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Abstract—As triangle counting is becoming a widely-used
building block for a large amount of graph analytics applications,
there is a growing need to make it run fast and scalable on
large parallel systems. In this work we conduct a preliminary
exploration on the optimizations of triangle counting algorithms
on shared-memory system with large dataset.

I. INTRODUCTION

Graph analytics is becoming increasingly important in a
growing number of domains and there is a need to build fast
and scalable systems for graph analytics. Nowadays, there is
a growing trend for the design of graph analytics engines
for shared-memory systems [1]–[3]. Shared-memory system
has lower communication costs and lower data access latency.
This can potentially lead to better performance compared with
distributed memory systems. On top of that, a state-of-art high-
end multi-core machine can integrate hundreds of cores, and
terabytes of memory [4]. This further enables shared memory
systems to process large-scale datasets in memory.

In this work, we explore one of the basic applications in
graph analytics: triangle counting. Triangle counting is one of
the frequently computed building block operation in graph an-
alytics, therefore it is important to make it run fast and scalable
to large systems. There are rich amount of graph frameworks
that can target a general set of graph applications. Those
frameworks have different frontend designs [1]–[3], [5]–[7].
For example, [5] is based on vertex-iterator programming
model where a utility function is supplied and executed on
each vertex, [6] uses linear algebra language as primitives. And
others are based on domain-specific languages, etc. However,
those graph framework’s target are the broad set of graph
applications, their backend optimizations may be too general
to be effective for triangle countings.

In this work, we plan to study the optimizations specific for
triangle counting on the shared-memory systems. There are
different algorithms for triangle counting. And for these algo-
rithms, one could have different implementations, including a
variety of hashing and merging tweaks. In order to get optimal
performance for triangle counting, it is essential to consider
system characteristics, as well as input graph’s properties to
find the effective optimization method. This paper conducts a
preliminary explorations on whether such optimizations can be
effective for large-scale triangle counting on shared-memory

multi-core systems. The structure of the paper is as follows: the
discussion of the triangle counting algorithm is presented in
section II. Then the baseline parallel implementation is given
in section III. Section IV discusses a variety of optimization
techniques and analyzes whether they can be effective in
practice. The performance results are presented in section V.

II. ALGORITHM

The straight-forward algorithm for triangle counting using
the linear algebra language can be illustrated as [8], [9]:

A2 ◦A (1)

where A is the adjacency matrix of the input graph. The
square of A gives all the wedges (connected two edges) and
the element-wise multiplication with A closes the wedge and
forms a triangle. Afterwards, the algorithm sums over each
element in the resultant matrix. However, in this algorithm
each triangle will be counted repetitively for six times. An
improvement to reduce the double counting in the baseline
algorithm can use half the adjacency matrix. In this way, each
triangle will only be counted once.

There is an algorithm that can further reduce the triangle
counting complexity. The compact-forward algorithm in [10]
can outperform the above two baseline algorithms by greatly
reducing the number of false positives. The algorithm consists
of two steps. The first step is direction assignment: it assigns
a direction to each undirected edge such that the edge points
from the low-degree vertex to the high-degree vertex. Then the
second step counts the number of triangles based on the di-
rected graph. There are two benefits of introducing a direction
to the edge: First of all, it can avoid double counting. Second,
it reduces the (out-)degree of nodes, especially those with
high degrees. As the counting has the quadratic complexity
to the vertex’s (out-)degree and the high (out-)degree vertex
dominates the computation among all the vertices, this can
greatly reduce the complexity.

III. BASELINE PARALLEL TRIANGLE COUNTING

The most time consuming part of the compact forward
algorithm is the second step—counting triangles from the
directed graph. The peudocode for this step is shown in
Algorithm 1. In this step, the algorithm iterates every vertex



(v), and for each one of its (directed) neighbors u, sums up
the number of common neighbors. We first run a baseline
parallel triangle counting algorithm on the shared memory
systems. The baseline implementation is based on [11]. The
implementation simply parallelizes the loop among vertex v
(line 3) and the subsequent loop among the neighborhood of
v (line 4).

