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Abstract—Shor’s algorithm is widely renowned in the field
of quantum computing due to its potential to efficiently break
RSA encryption in polynomial time. In this paper, we optimized
an end-to-end library-based implementation of Shor’s algorithm
using the IBM Qiskit quantum library and derived a speed-of-
light (i.e., theoretical peak) performance model that calculates
the minimum runtime required for executing Shor’s algorithm
with input size N on a certain machine by counting the total
operations as a function of different numbers of gates. We
evaluated our model by running Shor’s algorithm on CPUs
and GPUs, and simulated the factorization of a number up to
4,757. Comparing the speed-of-light runtime to our real-world
measurement, we are able to quantify the margin for future
quantum library improvements.

Index Terms—Quantum computing, Shor’s algorithm, quan-
tum Fourier transform, performance analysis

I. INTRODUCTION

In recent years, significant advancements have been
achieved in the field of quantum computing. In 2022, IBM
launched the quantum computer Osprey which can hold 433
quantum bits (qubits), and plans to launch Condor in 2023,
the first universal quantum computer with more than 1,000
qubits [1]. With more powerful quantum computers, quantum
computing algorithms can be better studied and tested. Shor’s
algorithm [2] has been one of the most famous quantum
computing algorithms. It can factorize a semi-prime number N
(i.e., a natural number that is the product of two primes) with
L binary bits, where L = ⌈log2N⌉, in polynomial time. This
ability makes Shor’s algorithm potentially possible to break
the classical public-key cryptography scheme such as the RSA
scheme and elliptic curve cryptography (ECC) [3].

The most popular approaches to implementing Shor’s algo-
rithm use an extensive amount of quantum Fourier transforms
(QFTs), each requiring O(L2) gates. When the phase shift
of a rotation gate gets extremely small in the QFT circuit,
the effect of the rotation gate is negligible. Barenco et al. [4]
therefore proposed the approximate QFT algorithm that uses
few gates but still has comparable performance as the exact
QFT algorithm for better runtime performance. In particular
for Shor’s algorithm, Beauregard [5] introduced approximate
QFT as an optimization to reduce the circuit depth, where
we ignore the controlled-phase gates if the rotation angle
is smaller than a specified threshold. This optimization re-
duced the gates required for QFT from O(L2) to O(L logL).
Coppersmith [6] discussed the theoretical error introduced

regarding the specified threshold. Currently, to the best of our
knowledge, very few published work implements and studies
the performance and correctness influence of approximate
QFT on Shor’s algorithm.

Numerous platforms and software are now available to
implement quantum algorithms. Qiskit [7] is an open-source
development kit for working with quantum computers that
provides a user-friendly Python interface to build quantum
circuits, run experiments on local or remote simulators, and
connect to IBM’s quantum computers. Numerous publications
discussed the simulation of Shor’s algorithm using Qiskit but
few of them analyze the runtime performance of simulating
Shor’s algorithm on actual hardware. In this work, we first
implement Shor’s algorithm using approximate QFT in Qiskit
and then benchmark and analyze the performance of the
implementation of Shor’s algorithm on CPU and GPU, aiming
to quantify the headroom for future improvements.

Contributions. Our key contributions are:
• Firstly implementing in Qiskit and open-sourcing the

optimization to reduce the depth of the quantum circuit
using approximate QFT proposed by Beauregard.

• Empirically verifying the accuracy of the approximate
QFT-based implementation against the exact QFT-based
implementation.

• Deriving a speed-of-light model of the minimum runtime
required for Shor’s algorithm simulation in Qiskit. The
model is generalizable to different libraries and platforms.

• Benchmarking the runtime performance of Shor’s algo-
rithm simulation using Qiskit on both CPU and GPU
machines and comparing it with our speed-of-light model
to quantify the margin for future improvements.

II. BACKGROUND

A. Shor’s algorithm: Theory

Shor’s algorithm [2] is one of the most well-known quan-
tum computing algorithms for factorizing a semi-prime num-
ber. Classical algorithms have exponential complexity, while
Shor’s algorithm reduces the complexity to polynomial.

