
ProtoX: A First Look
Het Mankad∗, Sanil Rao∗, Phillip Colella†, Brian Van Straalen†, Franz Franchetti∗

∗Electrical and Computer Engineering Department Carnegie Mellon University, Pittsburgh, PA, USA
†Lawrence Berekely National Laboratory, Berkeley, CA, USA

∗{hmankad, sanilr, franzf}@andrew.cmu.edu, †{bvstraalen, pcolella}@lbl.gov

Abstract—We present a first look at ProtoX, a code generation
framework for stencil operation that occurs in the numerical
solution of partial differential equations. ProtoX is derived from
Proto, a C++ based domain specific library which optimizes the
algorithms used to compute the numerical solution of partial
differential equations and SPIRAL, a code generation system
that focuses on generating highly optimized target code. We
demonstrate the construction of ProtoX by considering the 2D
Poisson equation as a model problem and using the Jacobi
method to solve it. Some of the code generated for this problem
specification is shown along with initial speedup result.

Index Terms—partial differential equations, stencil operations,
code generation, Proto, SPIRAL

I. INTRODUCTION

There is a myriad of application areas in the field of
scientific computing and engineering where numerical solu-
tions to partial differential equations (PDEs) are required to
be computed. Numerical methods like the finite difference
method (FDM), finite element method (FEM), finite volume
method (FVM) and multigrid method are used to approximate
the solutions to these PDEs. A key component of these
algorithms is the stencil operation. Typically these numerical
algorithms are iterative in nature resulting in performing the
stencil operations multiple times. As such developers turn to
libraries that provide stencil operations for them. One such
library is Proto. It is a domain specific library written in
C++ that provides a high level of abstraction for solving
various PDEs using some of the aforementioned numerical
methods. Proto’s abstraction enables ease of programmability,
but has drawbacks when it comes to performance. Many of
Protos’ abstractions can be fused and optimized together,
resulting in better performance. However, abstraction fusion
is something no compiler can easily perform. This results
in additional burden on the library developers to manually
introduce these optimizations. To enable abstraction fusion in
Proto, we propose ProtoX, which is a C++ library based on
Proto and runs a code generation system SPIRAL [1], [2] in
the backend. The concept of using SPIRAL in the backend and
a C/C++ based library in the front has shown positive results
in the past [3], [4]. Some of the related works in the area
of optimizing stencil computation with either automatic code
generation or by optimizing data movement involved while
performing stencil operation can be found in [5]–[8].

This project is funded by the DOE Office of Advanced Scientific Computing
Research the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

Contribution. Some of the main contributions of this work
are: 1) A proof of concept of hooking SPIRAL code generation
as backend into Proto is presented. 2) A Proto example is
considered as a SPIRAL specification and a full program
optimization including single kernel code gen and merged
kernels across C++ functions are discussed for that example.
3) This work is a first look of ProtoX, so just basic block code
generation is presented at this point.

II. BACKGROUND

Proto. Proto is a C++ library designed to provide an
intuitive interface that optimizes the designing and scheduling
of an algorithm aimed at solving various PDEs numerically.
In order to approximate the solution of a PDE, the domain
is usually divided into either structured or non-structured grid
of rectangles and the equations are discretized using methods
like FDM, FEM or FVM. Currently, Proto takes into account
a multidimensional rectangular, structured grid with periodic
boundary condition for all model problems. There are four
main C++ classes that implement a representation of the spatial
rectangular grids. The Point class represents all the points
in ZD. Box denotes the rectangular subsets of ZD while
BoxData class represents the multidimensional data arrays.
Another important class in Proto is the Stencil class which is
where stencils are defined as self-contained objects. In order to
apply the stencils or any other function in a pointwise manner,
Proto uses the forall function. It takes in as an argument the
function which is to be applied in a pointwise manner and the
corresponding BoxData used for it.