Algorithm 1 count triangles in directed graph

1: procedure TRICOUNT(G) . G is the directed graph
2: count← 0
3: for v ∈ G.vertices do
4: for u ∈ v.neighbors do
5: count+ =common neighbors of u and v
6: end for
7: end for
8: return count
9: end procedure

In terms of the counting phase in line 5, the implemen-
tation has explored two basic ways to implement counting
— hashing-based method and sort-merge based method. The
author finds the sort-merge based implementation is faster than
the hash-based method.

IV. PRELIMINARY EXPLORATION ON OPTIMIZATIONS

Counting the common elements of two vertex’s neighbor list
is the most time consuming computation. In this section, we
will mostly focus on the optimizations for the counting phase
in line 5. Counting the common elements of two neighbor lists
is essentially founding out the intersecting elements between
two sets. Therefore optimizations explored previously in set-
intersection problems may be applied here.

Algorithm 2 count common elements in two sorted lists

1: procedure COUNTCOMMON(A,B) . The A, B are two
sorted lists

2: i← 0, j ← 0, counts← 0
3: while i < A.size AND j < B.size do
4: if A[i] < B[j] then
5: i++
6: else if A[i] > B[j] then
7: j++
8: else
9: i++, j++, count++

10: end if
11: end while
12: return count
13: end procedure

a) Hashing: One technique to optimize the set intersec-
tion operation is to use hashing. The hashing method maps
each vertex’s neighborhood into a corresponding hash table. To
count the common elements in two vertex’s neighborhood, we
can iterate through the elements in the smaller neighborhood

list and probes into the hash table of the bigger neighborhood.
The cost of the hashing based set intersection method is
min(n1, n2), where n1 is the size of small list and n2 is the
size of the large list.

b) Merging: is another technique to count the common
elements in two lists. It first sorts each vertex’s neighborhood
list in increasing order and counts the common elements of
two sorted list by linear scan through them. The baseline code
to count the intersection of two sorted lists via merging method
is shown in Algorithm 2. The cost for the merging based set
intersection is max(n1, n2).

c) Exploiting binary search to accelerate merging:
When the two list size is quite different, we can binary search
the smaller list in the large one. The cost of the counting phase
can be reduced to n1log(n2).

d) Exploiting SIMD to accelerate merging: There has
been plenty of work exploring how to utilize the SIMD unit to
accelerate set intersection computation [12]–[14]. We imple-
mented a baseline SIMD algorithm based on [14]. Assume the
system SIMD width is four-elements, the SIMD intersection
algorithm is illustrated with an example in Figure. 1. In this
example, during the first iteration the first four-element of
list A and B will be compared (the instructions used will
be explained subsequently). Based on comparison of the tail
elements (i.e. the 4th element), one of the pointers is decided
to move. In the example case, pointer of the list B will advance
to the next 4-element block because its 4th element is smaller
than list A. In second iteration, the first four elements of A are
compared with the second 4-element block of B and finally
the second 4-element blocks of A and B are compared.

On CPUs with AVX instruction set architecture, the al-
gorithm exemplified in Fig. 1 can be implemented using

mm cmpeq and mm shuffle intrinsics. mm cmpeq can
compare multiple elements at once and produce a resulting
bit mask. In order to conduct all-to-all comparisons between
A and B, only one mm cmpeq is not enough — the SIMD
block of B needs to left-shift using mm shuffle intrinsics and
then compare with A again till the right-most element in B’s
element block is compared with the left-most element of A.
The process is illustrated in Fig. 2.

Fig. 1: SIMD algorithm assuming simd width is 4 elements.



