
Towards Full-Stack Acceleration for Fully
Homomorphic Encryption

Naifeng Zhang∗ Homer Gamil† Patrick Brinich‡ Benedict Reynwar§ Ahmad Al Badawi¶ Negar Neda†

Deepraj Soni† Kellie Canida§ Yuriy Polyakov¶ Patrick Broderick∥ Michail Maniatakos† Andrew G. Schmidt§

Mike Franusich∥ Jeremy Johnson‡ Brandon Reagen† David Bruce Cousins¶ and Franz Franchetti∗
∗Carnegie Mellon University {naifengz, franzf}@cmu.edu, ‡Drexel University {pjb338, johnsojr}@drexel.edu

†New York University {homer.g, nn2231, dss545, mm6446, bjr5}@nyu.edu
§USC Information Sciences Institute {breynwar, kcanida, aschmidt}@isi.edu
¶Duality Technologies {aalbadawi, ypolyakov, dcousins}@dualitytech.com

∥SpiralGen, Inc. {patrick.broderick, mike.franusich}@spiralgen.com

I. INTRODUCTION

Fully Homomorphic Encryption (FHE) [1] allows direct
computation on sensitive information through mathematical
transforms upon encrypted data. FHE uses lattice-based cryp-
tography to encode vectors of numerical data onto mathemat-
ical structures (lattices and rings), thereby enabling a set of
basic arithmetic operations to be performed while encrypted.
These operations can be combined for applications like pattern
matching, linear algebra, basic statistics and machine learning.

To encode and operate on different types of data, several
schemes have been proposed, including BGV [2], BFV [3],
and CKKS [4]. All these schemes are based on lattice cryp-
tography, requiring a core set of mathematical operations in
the form of integer modulo vector arithmetic.

Adoption of FHE requires high-performance implementa-
tion of these schemes including special-purpose hardware. A
major optimization for FHE schemes is using Number Theo-
retic Transform (NTT) to accelerate the computation of vector
convolutions, similar to the fast Fourier Transform (FFT) in
the signal processing domain. High-performance NTTs require
automatic code generation and autotuning similar to the FFT.
However, NTT performance on standard hardware is relatively
poor, and automating NTTs is not as well-studied. Thus, we
approach the problem by building an end-to-end accelerator
for FHE, with a focus on automatic NTT generation for
specialized hardware.

Contributions. Our key contributions are:

• Top layer. Generating PALISADE homomorphic encryp-
tion library.

• Code generator. Introducing NTTX: SPIRAL’s NTT li-
brary in the vein of FFTW/FFTX.

• Bottom layer. Introducing TILE: a special FHE hardware.
• Demonstrating that the 64K-point NTT generated by the

PALISADE-NTTX-TILE system results in 9.161us on
Palladium emulator.

This work is supported by the Defense Advanced Research Projects Agency
(DARPA) under contract HR0011-20-S0032. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the sponsors.

II. APPROACH

A. PALISADE

Several popular, high quality, open source libraries exist for
implementing systems based on FHE. SEAL from Microsoft
Research [5], HELib from IBM research [6] and PALISADE
[7] by multiple authors on this paper from Duality Technolo-
gies. We chose PALISADE to implement our work, as it sup-
ports all the mentioned schemes (along with multiple variants
to allow multiple parties to share and compute on data without
revealing it), is implemented in C++ and is heavily optimized
for vector operations, using residue arithmetic to reduce large
bitsize arithmetic into smaller conventional machine words.

The PALISADE library follows the Homomorphic Encryp-
tion Standard by meeting proper bit-security thresholds, given
via (semi-)automated parameters that can be set by the user to
control what security and performance they prefer to target.

B. TILE

Our accelerator implements a custom vector Instruction Set
Architecture (ISA) tailored to the needs of FHE. This was
done to meet the objective of a flexible design (i.e., not fixed
hardware) while delivering orders of magnitude of perfor-
mance better than GP-CPUs. The instruction set uses 512
length vectors and 128-bit native words. Long vectors are used
to amortize the overhead of programmable computing (e.g.,
instruction fetch and decode) and to decouple the architecture
from the microarchitecture, as vectors allow us to scale up or
down parallel resources to tradeoff area and performance. The
ISA has notable stateful structures for vector data, scalar data,
the vector Register File (RF), a modulus RF, and the address
RF. Instruction support is kept intentionally minimal, each is
added only if it is vital for functionality or performance. The
current ISA includes only 17 unique instructions, which range
in complexity from LOAD and ADD to BFLY and SHUFFLE.

The TILE microarchitecture is designed for high perfor-
mance and efficiency by decoupling all pipelines and keeping
non-compute logic simple, maximizing chip resources devoted
to the actual computation. The frontend of the machine consti-
tutes simple in-order logic and tracks dependent instructions



via dynamic register dependence detection. Instructions are
not issued to the backend until they are determined to be
independent. The backend consists of three unique pipelines:
compute, memory, and (register-register) shuffle. Since all
issued instructions are independent, the pipelines are free to
execute in parallel.