SPIRAL. SPIRAL is a GAP based code generation system
that was initially developed to automatically generate opti-
mized C/C++ programs for linear transforms like the discrete
Fourier Transform (DFT), discrete cosine transform and many
more [1], [2]. SPIRAL uses the Signal Processing Language
(SPL) to develop algorithms for these signal processing
transforms. SPL is a declarative mathematical language that
expresses linear transforms as matrix-vector product. Here,
the matrix is considered to be an operator with one input and
one output vector. Operator Language (OL) is a superset of
SPL and is the result of the ongoing efforts to expand the
scope of SPIRAL beyond signal processing transforms [9].
One of the main difference between SPL and OL is that in
OL the operators can have multiple input and output vectors.
The mathematical operations described in OL are then placed
into a rewrite system which in the end generates an optimized
code for the problem specification.

1 // Defining the 5-pt Laplacian stencil
2 Stencil<double> laplace = Stencil<double>::Laplacian();
3 for (int iter = 0; iter < maxiter; iter++){
4 ...
5 // Solve for all boxes with each Box of size 64x64
6 for (auto dit=phi.begin();*dit != dit.end();++dit){
7 BoxData<double>& phiPatch = phi[*dit];
8 BoxData<double>& rhoPatch = rho[*dit];
9

10 // Compute the Laplacian
11 BoxData<double> temp = laplace(phiPatch,wgt);
12

13 // Jacobi iteration
14 forallInPlace(jacobiUpdate,phiPatch,temp,
15 rhoPatch,lambda);
16 }
17 // Computing || ||_{inf}
18 double resmax=computeMaxResidualAcrossProcs(phi,
19 rho,dx);
20 }

Fig. 1: Sample Proto code for the 2D Poisson problem

III. PROTOX

In this section we will describe the structure of ProtoX. The
idea is to interpret Proto as a Domain Specific Language (DSL)
with the help of SPIRAL. This is done by first interpreting a
Proto program as a mathematical specification and then map
the Proto program specification to an OL expression. This will
help generate a highly optimized C++ code. We will explain
these ideas with respect to a 2D Poisson equation.

2D Poisson equation. The Poisson equation is given as,

∆ϕ(x, y) = ρ(x, y), x, y ∈ Ω := [0, 1]× [0, 1], (1)

where ρ is a given function and ϕ is what we are solving
for. ∆ is the Laplace operator. We use the 5-pt stencil as a
second order finite difference approximation of the Laplacian.
The Jacobi iteration method is implemented here to find the
solution of (1). The three main steps involved in this algorithm
are Step 1: Applying the 5-pt stencil to the given initial
guess for ϕ. Step 2: Approximate the new value for ϕ using
the Jacobi iteration method. Step 3: Check the convergence
criterion. In Proto each of these steps correspond to a C++
function call.

In order to test the initial prototype of ProtoX, two ap-
proaches are taken to generate the code for the algorithm
mentioned above. The first approach is to generate the code in
SPIRAL corresponding to each of the function calls in Proto
separately. The second approach involves merging all three
steps of the algorithm into a single step computation. This is
one of the main advantages of using SPIRAL as the backend
for ProtoX.

The SPL breakdown rules in SPIRAL for computing n×n
2D Poisson equation with m×m interior elements are

Poisson2Dℓ,w,a
n,m,t →

[
Jacobin,m,w,l

∥.∥n,m,a
∞

]
◦
([

In2

Laplace2D

]
⊕ In2

)
,

(2)

Laplace2Dn,m,t → Scattern2×m2 ◦ [Filt(t)]m
2

i=0, (3)
Jacobin,m,w,l → (1, w,−λ)⊗ In2 , (4)

∥.∥n,m,a
∞ → (0, 1/(a2),−1)⊗ In2 . (5)

Here t denotes the filter taps corresponding to the 5-pt stencil.
ℓ, w and , a are scalar parameters used for the Jacobi iteration
and the Laplacian. The symbol [] denotes vertical stacking,
[]m

2

i=0 is iterative vertical stacking and Scattern2×m2 denotes
the scatter matrix [7] in SPIRAL. A sample of the code gen
is shown in Fig. 2.

Speedup. The current CPU runtime taken by the baseline
Proto code (see Fig. 1) for 100 Jacobi iterations is about ≈
2.5s while it takes ≈ 0.4s for the corresponding SPIRAL
generated code for ProtoX. This gives ProtoX 6× speedup
over Proto.

