

rt−1 denotes the perfect shuffle matrix and Rrt denotes
the rt-sized base-r digit-reversal permutation. The diagonal
matrix Drt,c holds the twiddle factors, which consist of
repeated blocks of digit-reversed powers of ω. More formally,

Drt,c =

r−1⊕
i=0

(Irc−1 ⊗Rrt−c Wirc−1

rt−c Rrt−c), (2)

with Ws = diag(1, ω, . . . , ωs−1).

This work is supported by the Defense Advanced Research Projects Agency
(DARPA) under contract HR0011-20-S0032. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the sponsors.

The digit-reversed structure of the twiddle factors has a nice
property for twiddle factor generation. For 1 ≤ c ≤ t and
0 ≤ d < c,

Rrt−c+d Wrc−d−1

rt−c+d Rrt−c+d =

Rrt−c Wrc−1

rt−c Rrt−c ⊗Rrd W
rc−1−d

rd Rrd
(3)

Consequently, twiddle factors from later stages (lower values
of c) can be generated from earlier stages, and twiddle factors
from earlier stages are contained within later stages.

For r = 2, the unique twiddle factors needed throughout
the algorithm are the first 2t−1 powers of ω. At stage c = 1,
the second half of the twiddle factors are these powers in
bit-reversed order. Earlier stages of c requires the first 2t−c

of these unique twiddle factors repeated 2c−1 times. Table I
shows this pattern for t = 5. In this example, the twiddle

Twiddle Factor c=1 c=2 c=3 c=4 c=5

0—15 1 1 1 1 1
16 ω0 ω0 ω0 ω0 ω0

17 ω8 ω8 ω8 ω8 ω0

18 ω4 ω4 ω4 ω0 ω0

19 ω12 ω12 ω12 ω8 ω0

20 ω2 ω2 ω0 ω0 ω0

21 ω10 ω10 ω8 ω8 ω0

22 ω6 ω6 ω4 ω0 ω0

23 ω14 ω14 ω12 ω8 ω0

24 ω1 ω0 ω0 ω0 ω0

25 ω9 ω8 ω8 ω8 ω0

26 ω5 ω4 ω4 ω0 ω0

27 ω13 ω12 ω12 ω8 ω0

28 ω3 ω2 ω0 ω0 ω0

29 ω11 ω10 ω8 ω8 ω0

30 ω7 ω6 ω4 ω0 ω0

31 ω15 ω14 ω12 ω8 ω0

TABLE I
TWIDDLE FACTORS FOR EACH STAGE c IN (1) FOR r = 2 AND t = 5.

factors for any stage can be generated from stage c = 3. For
later stages, this requires some additional factors. In particular,
to generate the twiddles for c = 1 requires a tensor product:

R216 W216 R216 =


ω0

ω8

ω4

ω12

⊗


ω0

ω2

ω1

ω3

 .



The twiddle factors for c = 2 require fewer additional factors,
but more repetition:

I2 ⊗R28 W28 R28 =


ω0

ω8

ω4

ω12

⊗


ω0

ω2

ω0

ω2

 .

For stages 4 and 5, no additional twiddle factors need to be
generated, they require only a repeated subsequence of unique
twiddle factors from c = 3.

To be able to generate any twiddle factors in the r = 2 case,
implementations of (1) must pick a stage c and precompute
two tables. The first table, the seed table, contains the diagonal
entries of R2t−c W2c−1

2t−c R2t−c , and the second table contains
the diagonal entries of R2c−1 W2c−1 R2c−1 . These tables re-
quire 2t−c + 2c−1 precomputed factors. Picking a c close to
⌈t/2⌉ thus requires only 2

√
n/2 factors.

For a large vector machine, generation of twiddle factors
occurs in stages after stage c and requires at most three vector
operations. First, a vector containing the necessary repeated
subsequence is loaded from the the first table. Another vector
is loaded similarly from the second table. Multiplying these
two vectors produces the required twiddle factor vector. Imple-
mentations for machines with shorter vectors may load a base
vector from the seed table and perform scalar multiplication
with a single entry from the second table.

III. RESULTS

We implemented the twiddle generation optimization tech-
nique in SPIRAL’s NTTX package, aiming to reduce the data
transfer between the main memory and the on-chip memory
for a fully homomorphic encryption (FHE) accelerator [3].
The NTTX package leverages SPIRAL’s capability to auto-
matically generates high-performance NTT code for various
algorithmic settings and hardware specifications. Listing 1
showcases SPIRAL-generated 4, 096-point radix-2 NTT code
with twiddle generation. We load the base vector (where the
seed table is stored) on line 5 and multiply it with another
seed vector to compute all needed twiddle factors on the fly
(e.g., line 21-22).