C. NTTX

We extended SPIRAL [8] to support NTT and batch NTTs.
Mirroring the structure of FFTW and FFTX, the NTTX
package offers FFTW-style C/C++ API in line with FFTX-
style code generation, powered by SPIRAL in the backend.
Illustrated by Fig. 1, NTTX API leverages SPIRAL’s capabil-
ity of delayed execution and just-in-time code generation to
implement an inspector/executor paradigm for PALISADE.

Fig. 1. Overview of the interaction between NTTX and PALISADE.

As shown in Listing 1, the NTTX package can be exported
as a C/C++ library with NTTX API for general usage.

// C/C++ NTTX API example: compute a singel NTT
#include "nttx.h"
nttx_plan *p;
p = nttx_plan_ntt(in, out, n, modulus, NTTX_FORWARD);
nttx_execute(p);
nttx_free(p);

Listing 1: NTTX C/C++ API.

To support general radix NTTs, large vector instructions
and simple parallelism in SPIRAL, we added both the Korn-
Lambiotte FFT algorithm [9] and the Pease FFT algorithm
[10] as breakdown rules to SPIRAL. Using SPIRAL’s Operator
Language (OL), NTTs of size rk are represented as

NTTrk = Rrk

r

(
k−1∏
i=0

Lrk

rk−1 D
rk

i (NTTr ⊗ Irk−1)

)
To execute the generated NTT code on TILE, NTTX allows

various data types for long vectors, provides different schemes
of register allocation (e.g., greedy, naive round robin), and has
the infrastructure for verification (e.g., functional simulator)
and low-level optimizations (e.g., instruction scheduler).

We generated forward and inverse vectorized radix-2 NTTs
with sizes from 1,024 to 65,536, and verified their correctness

with PALISADE data. Listing 2 shows the radix-2 1,024-point
NTT code generated by SPIRAL.

// SPIRAL generated NTT Code for TILE vector architecture
#include <tile.h>
void _ntt1024x512_b1() {

enter(OP_DEFAULT);
_vload_512x128i(REG_V60, REG_A1, 0);
_vload_512x128i(REG_V20, REG_A1, 8192);
_vbroadcast_512x128i(REG_V19, REG_A3, 1, 1);
_vimulmod_512x128i(REG_V59, REG_V20, REG_V19, REG_M1);
_vaddmod_512x128i(REG_V58, REG_V60, REG_V59, REG_M1);
_vsubmod_512x128i(REG_V57, REG_V60, REG_V59, REG_M1);
_vunpacklo_512x128i(REG_V56, REG_V58, REG_V57);
...
_vstores_512x128i(REG_A2, 16, REG_V21, 2);
leave(OP_DEFAULT);

}

Listing 2: SPIRAL-generated radix-2 1,024-point NTT code
using shuffle instructions.

III. RESULTS

We utilized Air Force Research Laboratory (AFRL)’s Palla-
dium emulation system to confirm performance of kernels and
operations running on the Ring Processing Unit (RPU). The
Palladium platform allowed the team to verify the functionality
and confirm our cycle accurate counts for each kernel across
the simulation and testing platforms. Emulated on Palladium
using 512-way vectors at 2 GHz, 128-bit scalar and vector
add/sub/mul takes 8 clock cyles (4ns) and the 64K-point
radix-2 128-bit NTT takes 18,322 clock cycles (9.161us).

IV. CONCLUSION

This paper provides a first look at the end-to-end FHE accel-
erator, which is optimized by PALISADE on the algorithmic
level, by NTTX from SPIRAL on the code generation level,
by TILE on the microarchitecture level. Our work exhibits the
necessary structure and components for an integrated end-to-
end system for FHE acceleration.

REFERENCES

[1] C. Gentry, A fully homomorphic encryption scheme. Stanford university,
2009.

[2] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[3] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, 2012.

[4] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in International conference
on the theory and application of cryptology and information security,
pp. 409–437, Springer, 2017.

[5] “Microsoft SEAL (release 4.0).” https://github.com/Microsoft/SEAL,
Mar. 2022. Microsoft Research, Redmond, WA.

[6] S. Halevi, “Helib (version 2.1.0),” 2021.
[7] P. team, “PALISADE Lattice Cryptography Library (release 1.11.6),”

2022.
[8] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato,

J. R. Johnson, M. Püschel, J. C. Hoe, and J. M. Moura, “Spiral: Extreme
performance portability,” Proceedings of the IEEE, vol. 106, no. 11,
pp. 1935–1968, 2018.

[9] D. G. Korn and J. J. Lambiotte, “Computing the fast fourier transform
on a vector computer,” Mathematics of computation, vol. 33, no. 147,
pp. 977–992, 1979.

[10] M. C. Pease, “An adaptation of the fast fourier transform for parallel
processing,” Journal of the ACM (JACM), vol. 15, no. 2, pp. 252–264,
1968.