In Shor’s algorithm, we first pick a random base a between
2 and N − 1. If a and N are not co-prime, then we can find
our factor using Euclid’s algorithm. If a and N are co-prime,
we know that there exists a period r, such that

ar ≡ 1 mod N



That is, ar − 1 is a multiple of N . If the period r is even, we
have

ar − 1 = (a
r
2 − 1)(a

r
2 + 1)

as a multiple of N . Then, computing gcd(N, a
r
2 +1) may lead

to a non-trivial factor of N (i.e., not 1 or N ). If not, we rerun
the algorithm from the start. In this way, we turn the factoring
problem into an order-finding problem.

The quantum part of Shor’s algorithm solves the order-
finding problem by applying quantum phase estimation (QPE),
which we lay out in the mathematical details below. The
quantum circuit of Shor’s algorithm is shown in Fig. 1. We
define the unitary operator U as

U |y⟩ = |ay mod N⟩

In QPE, we use two quantum registers and initialize them
to |0⟩ and |ψ⟩. Then we apply the Hadamard gate to all qubits
in the upper register, as shown in stage 1 in Fig. 1, the state
then becomes

|ψ1⟩ =
1√
2t

2t−1∑
j=0

|j⟩ |ψ⟩

=
1√
2t
(|0⟩+ |1⟩)⊗t |ψ⟩ .

Suppose we have a unitary operator U such that

U |ψ⟩ = e2πi |ψ⟩ ,

applying controlled unitary operation as stage 2 in Fig. 1, the
state becomes

|ψ2⟩ =
1√
2t

t−1⊗
i=0

(|0⟩+ e2πiθ2
i

|1⟩) |ψ⟩

=
1√
2t

2t−1∑
k=0

e2πiθk |k⟩ |ψ⟩ .

Then by applying inverse QFT to the upper register, we have

|ψ3⟩ =
1

2t

2t−1∑
x=0

2t−1∑
k=0

e−
2πik
2t

(x−2tθ) |x⟩ |ψ⟩ .

If we measure the upper register, there will be peaks at
x = 2tθ. It is highly possible that we can obtain the phase
from the measured state.

For Shor’s algorithm, we further define the state |us⟩ as

|us⟩ =
1√
r

r−1∑
k=0

e−
2πisk

r |ak mod N⟩ ,

where r is the period that we are trying to find, and 0 ≤ s ≤
r − 1. It can be shown that

U |us⟩ = e
2πis

r |us⟩

and
1√
r

r−1∑
s=0

|us⟩ = |1⟩ .

Therefore, we can initialize the lower register to state |1⟩
and apply QPE. The measured state will have peaks at

x =
2ts

r
.

We then use the continued fraction algorithm to find the value
of r [8].

B. Shor’s algorithm: Implementation

One main difficulty in implementing Shor’s algorithm is
the implementation of modular exponentiation, which is the
unitary operator U we defined in the section above. Vedral
et al. [10] provided the quantum circuit construction for
elementary arithmetic operations like addition, modulo, and
modular exponentiation. Using Vederal’s quantum circuit, it
is possible to implement Shor’s algorithm using 7L qubits,
where L is the number of bits needed to represent the to-
be-factored number in binary form. This approach is known
as the VBE approach. Beauregard provided optimizations for
Vedral’s algorithm and reduced the number of qubits needed to
2L + 3. We studied Shor’s algorithm based on Beauregard’s
approach, which adapts 3 main optimizations based on the
VBE approach:

1) Using the QFT adder proposed by Draper [11] to elim-
inate the carry bits used in the adder gate of the VBE
approach.

2) Using semi-classical QFT, where the controlling qubit
is reused and the bits of the answer are measured
sequentially. This reduces the upper register to 1 qubit.

3) Using approximate QFT, where some controlled-phase
gates in QFT are ignored. This reduces the gates needed.

C. Qiskit

Qiskit is an open-source software development kit for work-
ing with quantum computers at the level of pulses, circuits, and
application modules. Qiskit provides Python API for users to
construct quantum circuits and specify parameters for quantum
simulators. Qiskit Aer, a C++ library, is an element of Qiskit
that provides high-performance quantum computing simulators
with realistic noise models. The entire pipeline shown in Fig. 2
demonstrates how a quantum circuit is converted from Python
API representation to a C quantum object (QObject) that can
be simulated in Qiskit Aer.