Fig. 2: SIMD algorithm illusion.

e) hybrid hashing and merging: A hybrid method repre-
sents a node’s neighborhood with a hybrid structure between
sparse list and hash table. The hybrid method partitions the
data range into fix-sized (K) blocks. Each block is indexed
by its base value and has an associated bit-vector of length
K. Each bit of the bit-vector indicates the existence of an
element on that position. For example, given a list {0, 1, 4,
52, 102, 493, 534} and K as 64, the list can be compressed
as {0, 64, 448, 512}. We can see the size of the list reduces
from 8 to 4. In this way, the number of comparisons can be
reduced subsequently. To count the common elements in the
compressed block list, it firstly scan through the block lists
to find blocks with common base values via the merge-sort
methods and then count the common elements in the two
blocks by comparing the two corresponding indicator vectors.

A. Profiling and Analysis

Whether the above algorithms will work largely depends
on the property of the dataset. In this section, we start with
the profiling results of some representative graphs datasets in
order to exam the effectiveness of the above techniques.

Cit-Patents. This dataset has 3,774,768 vertices and
16,518,947 edges. The original maximum degree 793. The
maximum degree after sorting is 73. The degree distribution is
shown in Fig. 5. We can see that after direction assignment, the
out-degree distribution still follows a power-law distribution.
Majority of vertices has small out-degree.

Friendster. This dataset has 65,608,366 vertices and
1,806,067,135 edges. The original maximum degree among all
the nodes is 5214. The maximum out-degree in the directed
graph is 2389. And their distribution is in Fig. 6.

Graph500-scale23. This dataset has 4,606,314 vertices and
129,250,705 edges. The original maximum degree 272176.
The maximum degree after sorting is 1376. The degree distri-
bution is shown in Fig. 7.

We highlight the following observations based on the pro-
filings:

Observation 1. In the directed graph, the number of nodes
with high out-degrees is small. However, intersections between
those high out-degree nodes’ neighbor list dominates the total
run-time. And this is not difficult to verify. If we assume
that after reordering the rows from highest degree to lowest
degree in the adjacent matrix of the graph, the number of non-
zero element(nnz, equivalently out-degree) follows a power-
law distribution over the rows, then the comparing cost per row
will also be skewed and resemble a power-law distribution.
As plotted out in Figure 3, we can see that if the nnz element
follows a power-law distribution of x−1, then in all the two

list(a.k.a. rows) comparisons, the top 40% rows takes 50%
of the total comparison cost. If the nnz element distribution
is x−2, then the top 10% rows will take up over 50% of
the total comparison cost. In general, more skewed the nnz
element distribution is in the graph’s adjacent matrix, the more
skewed the computation cost will be towards the dense part
of the matrix. Figure 4 shows the real time and computation
cost distribution on some given datasets. Consistent with the
theoretical results, the computation cost is also mostly centered
among the beginning rows with larger out degrees.

Observation 2. The density of the high-degree nodes’
neighbor lists is still very sparse. Each node’s neighbor list is
a sequence of numbers whose value lies in the range from 0 to
N−1. We introduce the metric Density to measure the sparsity
of a vertex’s neighborhood vector. Density is the number of
elements divided by their maximum value. The smaller the
density, the sparser the neighborhood list is. Knowing the
density is helpful to determine the hashing parameters as for
a sparser neighborhood list, it may require a larger hash table.
In the directed graph, usually the vertices with higher degree
have higher density. For the scale23 graph, the highest density
neighborhood is around 0.763. The top 10% high out-degree
vertex has density between 0.1−0.7. For the friendster graph,
the highest density 0.01. The top 10 percent high out-degree
vertex has density between 0.001 − 0.01. We can see that as
a graph scales, the density of the vertex’s neighbor can be
sparser.

