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Abstract—Sparse Matrix-Vector multiplication (SpMV) is a
fundamental kernel for many scientific and engineering appli-
cations. However, SpMV performance and efficiency are poor
on commercial of-the-shelf (COTS) architectures, specially when
the data size exceeds on-chip memory or last level cache (LLC).
In this work we present an algorithm co-optimized hardware
accelerator for large SpMV problems. We start with exploring the
basic difference in data transfer characteristics for various SpMV
algorithms. We propose an algorithm that requires the least
amount of data transfer while ensuring main memory streaming
for all accesses. However, the proposed algorithm requires an
efficient multi-way merge, which is difficult to achieve with COTS
architectures. Hence, we propose a hardware accelerator model
that includes an Application Specific Integrated Circuit (ASIC)
for the muti-way merge operation. The proposed accelerator
incorporates state of the art 3D stacked High Bandwidth Memory
(HBM) in order to demonstrate the proposed algorithm’s capabil-
ity coupled with the latest technologies. Simulation results using
standard benchmarks show improvements of over 100x against
COTS architectures with commercial libraries for both energy
efficiency and performance.

I. INTRODUCTION

Sparse Matrix-Vector multiplication (SpMV) can be denoted
as y = Ax + y, where A, x and y are the sparse matrix,
dense source vector and dense resultant vector respectively.
It often arises as a key kernel in many big data applications.
Unfortunately, this very kernel generally becomes the bottleneck
for these applications as it renders very low fraction of the
peak processor performance (<10%) [1], [2] and poor energy
efficiency on commercial of-the-shelf (COTS) architectures.
For large SpMV problems, where x or y is much bigger than
the on-chip storage achievable by current technologies, this
situation becomes worse.

The reason for poor performance on COTS architectures
(CPU, GPU, etc.) is twofold. First is the notorious memory-wall
problem [3], [4]; i.e., main memory bandwidth is already scarce
in relation to available compute power. At the same time, we
are trying to extract performance and efficiency for SpMV that
requires high number of memory accesses for a little amount of
computation. This is a technological barrier. The second, and
probably more important reason is that COTS architectures are
built upon conventional memory hierarchy that expects spatial
and temporal locality in the data. However, due to sparsity,
large SpMV problems are almost devoid of both spatial and
temporal locality. This renders conventional memory hierarchy
in COTS platforms inherently unsuitable for SpMV. It is an
architectural problem that we constrain ourselves with when
we select a COTS platform for SpMV implementation.

Nevertheless, researchers looked into the architectural
constraints and tried to fit SpMV on COTS architectures by
numerous techniques. As an example, for CPU, researchers have
tried mitigating the impact of the sparsity in matrix structure
by employing sophisticated storage formats, such as DIA, ELL,
BCM-CSR [5], or by using intensive preprocessing methods
such as register blocking, matrix reordering [6], [7]. For GPU,
researchers have explored many sophisticated approaches, such
as fine grained parallel decomposition [1], model based auto-
tuning [8] and transformation of matrix representation and tiling
to increase temporal locality [6]. However, performance and
efficiency gain through these methods are still far from what
is achieved for dense matrix operations.

Contributions: In this work, we propose a solution for
large SpMV problems that achieves 100x improvement over
conventional architectures both in performance and efficiency.
The key steps for this solution are as follows.

1) To solve the architectural problem, we approach SpMV
from opposite direction. That means, instead of constraining
ourselves with the architectural resources, we first select the
algorithm that has the most suitable data transfer characteristics
for large SpMV and, afterwards, build the required implemen-
tation platform. We propose an algorithm, namely Two-Step,
that ensures DRAM streaming for all data access (i.e. full
utilization of memory bandwidth) and gets rid of the excessive
data transfer generally required for SpMV implementations on
COTS architectures. However, for this proposed algorithm to
achieve high performance and efficiency, we require multi-way
merge operation on a large number of long sorted lists. As
this is difficult to efficiently achieve with CPU or GPU, we
present an Application Specific Integrated Circuit (ASIC) as
the computation platform for the proposed Two-Step algorithm.

2) To address the memory-wall problem, we consider state
of the art 3D stacked main memory, namely High Bandwidth
Memory (HBM) [9], and interposer [10] technology. The
extreme bandwidth provided by HBM relaxes the memory-
wall issue significantly. Hence, we present a SpMV accelerator
model that integrates the ASIC for Two-Step algorithm to
HBM through interposer. In this work, we only constrain
ourselves by the available technology, rather than commercial
feasibility, and demonstrate what is achievable by the presented
algorithm/hardware co-optimized solution.