III. RELATED WORK

Numerous work has been developed using Qiskit and run
on quantum computers. DeCusatis et al. [12] implemented
Shor’s algorithm using Qiskit to factorize the number 15 with 4
qubits. They ran the circuit on an IBM Q System One quantum
computer and found that due to the effect of noise, it was
difficult to correctly interpret the result with 4 qubits. Skosana
et al. [13] provided a demonstration of Shor’s algorithm
for factorizing 21 with 5 qubits on multiple IBM quantum
processors. Rossi et al. [14] implemented a general quantum
circuit for Shor’s algorithm with approximations to reduce the
circuit depth and factorized up to 57 on an IBM quantum



Fig. 1: Quantum circuit of Shor’s algorithm, redrawn from [9]. QFT † stands for inverse QFT.

Fig. 2: Data pipeline of Qiskit. First, the user needs to build the quantum circuit (Stage 1) using Qiskit’s Python API (Stage
2). Internally, the circuit expressed via the API is stored as Qiskit instructions (Stage 3) that will be translated to a directed
acyclic graph (DAG) and eventually to an optimized quantum object (QObject) during the transpilation. The returned QObject
is initially compatible with Python (Stage 5) and will be changed to C-compatible to interact with Qiskit Aer (Stage 6), the
C++ simulator.

processor. They claimed that current quantum hardware has
limited connectivity and fidelity issues.

There are also various studies focused on simulating Shor’s
algorithm on a classical computer via different approaches.
Nam [15] studied Shor’s algorithm based on the VBE ap-
proach. The author implemented a non-unitary version to
reduce the qubits needed and studied the probability spectrum.
Larasati et al. [16] simulated the VBE approach using Qiskit,
they found Shor’s algorithm incorporating this approach can
be constructed but not simulated due to a significant amount
of lines of code in QASM, a quantum programming language.
Leao et al. [17] provided an implementation of Beauregard’s

paper using Qiskit, with the first two optimizations that we
listed in Section II. In this work, we extended their work
by further implementing the approximate QFT optimization.
Yamaguchi et al. [18] implemented and simulated Shor’s
algorithm on a distributed GPU cluster for N up to 511. They
used 3 different ADD gate implementations with 5L + 1 and
4L+2 qubits needed, respectively. The authors also estimated
the quantum resources needed for different implementations
to factorize a 2048-bit integer. Our work further evaluated the
runtime performance on different hardware and calculated the
headroom of improvements.



IV. APPROXIMATE QFT IMPLEMETATION

Beauregard [5] derived the optimized QFT implementation
based on Coppersmith’s theoretic work [6], which proposed a
threshold kmax that is defined as

kmax = O

(
log

L

ϵ

)
,

where ϵ is the error.
As an initial attempt, we empirically chose kmax = log2 n

and enforced this threshold in our implementation. The core
of our implementation is shown in Listing 1. To implement
approximate QFT, we apply the threshold kmax to the angle
of the controlled-phase gate (line 4) and prune the gates with
the parameter of an angle larger than the threshold. We open-
sourced our implementation on GitHub1.

1 while i>=0:
2 circuit.h(up_reg[i])
3 j=i-1
4 while j>=0 and (i-j)<=kmax:
5 if (np.pi)/(pow(2,(i-j))) > 0:
6 circuit.cp(
7 (np.pi)/(pow(2,(i-j))),
8 up_reg[i],
9 up_reg[j]

10 )
11 j=j-1
12 i=i-1

Listing 1: Approximate QFT implementation in Qiskit.

V. PERFORMANCE MODELING

We conducted the performance modeling and analysis on
the exact QFT implementation of Shor’s algorithm as it is
more widely adopted, while our performance model can be
easily generalized to different implementations, libraries, and
machines.

