
DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited.

TREBUCHET Fully Homomorphic Encryption
Accelerator: Phase Two Performance Estimation

Results
David Bruce Cousins, Yuriy Polyakov

Ahmad Al Badawi
Duality Technologies

{dcousins, ypolyakov, aalbadawi}@dualitytech.com

Matthew French, Andrew Schmidt, Ajey Jacob, Bene-
dict Reynwar, Kellie Canida, Akhilesh Jaiswal, Clynn

Mathew
USC, Information Sciences Institute

{mfrench, aschmidt, ajacob, breynwar, kcanida,
akjaiswal, cmathew}@isi.edu

Austin Ebel, Negar Neda,
Brandon Reagen

New York University
{abe5240, nn2231, bjr5}@nyu.edu

Naifeng Zhang, Franz Franchetti

Carnegie Mellon University
{naifengz, franzf}@cmu.edu

Patrick Brinich, Jeremy Johnson
Drexel University

{pbrinich, jjohnson}@drexel.edu

Mike Franusich
SpiralGen, Inc

{mike.franusich}@spiralgen.com

Bo Zhang, Zeming Cheng, Massoud Pedram
University of Southern California

{zhangb, chengz, pedram}@usc.edu

Abstract— Secure computation is critically important across
DoD, finance, healthcare -- anywhere personally identifiable infor-
mation (PII) is accessed. Traditional encryption-based security re-
quires data to be decrypted before computation, making it vulner-
able when processed on untrusted systems. Fully Homomorphic
Encryption (FHE) keeps data encrypted during computation, even
in untrusted environments. However, FHE requires significant
computer power compared to similar operations on unencrypted
data. FHE must significantly close this computation gap (to within
10x) to make encrypted processing practical for everyday use. The
TREBUCHET project is developing a hardware accelerator for
deep FHE machine learning applications, under the DARPA MTO
Data Privacy for Virtual Environments (DPRIVE) program. We
integrate with the OpenFHE library and accelerate its standard
FHE schemes. This paper is an update to the progress made in
Phase 2 of the program.

I. INTRODUCTION
As the TREBUCHET project completes the second phase

of the DPRIVE program we present results on the estimated
performance of the system accelerating the OpenFHE public
domain software library [1] with a custom ASIC based acceler-
ator. Previously our team presented the design approach for an
FHE accelerator [2] to support privacy-preserving computation,
enabling computation on encrypted data without the need to de-
crypt the input. In addition to encryption at rest, and in transit,
data can now be encrypted in use, providing end to end en-
crypted analysis of sensitive data, even if computation is done
on untrusted computer resources.

The TREBUCHET custom hardware accelerator was de-
signed to address the root causes of existing high compute over-
head of software-only FHE implementations – TREBUCHET
takes advantage of the underlying mathematical transforms
used with a very large numbers of parallel ALUs performing
vectorized modular arithmetic. The target performance is to
achieve 10^4 speedup over a single thread software only imple-
mentation.

II. TECHNICAL APPROACH
The fundamental design goal of TREBUCHET is to sup-

port 1) a wide array of complex and very deep encrypted com-
puting applications, 2) all the most important lattice based FHE
schemes with 3) a modular design that maps to a wide range of
chip sizes with 4) runtime performance orders of magnitude

faster than other solutions. We do this by providing basic design
blocks and a system stack architecture (see Figure 1), that is
highly adaptable and extensible. TREBUCHET provides mix-
and-match layers for applications, software system components
and hardware, respectively.

Our final design was driven by the needs of Convolutional
Neural Net (CNN) training using the CKKS approximate float-
ing point FHE scheme with full CPA-IND^D security [3]. This
level of security allows sharing of all decrypted results without
restriction, but also increases the bitwidth requirements of the
underlying moduli used. This drives fundamental system de-
sign decisions that support very large vector sizes (2^17 ele-
ments) and a data path width of 128 bits. OpenFHE supports
128-bit arithmetic using standard C++ software emulation, so
we directly accelerate encrypted analysis workloads where re-
sults are shared among multiple participants and the algorithms
implemented require a minimum of single precision floating
point (precision is selectable by the choice of runtime parame-
ters).