B. Understanding the optimizations

a) Hashing: Using hashing method, we didn’t see any
improvement on the speed. Although the complexity of hash-
ing method is min(n1, n2). However, this is most effective
when there is at least an order of magnitude difference between
nA and nB (i.e, max(n1, n1) � min(n1, n2)). But profilng
shows that the comparison cases where max(n1, n2) > 10 ∗
min(n1, n2) only makes up a small part in all the two-pair list
comparisons, according to our observation 1. In other words,
majority of time is spent to compare lists n1 ≈ n2 and both n1
and n2 are large. Therefore, hashing technique that is helpful
to accelerate a dense list versus a sparse list is unable to
observe performance improvement.

b) Exploiting binary search to accelerate merging:
Similar to the hashing method, the binary search method does
not accelerate the computation, because the binary search also
requires the size of two sorted lists to be very different in
order to have observable speedup.

c) Exploiting SIMD to accelerate merging: This
method can be applied regardless of the relative size of the
two lists. Therefore, it can be effective to accelerate the
CountCommon process of two big lists. And we will show
the results in the next section.

d) Hybrid hashing and merging: Whether the Hybrid
hashing and merging can be effective highly depends on the
density of the neighbor list: whether the list has elements
condensed together that can be compressed. Otherwise the
size reduction in the compressed block list is not sufficient.
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Fig. 3: Theoretical computation distribution and non-zero
element distribution on graphs with different skewness.
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(a) Scale23 graph dataset.
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(b) friendster dataset.

Fig. 4: Number of Non-zero element distribution and compu-
tation time distribution across rows.

We studied the Friendster dataset and the result suggests the
original neighbor list is not friendly for such compressing. As
shown in Table I, the base list size after 256bit compression
only reduces from 1,806,067,135 elements to 1,690,408,139
elements (about 7% reduction). Moreover, the comparison
operation then becomes more expensive when there is a match
in the base value. One needs very delicate design in order to
draw benefits from such methods.

TABLE I: Compression savings on Friendster dataset. Its
original edge list size is 1,806,067,135.

64bit 128bit 256bit

Cmpr. list size 1,723,833,467 1,711,082,186 1,690,408,139
Cmpr. Saving 5% 6% 7%

V. PERFORMANCE RESULTS

Hardware The systems used in our experiments were sup-
ported by Pittsburgh Supercomputing Center [4], [15], [16].
The experiment was tested on three types of hardware settings:

• Single Core: A single core out of the small multicore
system, used to study the scalar performance.

• Small multi-core: A small multicore system which has
two Intel Haswell (E5-2695 v3) CPUs(sockets) and each
CPU has 14 cores.

• Large multi-core:A large shared-memory multicore sys-
tem from HPE Integrity Superdome X. It has 16 Intel
Xeon E7-8880 v4 CPUs(sockets) with 22 cores per CPU
socket, 55MB Last Level Cache.

Results We present the performance results on the above
three systems in Table II-IV.

Single Core: Table II shows the speedup of our SIMD-based
set intersection over a scalar implementation on a single core
(Intel Haswell (E5-2695 v3)) using the small dataset. We can
see that SIMD can bring about 1.2x to over 3x times speedups
over scalar implementation.

Small multi-core: Table III shows the SIMD speedup on
the small multicore system with media-size dataset. Similar
to single-core performance, the result shows that our SIMD
implementation is about 1.4x to 3.6x speedup on this multicore
system.

Large multi-core: Table IV shows the performance on the
large shared-memory multicore system with large dataset.
Those large datasets are generated using the kronecker graph
generator [17]. The kron35 dataset runs over 2-days and
unfinished by the given submission time frame. We are unable
give the execution time. We estimate the time will be between
60 hours to 100 hours.

Performance comparison with distributed system. Last year
graph challenge champion Pearce, et al. [18] presented their
triangle counting performance on distributed systems. They
used up to 256 nodes where each node has 24 cores. Their total
number of cores is higher than ours. Therefore their overall
execution time is shorter. When it comes to performance per-
core. The triangle processed per second per core they achieved
is 1.9MTPS at highest (for WDC dataset, they counted 9.65T
triangles in 808.7s on 256 node where each node has 24 cores).
Our implementation can get 3.1MTPS per core.