The remainder of the paper is organized as follows. Sec. II
and Sec. III demonstrate the proposed algorithm and the
hardware accelerator accordingly. In Sec. IV we evaluate
various SpMV algorithms and provide the rationale behind
our proposed solution. Experimental results are presented in
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Fig. 1: Two-Step SpMV algorithm.

Sec. V. Lastly, Sec. VI concludes this work.

II. PROPOSED ALGORITHM

In this work we propose an algorithm for large SpMV,
namely Two-Step, that fundamentally depends on column-
wise matrix blocking and multi-way merge operation. As the
name suggests, it works in two distinct steps that are depicted
in Figure 1. A pseudocode of Two-Step SpMV is shown in
Pseudocode 1. For this algorithm, initially we divide the source
vector (x) into several segments and the source matrix (A) into
several vertical stripes of the same width. The stripes of A are
stored in a row major format and we select compressed sparse
row (CSR) [7] for our implementation. The width of each
segment of x directly corresponds to the size of fast on-chip
storage. From algorithm point of view solely, we only need
1D partitioning (column blocks) of the matrix. However, 2D
partitioning, as in [11], [12], is required for parallelization
and proper bandwidth utilization in multi-core shared memory
scenario. Hence, we resort to 2D partitioning by further dividing
the matrix stripes horizontally into blocks.

Pseudocode 1: Two-Step algorithm for large SpMV.
1 STEP 1
2 for k = 0 to n− 1 do
3 Stream in Matrix Column Block Ak

4 u← 0
5 for All rows Ak

i,: with nnz > 0 do
6 for Each non-zero Ak

i,j in Ak
i,: do

7 Random access to vector segment xk

8 ui ← Ak
i,j ∗ xk

j + ui

9 end
10 end
11 Sparsify u to vk

12 Stream out vk

13 end

14 STEP 2
15 for i = 0 to N − 1 do
16 for k = 0 to n− 1 do
17 Stream in vk

18 yi ← yi + vki [Multiway Merge]
19 end
20 end
21 Stream out y

Step 1. In the first step of the algorithm, one source vector
segment is streamed to the on-chip storage from main memory.

Then, the corresponding matrix stripe is streamed from the
main memory. Afterwards, matrix elements are multiplied with
the corresponding vector elements and accumulated to any
existing partial results within the same matrix stripe. Each
Processing Element (PE) takes care of this process for its
allocated portion of the matrix stripe and all PEs share the
source vector segment residing in shared on-chip storage. When
this process completes, we get an intermediate vector, vk, for
kth matrix stripe and each PE streams back its corresponding
portion of vk to main memory. This intermediate vector is
sparse and, therefore, positional index is stored along with the
value. As we traverse the matrix elements in row-wise direction
within the stripe, elements of vk are sequentially generated in
ascending order of the row pointers of the matrix elements.
Therefore, each sparse intermediate vector is sorted according
to its elements’ indices (keys), which is vitally important for
the second step of this algorithm. In the first step, we continue
this process for all the matrix stripes and end up with n sparse
intermediate vectors residing in DRAM.

Step 2. In the second step, all intermediate vectors (vks) are
streamed back from main memory to PEs, where essentially
a multi-way merge operation on these sorted lists (vks) is
conducted to construct the resultant vector y. Each PE only
merges a portion of the intermediate vectors as shown in
Figure 1.

The main contribution of Two-Step algorithm is that it
guarantees complete DRAM streaming access while getting
rid of the excess source vector data transfer due to matrix
partitioning. Each element of the source vector makes only
a single trip from the DRAM to on-chip storage, which
is generally not true for large SpMV implementations on
conventional architectures. We will discuss this in detail in
Sec. IV.

So far, we remained oblivious to the computation re-
quirement for the SpMV algorithms. Our proposed Two-Step
algorithm can theoretically be implemented on CPU or GPU.
Unfortunately, for large SpMV problems Two-Step requires a
challenging task of merging thousands of sorted lists, where
each list has millions of elements. This large multi-way merge
is compute-bound [13], [14] and difficult to accomplish with
COTS architectures efficiently due to bad scaling behavior.
However, with custom hardware design, it is possible to achieve
efficient and scalable multi-way merge for large number of
long lists. Therefore, as a solution, in this work we develop a
co-optimized ASIC hardware accelerator as the implementation
platform for our proposed Two-Step algorithm.

