
Automatic Generation of Matrix-Vector Code Using
SPIRAL for the Power10 ISA

James Nguyen∗, Sanil Rao∗, Jose Moreira†, Franz Franchetti∗
∗Electrical and Computer Engineering, Carnegie Mellon University

†IBM
jnnguyen, sanilr, franzf@andrew.cmu.edu

jmoreira@us.ibm.com

Abstract—We present SPIRAL-based automatic program gen-
eration utilizing Power10’s novel Matrix Multiply Assist (MMA)
instructions. These MMA instructions allow for acceleration
for matrix vector multiplication [2]. SPIRAL allows for the
generation of linear transform programs that take advantage
of these instructions to make it more efficient for developers to
update their linear transform libraries [1].

I. INTRODUCTION

Power10 is a novel instruction set architecture (ISA) devel-
oped by IBM that implements Matrix Multiply Assist (MMA)
instructions that allows for acceleration for matrix vector
multiplication operations [2]. Since this is a new instruction
set, there are very few applications that are developed in
order to utilize these new instructions, and the development
cost to update older applications to take advantage of MMA
instructions is high. Using SPIRAL, we are able to generate
code fragments that are able to take advantage of these
instructions for developers to utilize. The goal is to be able to
generate large scale optimized code with Power10 operations,
targeted towards high performance applications.

II. MATRIX MULTIPLY ASSIST INSTRUCTIONS

The MMA instructions are new outer product instructions
for the Power10 ISA. The hardware allocates special 128-
bit registers for these instructions. Current development in
SPIRAL only targets double precision 64-bit floating point
elements, so these vectors would each contain two 64-bit
elements. Each register holds one column vector, with the
number of elements dependent of the size of the element.
The outer product calculations are stored in accumulators,
which are software managed shadow of four consecutive
registers. In the context of 64-bit double precision floating
point numbers, this means that the accumulator is 4x2 sized
matrix. Currently, SPIRAL generates programs that utilize the
rank-64 update instructions. These instructions add the product
of two vector registers into the accumulator. An example of
such an operation is shown as:

A← A+X ∗ Y T (1)

Where X and Y are 2 element vectors containing 64-bit
double precision floating point numbers, and A is the 4x2
matrix of 64-bit double precision floating point numbers.

III. MATRIX-VECTOR ALGORITHM

The algorithm developed into SPIRAL, shown in figure 1,
breaks down matrix-vector products into a linear combination.
In the figure shown below, the input matrix, which is stored in
a accumulator, is multiplied with the input vector. The outer
product is computed with the column of the input matrix and a
element of the input vector. This step is done using the MMA
matrix-vector multiplication instruction. The result is then
added to the first column of the accumulator and is repeated for
the rest of the columns of the matrix. Once this is completed,
then the accumulator is disassembled and the output vector
is retrieved. By using the MMA instructions, we can take
advantage of the instruction level parallelism of the vector
instructions to do the outer products and addition in parallel.
Currently, SPIRAL generates basic algorithms that multiply
a constant value matrix with a input vector. Specifically, the
Walsh Hadamard Transform (WHT) and the discrete Fourier
Transform (DFT) are currently implemented for Power10 code
generation.

Fig. 1. Matrix-Vector Algorithm

IV. SPIRAL
SPIRAL is a program generation system targeting linear

transforms and other mathematical functions, such as discrete
Fourier Transforms (DFT) [1]. The objective of SPIRAL is to
automate the development of performance libraries, generating
architecture optimized code in a high level language such as
C. As shown in figure 2, a user of SPIRAL can request code
to be generated for certain linear transforms targeting specific
architectures. It will then generate compiler optimized code



snippets of the linear transform for these architectures. In the
case of Power10, our goal is to generate Power10 optimized
code, utilizing the ISA’s MMA instructions for certain linear
transforms.

V. CONCLUSION

This work demonstrates the potential of using SPIRAL to
generate linear transform programs that take advantage of
Power10’s novel MMA instructions. While only basic matrix
vector multiplication algorithms are implemented, such as the
WHT and the DFT, future work will involve more complex
algorithms that can recursively break down to 4x4 blocks
consisting of two accumulator blocks, such as the Fast Fourier
Transform.

Fig. 2. Breakdown of SPIRAL generated Power10 Code

REFERENCES

[1] F. Franchetti, M. Low, and M. Franusich, “SPIRAL Automating High
Quality Software Production Tutorial at HPEC 2019 Tutorial based
on joint work with the Spiral team at CMU, UIUC, and Drexel.”
[Online]. Available: https://users.ece.cmu.edu/∼franzf/papers/spiral-
tutorial2019.pdf

[2] J. Moreira, et al, ”A matrix math facility for Power ISA (TM) pro-
cessors”, arXiv preprint arXiv:2104.03142, 2021. [Online]. Available:
https://arxiv.org/abs/2104.03142