Real-world FHE applications require NTTs of size up to
217. For a 217-point NTT, using on-the-fly twiddle generation
reduces the the number of twiddle factors loaded from the
main memory from 131, 072 to 1, 152, which is less than 1%
of the previous data I/O.

IV. CONCLUSION

Using a mathematical treatment of the Korn-Lambiotte n-
point NTT algorithm and its twiddle factors, we provide an
approach to generating the twiddle factors troughout the algo-
rithm from a pair of tables requiring O(

√
n) space. Making

use of this approach, we discuss an implementation using
this approach for 4096-point and 217-point radix-2 NTTs on
an hardware accelerator, achieving reduced data I/O from a
previous implementation. We consider adapting this approach
to higher radix NTT implementations and implementations on
other hardware avenues for future work.

1 #include "b1.h"
2

3 void _ntt4096x1024_b1() {
4 enter(OP_DEFAULT);
5 _vload_1024x128i(REG_V64, REG_A3, 0);
6 _vbroadcast_1024x128i(REG_V1, REG_A3, 1, 1);
7 _vload_1024x128i(REG_V2, REG_A1, 32768);
8 _vload_1024x128i(REG_V3, REG_A1, 0);
9 _vbutterfly_1024x128i(REG_V4, REG_V5, REG_V1,

10 REG_V2, REG_V3, REG_M1);
11 _vunpacklo_1024x128i(REG_V6, REG_V4, REG_V5);
12 _vunpackhi_1024x128i(REG_V7, REG_V4, REG_V5);
13 _vbroadcast_1024x128i(REG_V8, REG_A3, 1, 1);
14 _vload_1024x128i(REG_V9, REG_A1, 49152);
15 _vload_1024x128i(REG_V10, REG_A1, 16384);
16 _vbutterfly_1024x128i(REG_V11, REG_V12, REG_V8,
17 REG_V9, REG_V10, REG_M1);
18 _vunpacklo_1024x128i(REG_V13, REG_V11, REG_V12);
19 _vunpackhi_1024x128i(REG_V14, REG_V11, REG_V12);
20 ...
21 _sload_128i(REG_S3, REG_A3, 16400);
22 _vsmulmod_1024x128i(REG_V8, REG_V64,
23 REG_S3, REG_M1);
24 _vload_1024x128i(REG_V9, REG_A1, 49152);
25 _vload_1024x128i(REG_V10, REG_A1, 32768);
26 _vbutterfly_1024x128i(REG_V12, REG_V11, REG_V8,
27 REG_V10, REG_V9, REG_M1);
28 _vunpacklo_1024x128i(REG_V13, REG_V12, REG_V11);
29 _vunpackhi_1024x128i(REG_V14, REG_V12, REG_V11);
30 _sload_128i(REG_S3, REG_A3, 16416);
31 _vsmulmod_1024x128i(REG_V15, REG_V64,
32 REG_S3, REG_M1);
33 _vbutterfly_1024x128i(REG_V17, REG_V16, REG_V15,
34 REG_V13, REG_V6, REG_M1);
35 _vstores_1024x128i(REG_A2, 0, REG_V17, 2);
36 _vstores_1024x128i(REG_A2, 16, REG_V16, 2);
37 _sload_128i(REG_S3, REG_A3, 16432);
38 _vsmulmod_1024x128i(REG_V18, REG_V64,
39 REG_S3, REG_M1);
40 _vbutterfly_1024x128i(REG_V20, REG_V19, REG_V18,
41 REG_V14, REG_V7, REG_M1);
42 _vstores_1024x128i(REG_A2, 32768, REG_V20, 2);
43 _vstores_1024x128i(REG_A2, 32784, REG_V19, 2);
44 leave(OP_DEFAULT);
45 }

Listing 1: SPIRAL-generated radix-2 4,096-point NTT code
with twiddle generation using intrinsics for a FHE accelerator.

REFERENCES

[1] D. G. Korn and J. J. Lambiotte, “Computing the fast fourier transform
on a vector computer,” Mathematics of computation, vol. 33, no. 147,
pp. 977–992, 1979.

[2] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato,
J. R. Johnson, M. Püschel, J. C. Hoe, and J. M. Moura, “Spiral: Extreme
performance portability,” Proceedings of the IEEE, vol. 106, no. 11,
pp. 1935–1968, 2018.

[3] N. Zhang, H. Gamil, P. Brinich, B. Reynwar, A. Al Badawi, N. Neda,
D. Soni, K. Canida, Y. Polyakov, P. Broderick, et al., “Towards full-stack
acceleration for fully homomorphic encryption,” IEEE HPEC, 2022.

[4] C. Van Loan, Computational Frameworks for the Fast Fourier Transform.
USA: Society for Industrial and Applied Mathematics, 1992.


	Introduction
	Approach
	Results
	Conclusion
	References