III. PROPOSED HARDWARE ACCELERATOR

As an implementation platform for Two-Step algorithm, we
develop a hardware accelerator in this work, which is depicted
in Figure 2. For main memory we use multiple HBMs [15].
This state of the art 3D stacked memories can provide extreme
bandwidth (on the order of TB/s with multiple stacks). The
entire system sits on an interposer base to provide wide high
speed channel between main memory and computation cores.
HBM along with interposer significantly relaxes the memory
wall issue for memory bound problems like SpMV. However,
it should be noted that HBM is not mandatory for Two-Step
algorithm to be useful. This algorithm ensures the proper use
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Fig. 2: Proposed SpMV accelerator model configuration.

of main memory bandwidth regardless of what technology is
used. We have modeled the accelerator with HBM mainly to
demonstrate what can be achieved by using this state of the
art technology without constraining ourselves to the monetary
cost of the accelerator.

For the on-chip storage, the fast random access storage
needed for the algorithm, we use Embedded DRAM (eDRAM)
scratchpad. It has higher density and lower leakage compared
to Static Random Access Memory (SRAM). Furthermore,
eDRAM uses many more banks and small page size that
allow low-power operation at modest area penalty [16] and can
provide high random access bandwidth [17].

The PEs consist of two different types of cores. The first
type, namely Multiply-Accumulate (MA) core, takes care of the
step 1 of the algorithm. It comprises multiple sets of pipelined
floating point multipliers and adders connected in series as
depicted in Figure 3. Computation in step 1 related to a matrix
stripe can be taken care by the MA cores of multiple PEs.
The number of total MA cores depend on the random access
bandwidth of the on-chip eDRAM and streaming bandwidth
of the DRAM. As eDRAM has many small banks and the
probability of bank conflict for accessing xk (due to sparsity
in Ak) is low, the on-chip storage can be shared among the
MA cores without introducing many stalls in the pipeline.

The other type of core, namely Multi-way Merge (MM)
core, handles the second step. A combination of radix-sort
network and binary tree based pipelined merge-sort network
constitute the MM core. Full hardware details of the MM core
is beyond the scope of this paper. The MM cores also utilize
a small portion of the eDRAM scratchpad to store DRAM
page size level data blocks for each list (vk). This is done
to fully amortize the DRAM page opening cost each time a
load request for list data is issued. The custom MM ASIC
can provide high enough throughput to saturate the streaming
bandwidth of HBM. Moreover, several MM cores of multiple
PEs can work in parallel and independently merge different
portions of the intermediate vectors.

IV. EVALUATION OF LARGE SPMV ALGORITHMS

SpMV has a high memory access to compute ratio and,
hence, data transfer characteristics is one of the most important
aspects of SpMV algorithms. In this section, to evaluate our
proposed algorithm, we explore the basic differences in data
transfer characteristics for different families of SpMV algo-
rithms while remaining oblivious to the compute requirements.
We assume the Disk Access Machine (DAM) model [18] with
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Fig. 3: Configuration of a Processing Element (PE).

two levels of memory hierarchy, on-chip storage (fast access)
and main memory (slow access with block transfer). We present
a high level mathematical model for data transfer between the
fast and slow memory levels in a single core scenario, however,
our analysis is applicable to multi-core shared memory scenarios
too.

Since an efficient SpMV kernel should be memory-bound
[1], generally the measure of success of an SpMV algorithm
is the fraction of peak bandwidth that can be achieved. In this
study, we mainly consider the algorithms that achieves full
main memory (DRAM) streaming access (i.e. utilizes peak
bandwidth). Therefore, our measure of success would be the
execution time that is inversely proportional to the volume of
data transferred between the memory hierarchy levels.

Large sparse matrices are generally partitioned to avoid
random access to DRAM and for parallelization. Figure 4
shows such a N ×N matrix which is partitioned into m× n
blocks. We consider a square matrix to simplify the calculation
without any loss of generality. Matrix A has a total of at most
hN non-zeros, where h is the average number of non-zeros per
row. We also define Sm as the average size of matrix element
(including meta-data) and Sv as the size of source and resultant
vector elements.