1 void poisson2D(double *Y, double *X, double weight1,
2 double lambda1, double *rhs, double a_h1, double *retval1){
3 static double T1[4357];
4 static double T2[13068];
5 static double T3[8712];
6 ...
7 // Computing the Laplacian
8 for(int i13 = 0; i13 <= 4095; i13++) {
9 int a691;

10 a691 = ((66*(i13 / 64)) + (i13 % 64));
11 T2[(a691 + 4356)] = ((T3[(a691 + 1)]
12 - (4.0*T3[(a691 + 67)]))+ T3[(a691 + 66)]
13 + T3[(a691 + 68)] + T3[(a691 + 133)]);
14 }
15 ...
16 // Jacobi iteration
17 for(int i6 = 0; i6 <= 4355; i6++) {
18 T1[i6] = ((T8[i6] + (weight1*T8[(i6 + 4356)]))
19 - (lambda1*T8[(i6 + 8712)]));
20 }
21 ...
22 // Computing || ||_{inf}
23 for(int i10 = 0; i10 <= 4355; i10++) {
24 T14[i10] = (((1 / (a_h1*a_h1))*T15[(i10 + 4356)])
25 - T15[(i10 + 8712)]);
26 }
27 ...
28 for(int i2 = 0; i2 <= 4095; i2++) {
29 t3 = ((((T13[i2] >= t3))) ? (T13[i2]) : (t3));
30 }
31 ...
32 }

Fig. 2: SPIRAL generated code for the merged 2D Poisson
equation for a Box of size 64× 64

IV. CONCLUSION

This work demonstrates a proof of concept of having
SPIRAL code generation as a backend to Proto using the 2D
Poisson problem. It shows that by writing a Proto program as
a SPIRAL specification, we can interpret Proto as a DSL and
powerful code generation is possible. This work is an early
prototype, so only CPU results have been shown. The future
goal is to add more targets and make ProtoX interoperable
with FFTX [3] to do cross library optimization.

REFERENCES

[1] M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. Johnson, and
N. Rizzolo, “Spiral: Code generation for dsp transforms,” Proceedings of
the IEEE, vol. 93, no. 2, pp. 232–275, 2005.

[2] F. Franchetti, Y. Voronenko, and M. Püschel, “Formal loop merging for
signal transforms,” SIGPLAN Not., vol. 40, no. 6, p. 315–326, jun 2005.

[3] F. Franchetti, D. G. Spampinato, A. Kulkarni, D. Thom Popovici, T. M.
Low, M. Franusich, A. Canning, P. McCorquodale, B. V. Straalen, and
P. Colella, “Fftx and spectralpack: A first look,” in 2018 IEEE 25th
International Conference on High Performance Computing Workshops
(HiPCW), 2018, pp. 18–27.

[4] S. Rao, A. Kutuluru, P. Brouwer, S. McMillan, and F. Franchetti, “Gbtlx:
A first look,” in 2020 IEEE High Performance Extreme Computing
Conference (HPEC), 2020, pp. 1–7.

[5] B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch, and C. Dubach,
“High performance stencil code generation with lift,” ser. CGO 2018.
New York, NY, USA: Association for Computing Machinery, 2018, p.
100–112.

[6] T. Brandvik and G. Pullan, “Sblock: A framework for efficient stencil-
based pde solvers on multi-core platforms,” in 2010 10th IEEE Interna-
tional Conference on Computer and Information Technology, 2010, pp.
1181–1188.

[7] M. Bolten, F. Franchetti, P. H. J. Kelly, C. Lengauer, and M. Mohr,
“Algebraic description and automatic generation of multigrid methods in
spiral,” Concurrency and Computation: Practice and Experience, vol. 29,
no. 17, p. e4105, 2017, e4105 cpe.4105.

[8] P. Basu, M. Hall, S. Williams, B. Van Straalen, L. Oliker, and P. Colella,
“Compiler-directed transformation for higher-order stencils,” in 2015
IEEE International Parallel and Distributed Processing Symposium,
2015, pp. 313–323.

[9] F. Franchetti, F. de Mesmay, D. McFarlin, and M. Püschel, “Operator
language: A program generation framework for fast kernels,” in Domain-
Specific Languages, W. M. Taha, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 385–409.

