

Het Mankad^{*}, Sanil Rao^{*}, Phillip Colella[†], Brian Van Straalen[†], Franz Franchetti^{*} * Carnegie Mellon University, [†] Lawrence Berkeley National Laboratory

Problem

Stencil Operations: A key component in numerical solutions to partial differential equations (PDEs).

Proto: It is a domain specific library written in C++ that provides a high level of abstraction for solving PDEs using various numerical methods.

- Shortcoming: Abstraction fusion is something no compiler can easily perform.
- **Our Goal:** To interpret Proto as a Domain Specific Language with the help of SPIRAL [1],[2] and obtain better performance.

SPIRAL

This project is funded by the DOE Office of Advanced Scientific Computing Research the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

where ρ is the given function, ϕ is what we are solving for and Δ is

Poisson2

Laplace2 Jacobi

ProtoX: A First Look

Proto Design layout and class structure in Proto Point All points in \mathbb{Z}^D Box Denotes rectangular subsets of \mathbb{Z}^D Represents multidimensional data array BoxData forall Pointwise operation on BoxData Solution of the PDF

ProtoX

- 2D Poisson Equation is given as
 - $\Delta\phi(x,y) = \rho(x,y), \quad x,y \in \Omega := [0,1] \times [0,1],$

the Laplace operator.

• The Jacobi iteration method is used to solved the Poisson equation. • The SPL breakdown rules in SPIRAL to compute the Poisson problem with $n \times n$ domain and $m \times m$ interior elements are

$$\begin{aligned} \mathbf{D}_{n,m,t}^{\ell,w,a} &\to \begin{bmatrix} \mathrm{Jacobi}_{n,m,w,l} \\ \|.\|_{\infty}^{n,m,u} \end{bmatrix} \circ \left(\begin{bmatrix} \mathrm{I}_{n^2} \\ \mathrm{Laplace2D} \end{bmatrix} \oplus \mathrm{I}_{n^2} \right), \\ \mathbf{D}_{n,m,t} &\to \mathrm{Scatter}_{n^2 \times m^2} \circ [\mathrm{Filt}(t)]_{i=0}^{m^2}, \\ n,m,w,l &\to (1,w,-\lambda) \otimes \mathrm{I}_{n^2}, \\ \|_{\infty}^{n,m,a} &\to (0,1/(a^2),-1) \otimes \mathrm{I}_{n^2}. \end{aligned}$$

ProtoX: Sample Code

Sample of SPIRAL generated code for the 2D Poisson problem

```
double a_h1, double *retval1) {
 static double T1[4357];
static double T2[13068];
static double T3[8452];
 . . .
 // Computing the Laplacian
 for(int i13 = 0; i13 <= 4095; i13++) {</pre>
     int a691;
    a691 = ((66*(i13 / 64)) + (i13 \% 64));
. . .
// Jacobi Iteration
for(int i6 = 0; i6 <= 4355; i6++) {
    T1[i6] = ((T8[i6] + (weight1*T8[(i6 + 4356)])))
           - (lambda1*T8[(i6 + 8712)]));
 // Computing || ||_{inf}
 for(int i10 = 0; i10 <= 4355; i10++) {</pre>
             - T15[(i10 + 8712)]);
for(int i2 = 0; i2 <= 4355; i2++) {
    t3 = ((((T13[i2] >= t3))) ? (T13[i2]) : (t3));
```

Speedup : ProtoX gives 6x speedup on CPU over the baseline Proto code.

Conclusion & Future Work

- backend for Proto is shown.
- SPIRAL specification.

void poisson2D(double *Y, double *X, double weight1, double lambda1, double *rhs,

T2[(a691 + 4423)] = ((T3[(a691 + 1)] - (4.0*T3[(a691 + 67)]))+ T3[(a691 + 66)] + T3[(a691 + 68)]+ T3[(a691 + 133)]); T14[i10] = fabs(((1 / (a_h1*a_h1))*T15[(i10 + 4356)])

• A proof of concept of having SPIRAL generated code as the

• We can interpret Proto as a DSL by writing a Proto program as a

• The future goal is to add more targets and make ProtoX

interoperable with FFTX [3] to do cross library optimization.

References

- [1] M. Puschel et al., "SPIRAL: Code Generation for DSP Transforms," in Proceedings
- [2] Franchetti et al., "Formal Loop merging for signal transforms", in Proceedings of
- [3] F. Franchetti et al., "FFTX and SpectralPack: A First Look," 2018 IEEE 25th International Conference on High Performance Computing Workshops, 2018, pp. 18-27

of the IEEE, vol. 93, no. 2, pp. 232-275, Feb. 2005. ACM SIGPLAN, 40, 6, pp. 315-326, June 2005.