Independent of the matrix block data storage format and
computation method, there are basically two ways to traverse
the matrix blocks. As shown in Figure 4, one way is to traverse
the blocks in row-major direction and another is in column-
major direction. We name the family of algorithms following
row-major block traversal as Algor and other that follows
column-major block traversal as Algoc. Our proposed Two-
Step algorithm falls under the family of Algoc.

For Algor, as used in [19], the matrix block and relevant
segment of the source vector (x) can be streamed to the
chip from DRAM and discarded after multiply-accumulate
operations for the block. Thus, the entire source vector has to
be streamed from DRAM for traversal of one row of the matrix
blocks and cannot be stored on chip for re-use due to large
size. On the other hand, the resultant vector portion needs to
be stored on-chip for random access since it is updated while
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a row of matrix blocks is traversed. Therefore, resultant vector
segment (N/m) is dictated by the on-chip storage size. Table I
shows the data transfer amount between on-chip memory and
DRAM for Algor. For example, to compute on each block row
of the matrix we need to stream hNSm/m amount of matrix
data from DRAM to on-chip storage. For the entire computation
on matrix A, hNSm amount of matrix data is streamed into
the chip from DRAM. From Table I, we can express the total
data transfer for Algor (Dr) as given in Equation 1.

TABLE I: Data transfer volume between DRAM and on-chip
memory for Algor (row-major block access)

Data source Data per Total
(direction w.r.t. chip) block row data

Matrix (in) hNSm/m hNSm

Source vector (in) NSv mNSv

Resultant vector (out) NSv/m NSv

Dr = hNSm +NSv +mNSv (1)

For Algoc, similar to Algor, matrix blocks can be streamed
from DRAM to chip. However, in this case we need to randomly
access the segment of source vector x as we traverse the m
matrix blocks in column-major direction. Therefore, the on-
chip storage is occupied by the source vector segment. Another
important difference from Algor is that each column of matrix
block will produce an intermediate resultant vector. In the worst
case (when there is no reduction), an intermediate vector will
have the same number of elements as the total Number of
Non-Zeros (NNZs) in all the matrix blocks in that column. We
need to update the intermediate resultant vector as we move to
the next column of matrix blocks. As the intermediate resultant
vector becomes more dense each time updated, storing it on
chip is not feasible. Now, there are few ways we can update.
One way is to keep the intermediate vector in DRAM and
update its elements by randomly accessing DRAM, but this will
cause inefficient bandwidth use and make SpMV latency bound.
Another way is to stream the entire intermediate result to chip
every time we traverse a new column of matrix blocks. However,
even though guaranteeing DRAM streaming, large amounts of

redundant data will have to be transferred between the chip and
DRAM in this method. From a data transfer perspective solely,
a better way is to stream out the n intermediate vectors (one
for each column block of A) to DRAM as they are produced.
Afterwards, we have to stream all intermediate vectors out from
DRAM to chip and apply reduction operations on them to get
the final resultant vector y. Table II presents the data transfers
for the operations in Algoc. Further, we can deduce the total
data transfer for Algoc (Dc) as shown in Equation 2.

TABLE II: Data transfer volume between DRAM and on-chip
memory for Algoc (column-major block access).

Data source Data per Total
(direction w.r.t. chip) block column data

Matrix (in) hNSm/n hNSm

Source vector (in) NSv/n NSv

Intermediate vec. (out & in) 2hNSv/n 2hNSv

(assuming no reduction)
Resultant vector (out) - NSv

Dc = hNSm +NSv + (2h+ 1)NSv (2)

From Equation 1 and Equation 2 we see that the first two
terms (hNSm and NSv) are identical. The third terms in
the equations make these algorithms distinct from each other.
For Algor, mNSv appears due to reading the entire source
vector from DRAM m times. On the other hand, (2h+1)NSv

represents the intermediate results of Algoc that make a round-
trip from chip to DRAM. By investigating further, we can see
that the key factors are m and (2h+ 1) for Algor and Algoc

respectively. If m < (2h + 1), then Algor is preferable as it
will have less data transfer than Algoc. Otherwise, Algoc is
preferable when m > (2h+ 1).

