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I. INTRODUCTION

Manifold learning is a type of dimensionality reduction
used in AI. It comes from the intuition that data live on an
underlying manifold. Manifolds represent curved space that
locally resembles Euclidean space. Understanding a manifold
gives you a better representation of the data allowing you to
perform better classification, clustering, and object detection
[1]. Typical methods find improved representations using PCA,
or other spectral methods [2].

Geodesics give a measure of distance on a manifold.
Geodesy is the mathematical discipline was initially developed
to study the Earth and now allows planes to take the shortest
path between two cities and for seismologists to triangulate
earthquakes Fig. 1. Geodesics are defined as any straight line
on a curved surface there can be multiple between two points.
Most algorithms finding geodesics search for the shortest
among these. Often the actual path is not needed and only the
geodesic distance is found. These methods run quickly and can
be used on large geometrical objects [3]. However, work on
point to point geodesic paths on curved manifolds focuses on
only diffeomorphisms of the sphere. In this work we present a
method for finding geodesic paths for more general manifolds.

Graph embedding gives a spacial representation to a
graph. This is useful for analytics or visualization [4]. Given
a graph of geodesic distances and a point cloud of data the
embedding needs to be performed on a manifold. A method to
perform this operation is the main contribution of this paper.

II. MANIFOLD AND GEODESIC APPROXIMATION

This method takes a point cloud of data and finds a
manifold representation and geodesic paths between any two
points. This is accomplished by fitting spheres to the surfaces
and finding geodesics through them.

The first step of the process shown in Fig. 2 is to fit
spheres to local sections of the data. Spheres are fit using a
closed form expression from [5]. To cover all the data in a
relatively smooth manner spheres are fit to each point then to
nearby clusters of points until the mean squared error (MSE)
exceeds a specific threshold.

With the manifold of spheres a local distance graph

(a) Curves on the Mercator projection

(b) Curves on the sphere

Fig. 1: Geodesic level curves on the Earth

can be constructed by computing the local geodesics on the
fit spheres. Each overlapping sphere translates to a fully
connected subgraph were each edge weight gives the dis-
tance between these data points. A first approximation of the
geodesic curve between two points can be found from the
shortest path on this graph.

The initial path is then better approximated by performing
a gradient descent at each connection point between spheres.
Similar to the midpoint method for straightening approxima-

(a) Spheres fit to local clusters (b) Initial geodesic

Fig. 2: Method for approximating manifolds and geodesics on
them.



tions [6]. Since the curves are computed analytically they can
be differentiated. At the connection points between spheres
the derivatives are taken and the difference of the tangents
gives the direction the connection point should move Equation
(1). P and c represent the path function and the connection
point at time t, respectively. This process smooths the geodesic
producing a curve close to the exact solution.

ct+1 = ct + (∇Pi −∇Pi+!) (1)

The algorithm is implemented in MATLAB. The local
curve equations on spheres are simplified by rotating the space
such that the curve lies on a two dimensional circle. The
equations are represented as MATLAB function handles. This
way curves can be differentiated using the diff() function.
The code is made more performant by utilizing the parallel
for loop parfor to compute multiple geodesic paths on
numerous CPU cores.

III. RESULTS

The method approximates the test manifold adequately
and gives reasonable geodesic curves and distances. Results
of the geodesic distances are shown in Fig. 3. This shows
the distance found from walking along the manifold from the
origin to all data points. The geodesic distances found form a
consistent norm as the triangle equity holds, since the shortest
path between two points the curve connecting them.

Graph embedding can be performed on the manifold
using the approximated geodesics. Geodesics can be found
using a form of gradient descent on the graph edges and
geodesic curves. The tangents of the piecewise curves give
an update rule for straightening them. Given a point cloud of
data and a graph of geodesic distances the same rotational
invariant positions can be found Fig. 4. Here the points in the
final embedding can be classified to identical colors as in the
ground truth. To accomplish this, first, the graph is embedded
in Euclidean space using a previously developed method [7].
From this, the points can be projected onto the manifold. Then
the points update their positions according to Equation (2).
Where pt and pt+1 are the previous and updated positions.
d and da are the ground truth distance and approximated
distance. P is the function of the path between points.

Fig. 3: Geodesic distance from the origin along the warped
ellipsoid

(a) Ground truth

(b) Embedding

Fig. 4: On manifold physics based graph embedding.

pt+1 = pt +

n∑
i=1

(da − d)∇P (2)

IV. CONCLUSION

Approximating manifolds with spheres gives a represen-
tation where geodesic curves can be computed. Computing
geodesics on patches of curved spaces gives a more general
approach than current work in the area. This allows for graph
embedding in non-Euclidean spaces which has potential uses
in various areas of AI. Future work will concentrate on fitting
more complex surfaces to local areas which will produce a
better approximation of manifolds with non-positive curvature.
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