TABLE II: Single-core performance scalar vs. SIMD

Dataset V E T Scalar
time(s)

SIMD
time(s)

SIMD
speedup

cit-HepTh 27,770 352,285 1,478,735 0.08 0.03 1.22
cit-Patents 3,774,768 16.518,947 7,515,023 1.23 1.01 2.66
flickrEdges 105,938 2,316,948 107,987,357 1.57 0.569 2.76
graph500-scale18 174,147 3,800,348 82,287,285 3.35 1.17 2.86
graph500-scale19 335,318 7,729,675 186,288,972 8.51 2.84 3.01
graph500-scale20 645,820 15,680,861 419,349,784 21.9 7.29 3.00
graph500-scale21 1,243,072 31,731,650 935,100,883 55.6 19.8 2.80
graph500-scale22 2,393,285 64,097,004 2,067,392,370 142 52.9 2.68

TABLE III: Small 28-core system performance

Dataset V E T Scalar
time(s)

SIMD
time(s)

SIMD
speedup

Friendster 65,608,366 1,806,067,135 4,173,724,142 96.7 67.1 1.44
graph500-scale23 4,606,314 129,250,705 4,549,133,002 63 17.7 3.56
graph500-scale25 17,043,780 523,467,448 21,575,375,802 259 72 3.60



 1

 10

 100

 1000

 10000

 100000

 1x106

 0
 1

0
0

 2
0
0

 3
0
0

 4
0
0

 5
0
0

 6
0
0

 7
0
0

 8
0
0

co
u
n
t

degree

cit-Patents-oridgr

(a) Original degree distribu-
tion.

 1

 10

 100

 1000

 10000

 100000

 1x106

 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

co
u
n
t

degree

cit-Patents-outdgr

(b) Out-degree distribution
after direction assignment

Fig. 5: Degree distribution of cit-Patents.
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Fig. 6: Degree distribution of friendster.
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Fig. 7: Degree distribution of graph500-scale23.

TABLE IV: Performance on a HP Superdome X system with
16 sockets, 352 cores

Dataset V E T Time(s) Triangles/
(sec*core)

kron26 68,175,120 6,281,609,376 222,966,186,844 202 3.1M
kron31 1,090,801,920 33,501,916,672 1,380,824,051,328 2572 1.5M
kron35 1,380,546,180 1,256,845,342,648 >50h
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Olukotun, and Christopher Ré. Emptyheaded: A relational engine for
graph processing. ACM Transactions on Database Systems (TODS),
42(4):20, 2017.

[2] Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing
framework for shared memory. In ACM Sigplan Notices, volume 48,
pages 135–146. ACM, 2013.

[3] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight
infrastructure for graph analytics. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pages 456–471.
ACM, 2013.

[4] Nicholas A. Nystrom, Michael J. Levine, Ralph Z. Roskies, and J. Ray
Scott. Bridges: A uniquely flexible hpc resource for new communities
and data analytics. In Proceedings of the 2015 XSEDE Conference:
Scientific Advancements Enabled by Enhanced Cyberinfrastructure,
XSEDE ’15, pages 30:1–30:8, New York, NY, USA, 2015. ACM.

[5] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Sub-
ramanya R Dulloor, Michael J Anderson, Satya Gautam Vadlamudi,
Dipankar Das, and Pradeep Dubey. Graphmat: High performance graph
analytics made productive. Proceedings of the VLDB Endowment,
8(11):1214–1225, 2015.

[6] Jeremy Kepner and John Gilbert. Graph algorithms in the language of
linear algebra. SIAM, 2011.

[7] Jiyuan Zhang, Franz Franchetti, and Tze Meng Low. High perfor-
mance zero-memory overhead direct convolutions. In Proceedings of
the 35th International Conference on Machine Learning, ICML 2018,
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