Next, we derive m from system configuration, matrix
dimension (N ) and sparsity (h). For any system with DRAM
capacity of CDRAM , the largest matrix dimension N that it
is able to handle, given h, can be calculated from Equation 3.
We assume that the matrix, source vector and resultant vector
occupy the main memory entirely.

CDRAM =
matrix

hNSm +
source vector
NSv +

resultant vector
NSv

⇒ N =
CDRAM

(hSm + 2Sv)
(3)

Now, Algor needs to store 1
m th portion of the resultant vector

in the on-chip storage. Therefore, we can express the capacity
of the on-chip memory Cchip as

Cchip =
NSv

m
. (4)

Replacing N from Equation 3 to Equation 4 gives us closed
form expression for m as shown in Equation 5.

m =
CDRAM

Cchip

Sv

(hSm + 2Sv)
(5)

From the above equation we see that m is directly propor-
tional to the ratio of slow(DRAM) and fast(on-chip) memory
size. This ratio for typical systems is generally much greater
than the sparsity of matrices for SpMV problems, rendering
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TABLE III: Speedup with Algoc over Algor on typical systems.

System On-chip/DRAM Peak read N m Execution time (s) Gain
(MB/GB) bandwidth Algor Algoc with Algoc

GPU (Tesla GP100 w/ HBM2) 4/16 366 GB/s 250M 500 2.76 0.05 50x
FPGA (Stratix 10 w/ HBM2) 16/32 512 GB/s 500M 250 2.00 0.08 26x

Desktop (Skylake Core i7) 8/64 34 GB/s 1B 1e3 236.7 2.35 100x
Server (Haswell Xeon E7) 45/1500 102 GB/s 23B 4.2e3 7.7e3 12.6 417x
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Fig. 5: Data transfer comparison between Algon and Algoc.

m to be much larger than 2h + 1. For example, h can be
in the order of 1 → 10 for large sparse matrices (e.g. social
network graphs such as Twitter lists, YouTube from KONECT
library [20]). On the other hand, m is in the order of thousands
for systems capable of handling large SpMV problems.

For a number of practical systems, we explore the value of
m, largest matrix dimension N and execution time of both the
algorithms (assuming data is transferred at peak bandwidth) for
h = 3. Table III summarizes our findings. We see that m is in
the order of hundreds for systems will relatively low DRAM
size. For systems with large DRAM capacity, m is in the order
of thousands which is lot larger than (2h+ 1) = 7. Therefore,
Algor needs much more data transfer than Algoc, specially
for large SpMV problems. For example, a Haswell server with
1.5 TB DRAM can operate on 23B× 23B matrix with average
NNZ per row of 3. If Algor is used, the source vector of
23B elements needs to be transferred from DRAM to chip
m = 4200 times (600x larger than 2h+1), whereas for Algoc

the source vector is transferred only once. As the overhead, due
to intermediate results, for Algoc is lot less than transferring
source vector m times, we get 417x improvement in execution
time with Algoc. Furthermore, m is directly proportional to
matrix dimension N , which makes Algor less scalable than
Algoc. Therefore, our analysis shows that column-major matrix
block traversal based SpMV algorithms, such as our proposed
Two-Step algorithm, are preferable for large SpMV problems.

Another category of algorithm, Algon, follows a naive
approach of computing resultant vector elements yi =∑N−1

j=0 Aijxj entirely for increasing j and randomly accesses
the entire source vector in DRAM to load xj . Here, i and j
are the row and column indices of matrix A. Unlike Algor,
we don’t need to stream the entire source vector m times and
one could argue that Algon has the minimum amount of data
volume that actually visits the computation core. However, this

algorithm is generally latency bound as it requires random
access in DRAM. More importantly, for Algon, cache-line
level data is transferred to chip for almost each vector element,
which has little re-use (even for large on-chip storage) due to
sparsity in matrix A. Thus, huge amount of redundant data
is transferred at low random access DRAM bandwidth. An
example data transfer volume between DRAM and on-chip
for Algon vs Algoc is shown in Figure 5 for a matrix of size
80M×80M, h = 3 and 64B cache line. The on-chip storage size
is varied to demonstrate its insignificant effect on the overall
data transfer. It can be seen that the redundant data (striped gray
region) in Algon makes the overall data transfer significantly
greater than Algoc. The solid colored regions represent the
payload, namely the data that actually take part in computation.

