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Abstract—Big data analysis is a difficult task because the
analysis is often memory intensive. Current solutions involve
iteratively streaming data chunks into the compute engine and re-
computing the analytical algorithm. To simplify this process, this
work proposes a new programming model called Magic Memory.
In this model, persistent invariants or functional dependencies
can be established between memory regions. These functional
dependencies will always be held true when this memory region
is being read. Recent technological advancements enable Magic
Memory at the hardware level, providing performance that is
hard to achieve with a software-only solution. Our ongoing work
seeks to explore an implementation of Magic Memory on a CPU-
FPGA system, where the CPU runs the host code while the FPGA
provides hardware acceleration. The CPU allocates memory on
the FPGA and declares an invariant for the FPGA to uphold on
this region of memory. We demonstrate how an application such
as PageRank can utilize Magic Memory to recalculate its output
as the input graph is modified automatically.

Index Terms—FPGA, Programming Model, Shared Memory

I. INTRODUCTION

Interactive data analysis is a difficult task given the amount
of expert insight and computing power that is necessary. This
process often begins with a domain expert exploring a wide
range of questions with the goal of gleaning specific insights.
An expert must formulate a question about the dataset, modify
the dataset, and perform the computation necessary to get
the desired result. This process is often repeated many times
which is slow and distracts from the expert’s main focus of
understanding the dataset [1]. Therefore, this paper introduces
Magic Memory, a programming model with an intuitive API
for data analysts which can leverage hardware accelerators
to reduce the computation time of complex data analytics
algorithms.

II. PROPOSED SOLUTION

Magic Memory is the idea that one can declare a persistent
relationship between regions of memory. When a write occurs
to the input memory region, the values in the output memory
region will be updated accordingly such that the relationship
is maintained. This mindset is similar to how one declares
formulas between cells in Excel. When any one input cell’s
value is changed, the dependent output cells will automatically
be updated with the new value. For example, in Magic
Memory, if the input memory region is a matrix, the output
memory region can be declared to hold the sum of each row of

the matrix. Whenever a write occurs to an element in the input
matrix, the sum of the row where that element resides will be
recalculated and the output vector will be updated. If a read to
a Magic Memory region occurs before the output is computed,
the response will be blocked until the computation is complete.
Figure 1 illustrates the data flow of a user interacting with
Magic Memory and Figure 2 shows a code snippet for this
program. Since Magic Memory can be accessed with read
or write instructions, users can utilize this model along with
state-of-the-art hardware acceleration with little change to the
original program.

Fig. 1. A user set up the output memory region to be a vector that calculates
the sum of each row in the input matrix. When the user updates the input
region with a new value, the output is automatically updated. An important
detail that can be seen here is that the Magic Memory regions may not be
stored in main memory.

This event-based programming model can be utilized on
CPU-FPGA systems as a simple way to interface with hard-
ware accelerators. On the CPU, a program can access Magic
Memory by reading and writing to a specific set of addresses
that are mapped to the FPGA. This invokes the hardware accel-
erator. The hardware accelerator then performs the appropriate
calculations and reads or writes the necessary addresses in
order to maintain the persistent relationship desired by the
program.

Implementation. As a proof of concept, this programming
model has been implemented on an Intel i7-10700 CPU



1 int magic_memory_add(){
2

3 int N = 5;
4

5 // A 0 terminated array
6 int input_dims[3] = {N, N, 0};
7 int output_dims[2] = {N, 0};
8

9 uint64_t* input = magic_mem_in_alloc(input_dims);
10

11 // Output configured to calculate the sum of
12 // the row
13 uint64_t* output =
14 magic_mem_out_alloc(output_dims);
15

16 // Update performed with simple array accesses
17 input[3] = 5;
18 input[4] = 6;
19

20 uint64_t row0_sum = output[0];
21

22 return row0_sum;
23 }

Fig. 2. A simple Magic Memory program to sum the rows of a matrix

running Linux with a Stratix 10 MX FPGA connected via PCIe
Gen 3. The inputs and outputs to Magic Memory are declared
by calling a Magic Memory malloc function. This function
returns an illegal address by taking advantage of the fact that
x86 virtual address space only uses 48 of the 64 available bits.
The extra 16 bits are then used to identify each Magic Memory
region that is allocated, with each region having 256TB of
addressable memory. This enables Magic Memory to support
a dense address space for very large graphs with millions of
nodes. Any attempt to read or write these regions will trigger
a segmentation fault and will invoke a custom segmentation
fault signal handler. This handler reads the 16 most significant
bits in order to identify which Magic Memory region is being
read. The handler goes on to decode the violating instruction
and extracts relevant information including - the memory
transaction type (read or write), the address being accessed,
and the register to store the result to (if read instruction). This
information is then written to a memory-mapped FIFO on the
FPGA.

The FPGA will also maintain storage of the input and output
Magic Memory regions. For instance, while the user may ac-
cess very large sparse matrices using dense notation, the FPGA
can store the matrix using any sparse representation. This
allows for programs to avoid the large amount of complexity
necessary for maintaining sparse data structures and the need
to modify the program to support various sparse formats. In
addition to handling how data is stored, this implementation
of Magic Memory uses a hardware accelerator to perform the
necessary computation to maintain the invariant. The FPGA
interprets requests to these memory regions by first identifying
the type of request and where to read or write the data.
On a read request, the FPGA responds with the appropriate
data from the corresponding location by writing to another
memory-mapped FIFO. If the CPU sends a read request to an
output region that is still being computed, then that request

will be blocked until the value is ready. On a write request,
the data is written to the appropriate location and then a check
is performed to see if the output must be recalculated. If so,
the compute kernel will be invoked, and the output will be
updated when the computation is complete. Finally, attempted
writes to the output region are ignored since the output region
is solely dependent upon the values in the input region.

III. RESULTS

Fig. 3. Using an efficient SpMV hardware on the FPGA, a breakdown for the
time to recalculate the PageRank of a graph after adding/removing a single
edge can be seen above.

Early implementations of PageRank [2] on FPGA allow for
using Magic Memory on some small graphs. By modeling the
results from more efficient sparse matrix-vector hardware on
FPGA like the one described in [3], the time to compute an
update to Magic Memory can be seen in Figure 3. From this,
it is clear that with future improvements to the shared memory
model between the CPU and FPGA, updates to these memory
regions could happen in the time that it would take to service
a TLB miss.

IV. FUTURE WORK

Magic Memory will provide users with a simple program-
ming model and an easier method for performing interactive
data analytics. The next step to realizing this will be to shorten
the design time required to program the FPGA.

Current limitations, such as the need to design custom
hardware accelerators, inhibit the fast adoption of this pro-
gramming model. We believe that future improvements to
the shared memory model as well as support for generalized
overlays will enable widespread adoption of Magic Memory
with performance comparable to state-of-the-art.
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