A. Simulation Limit

Using exact QFT, our simulated quantum circuit uses 2L+3
qubits. Thus, 22L+3 states need to be stored in the memory
while each state takes Ms bytes memory. As the C++ simula-
tion library, Qiskit Aer uses std::complex<double> to
store a single state, each state takes 16 bytes in memory. For
a number with L binary bits, the memory M needed is

22L+3Ms

10243
GB.

B. Speed-of-light Analysis for Runtime Performance

The theoretical runtime performance of each gate in simu-
lation is dominated by the number of floating point operations
of the computation. To determine the speed-of-light (i.e.,
theoretical peak) performance of Shor’s algorithm in Flop/s,
we analyzed the number of gates needed in the quantum circuit
and multiplied the number of each type of gates accordingly
with the floating point operations required by each gate. We
chose the CPhase Gate, CNOT Gate, H Gate, Phase Gate, X

TABLE I: Gate count for the quantum circuit using exact QFT.

Gate Type Number of Gates
CPhase 8L4 + 52L3 + 44L2

CNOT 24L3 + 32L2

H 16L3 + 24L2 + 10L
P 4L3 + 4L2 + 2L
X 2L2 + 2L

CSwap 2L2

total 8L4 + 96L3 + 114L2 + 14L

Gate, and CSwap Gate as the base gates. The number of gates
in the exact QFT quantum circuit is shown in Table I.

Our circuit has m = 2L + 3 qubits, and the length of
the state vector is 2m. For CNOT Gate, X Gate, and CSwap
Gate that only consist of permutation operations rather than
float computations, we ignore the overhead for these gates
in our speed-of-light estimation. For Hadamard Gate, the
transformation matrix size is 2×2, each transformation needs
4 floating point operations and there are 2m−1 transformations.
So the number of floating point operations per Hadamard Gate
is 2m+1. For the controlled-phase Gate, the transformation
matrix size is 4×4, each transformation needs 6 floating point
operations and there are 2m−2 transformations. Therefore the
number of floating point operations per Hadamard Gate is
3 × 2m−1. For Phase Gate, the transformation matrix size is
2 × 2, each transformation needs 6 floating point operations
and there are 2m−1 transformations. The number of floating
point operations per Hadamard Gate is 3× 2m.

We then define the normalized Flop/s of the implementation
as the total number of floating point operations in the circuit
divided by the actual runtime. This value can be compared to
the maximum Flop/s provided by the hardware as an indicator
of how effectively computational resources are being utilized.

VI. EXPERIMENTAL SETUP

We ran the experiments on Pittsburgh Supercomputing
Center’s Bridges-2 Extreme Memory (EM) CPU and GPU
machines for performance evaluation. The EM CPU machine
uses 4 Intel Xeon Platinum 8260M with 24 Cores each, with
a total of 160 Gflop/s. The GPU machine uses NVIDIA
Tesla V100-32GB SXM2 GPU, with 7.8 Tflop/s [19]. We
used Qiskit 0.23.1 and Qiskit Aer 0.12.0 with GPU support,
running in Python 3.10.9 environment. We chose the noise-free
simulators provided by Qiskit Aer.

To evaluate the correctness of the simulation, we ran 1,024
shots (i.e., runs) for each parameter set to get enough data
points to generate the probability spectrum. To evaluate the
runtime performance of Shor’s algorithm, we ran both 1,024-
shot and 1-shot experiments to explore the performance under
different settings.



(a) N = 15, a = 2, exact QFT (b) N = 111, a = 2, exact QFT

(c) N = 15, a = 2, approximate QFT (d) N = 111, a = 2, approximate QFT

Fig. 3: Possibility spectrum of Shor’s algorithm with different parameter settings.

VII. EVALUATION

A. Correctness Analysis

We evaluated the effectiveness of implementing Shor’s
algorithm using both exact and approximate QFT compared
to the ideal distribution. We ran each circuit with 1,024 shots,
the probability spectrum is shown in Fig. 3.

We define correctness as the percentage of shots that can
successfully find a factor. With N as the number we are trying
to factorize, a as the base, CE as the correctness for exact
QFT, and CA as the correctness for approximate correctness,
we calculate the relative difference of correctness as

|CE − CA|
CE

.

We define the speedup as the runtime of the approximate QFT-
based implementation over the runtime of the exact QFT-based
implementation. Table I shows the correctness and speedup
comparing the exact QFT implementation and the approximate
QFT implementation of various parameter combinations.