One interesting observation in Figure 5 is that the payload
for Algoc, hence for Two-Step, is consistently greater than
the latency bound naive approach (Algon). It is because the
intermediate vectors (vks) have to make a full round trip to
DRAM for Algoc. Nonetheless, for iterative algorithms, e.g.
PageRank [19], it is possible to eliminate the increase in payload
due to the round trip of vks by overlapping the two steps in
proposed algorithm. Due to lack of space we will skip that
discussion in this work.

V. EXPERIMENTAL RESULTS

To compare our modeled accelerator against standard bench-
marks, we first ran a comprehensive design space exploration
under various constraints. A set of system specifications and
constrains is given in Table IV and the relevant design space
parameters are given in Table V. All the design parameters
in Table V are varied to compute the energy efficiency and
performance metrics of the system for a typical problem of
matrix size 80M×80M and h = 3. Afterwards, an optimum
design point is picked that meets all the constraints. HBM
specifications [15] and CACTI-3DD [21] are used to simulate
32nm technology node 3D stacked HBM. Destiny tool [22] is
used to simulate eDRAM at 32nm node. The RTL design of
the MA and MM core are synthesized using 28nm commercial
standard cell library. The memory synthesis methodology in
[23] is used to generate SRAM blocks for our design.

TABLE IV: System specifications and constraints for design
space exploration and simulation of the SpMV accelerator.

8GB per HBM, 8 HBMs, 512GB/s bandwidth per HBM
1KB Page, Interposer area (including HBM) limit 200mm2

MA core power limit 100mW, MM core power limit 40mW

We compare the efficiency and performance of our proposed
accelerator with several state of the art COTS architectures.
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Fig. 7: Performance comparison results among different architectures.

TABLE V: Design space parameters for SpMV accelerator.

eDRAM block size 64KB→16MB
Number of multiplier-adder pairs in a MA core 1→128

Number of lists that can be merged by single MM core 32→4096
Number of MA cores 1→32, Number of MM cores 1→24

For test matrices, we use the sparse matrix collection from
University of Floria [24]. The matrix dimensions vary from
1M to 70M with 1 to 5 NNZ per row. We also use some of
our randomly generated sparse matrices to introduce worst
case scenarios in terms of matrix patterns. As a benchmark we
implemented SpMV using Intel Math Kernel Library (MKL)
on dual socket Xeon E5-2620 (22nm) CPU and Xeon Phi
5110P (22nm) co-processor. Both of the architectures have
30MB last level cache (LLC). The peak bandwidth is 102GB/s
for the CPU and 352GB/s for the co-processor. Furthermore,
Nvidia CUDA Sparse (cuSPARSE) library is used to implement
SpMV on GTX-980 GPU with a peak bandwidth of 224GB/s.
The energy efficiency and performance are measured for the
benchmarks and simulated for the proposed accelerator. Results
are shown in Figure 6 and Figure 7. As we can see, the CPU
(Xeon E5) has the poorest metrics while the co-processor (Xeon
Phi 5110P) deliver mediocre metrics on average. The GPU
(GTX-980) has the best efficiency and performance among the
COTS architectures in most cases. Nevertheless, the proposed
accelerator consistently achieves two orders of magnitude better
performance and efficiency than the GPU. This significant

achievement is possible due to the combination of proper
algorithm that ensures good data transfer characteristics and
custom hardware with state of the art technologies that is
co-optimized for the target algorithm.

We expect our simulated results to match real implementa-
tion as the simulator load assumptions and power estimations
are pessimistic. Nonetheless, in reality, it is important to
properly tune the interface between main memory and the
ASIC to ensure that DRAM page size block data is transfered
for each read and write requests. This is critical for maximally
utilizing DRAM bandwidth and fully amortizing DRAM page
opening costs.

VI. CONCLUSION

Large SpMV problems pose a unique set of challenges that
conventional memory hierarchy based COTS architectures are
inherently not suitable for. To achieve significant performance
and efficiency improvement, we have proposed an algorithm
and hardware co-optimized solution in this work. The proposed
algorithm is developed only to minimize the data traffic to/from
main memory and ensure full streaming access while remaining
oblivious to the compute requirements. The custom hardware
is finely tuned to address the algorithm’s computational
requirement, which is mainly a large multi-way merge network.
Experimental results confirm the substantial potential of our
proposed approach in gaining significant improvement for
SpMV kernel over state of the art COTS solutions.
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