1https://github.com/sundewang233/shor algorithm simulation

Effective algorithms should have well-aligned peaks in the
probability spectrum. Fig. 3 shows that both approaches work
well in the simulation of factorizing 15 and 111. Table I
indicates that the approximate QFT approach provides the
desired speedup while the correctness of factorizing is not
significantly dropped.

B. Simulation Limit

In our experiments, the largest L we can reach is 13, which
requires a 29 qubits quantum circuit, and the memory needed
for the states is 8GB. As shown in Fig. 2, in Qiskit’s transpile
stage, the list of gate instructions is first translated into a
directed acyclic graph (DAG), and then the DAG is converted
to a Python QObject [20]. The reason that prevents us from
reaching a larger circuit is the edge number overflow in the
Rust petgraph library that is used to construct the DAG in
Qiskit.

C. Runtime Performance

We evaluated the runtime performance of Shor’s algorithm
using the exact QFT implementation. The number of gates is

https://github.com/sundewang233/shor_algorithm_simulation


TABLE II: Correctness and runtime comparison of Shor’s algorithm implementations using exact QFT and approximate QFT.

N a CE (%) CA (%) Relative Difference (%) Speedup
15 2 74.41 75.20 1.06 0.45
21 2 83.50 85.44 2.32 0.45
35 2 83.39 71.00 15.37 1.11

111 2 97.85 90.92 7.08 1.22
111 5 97.16 87.21 10.24 1.22
143 2 64.84 53.52 17.46 1.42
323 2 97.17 97.95 0.80 1.03
519 2 99.94 99.80 0.14 1.24
1147 2 68.26 61.23 10.30 1.30

dominated by the number of controlled-phase gates since we
use many QFT operators for modular exponentiation.

There are two main stages in Qiskit to run a quantum
circuit. The instructions are first transpiled into a QObject
(as described in Fig. 2), the QObject is then passed to
the pre-compiled Qiskit Aer C++ library that executes the
operations in the QObject. The transpilation is needed once
for multiple circuit runs. That is, if there are multiple shots
for factorization, this transpilation overhead will be amortized.

Fig. 4: Normalized Flop/s of single/multiple-shot Shor’s algo-
rithm implementation on CPU.

Fig. 4 and Fig. 5 show the normalized Flop/s with respect
to the size of the quantum circuit, we measured 3 types of
runtime performance, (i) the entire runtime for 1-shot, (ii)
the entire runtime for 1,024-shots, and (iii) runtime for 1-
shot execution in Qiskit Aer (i.e., after transpilation). For both
CPU and GPU, normalized Flop/s for 1,024 shots with the
transpilation time are higher than the normalized Flop/s for 1
shot, with or without the transpilation time. The reason is that
while Qiskit will perform finer-grained parallelization for 1-
shot implementation, Qiskit has a much better parallelization
strategy that maps multiple shots to different cores/threads
on CPU and GPU. Furthermore, for multiple shots, each
CPU core gets its own copy of the state vector, thereby
reducing data transfer during the computation. The fact that the
margin is larger on CPU than on GPU indicates on GPU the
parallelization across threads and blocks is not as optimized

Fig. 5: Normalized Flop/s single/multiple-shot Shor’s algo-
rithm implementation on GPU.

as the CPU implementation by Qiskit.
Moreover, the Flop/s on a single CPU machine can reach

up to about 1/3 of the maximum hardware Flop/s while the
Flop/s on a GPU machine is only about 1/70 of the GPU
Flop/s, which also indicates that there is more headroom on
GPU than CPU for the community to optimize based on the
current Qiskit implementation.

VIII. CONCLUSION

In this paper, we implemented and simulated Shor’s al-
gorithm in Qikit using both the exact QFT-based and the
approximate QFT-based approach. The experiments revealed
that the bottleneck of the current simulation limit comes from
the DAG building stage in Qiskit transpilation. Moreover,
we defined a speed-of-light runtime performance model that
calculates the minimum runtime required for executing Shor’s
algorithm with input size N on a given platform. We evaluated
the runtime performance of Shor’s algorithm implementations
on CPU and GPU using normalized Flop/s and compared them
with the speed-of-light estimation to quantify headroom for
further improvements. Our study suggests that future work can
focus on a new method to construct the QObject to reach a
higher simulation limit or optimizing the runtime performance
on GPU devices.
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