Figure 1 - TREBUCHET Layered System Architecture.

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited.

III. THE HARDWARE LAYER
The TREBUCHET Accelerator was designed specifically

to balance the compute, memory, and I/O needs of FHE pro-
cessing. FHE processing benefits from parallelization. The pro-
cessor was designed to be modular, allowing parallelism at mul-
tiple levels. The basic component of the architecture is the Ring
Processing Unit (RPU) [4] (Figure 2). These are large on-chip
tiles, that contain multiple ALU lanes for vectorized processing
of modulo math via specialized scalable modulo multipliers and
adders, connected to shared vector-data SRAM to buffer ci-
phertext(s) and keys. Tiles also facilitate memory management
by scheduling data to be near computational elements through
the use of a shuffle network and a vector register file. Our tool
flow enables generation of RPUs with user defined mixes of
ALUs and memory, allowing us to scale the RPU to different
chip areas or even multiple chiplets. In this paper we will de-
scribe two different configurations.

IV. THE SOFTWARE LAYER
We improved the structure and functionality of OpenFHE

Hardware Abstraction Layer (HAL). We extensively reor-
ganized the Lattice and Math interfaces for increased con-
sistency, efficiency, and futureproofing. As part of this, we fi-
nalized a new NativePoly interface - critical for the Trebuchet
backend design - and identified optimization opportunities
within existing backends. Initial implementation of some opti-
mizations, such as a 30% boost in single-core forward NTT per-
formance for the default native backend, has already been inte-
grated into OpenFHE. These advancements lay the groundwork
for a more flexible and powerful HAL infrastructure.

A. HAL Integration with Surrogate FPGA Accelerator
Carrier Board
To facilitate early testing, we relied on a readily available

KCU105 FPGA development board. This setup features a 32-
bit MicroBlaze processor with 512KB of addressable on-chip
memory, memory mapped registers and FIFO-based mail-
boxes, 2GB of DDR4, DMA controller and Gen3x8 PCIe inter-
face. This processor handling all control tasks, mimicking a fu-
ture MSoC ARM CPUs. We've configured it with memory,
FIFOs, and PCIe connectivity to facilitate communication with
the host machine. Once backend development progresses, we
plan to implement a smaller version of the Trebuchet RPU
within the FPGA itself, allowing us to verify the software inter-
face and refine communication protocols before the final hard-
ware arrives. This interim solution ensures smooth develop-
ment progress until the full-fledged card is ready.

The initial development stage employs a host-card program
pair for remote polynomial processing. This setup utilizes an
implicit memory coherence protocol with a dedicated context
object managing card initialization, communication, and data
transfers. Modified DCRTPoly/Poly classes in OpenFHE ac-
commodate card-side storage and validity flags, enabling spe-
cialized card-side arithmetic operations. This temporary design
facilitates testing and development until the full hardware ar-
chitecture is available.

In OpenFHE a Poly class represents a polynomial as a
fixed length vector of integers (representing the coefficient of
each term of the polynomial, defined at compile time as being
32-, 64-, or 128- bit in order to use native compiler integers.
The length of vector is the number of terms or the polynomial,
usually a large power of two (in our case most commonly 2^16
or 2^17). There is also a modulus and other ancillary metadata

Figure 2 - Trebuchet Ring Processor Unit (RPU) Architecture.

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited.

variables associated with each polynomial. A DCRTPoly class
represents a polynomial with LAWS integer coefficients (thou-
sands of bits) but represented in residue form using the Chinese
Remainder Theorem (CRT). Thus, instead of a vector of LAWS
integers, there is a “tower” or vector of native integer vectors,
with associated moduli. Our design supports O(32) towers.
Thus, all math on the CPU and the Accelerator can be per-
formed in the native word size (in our case 128- or 64-bits. The
list of implemented and tested operations can be found in Table
3.

Table 3. Current implementation list of card-side arithmetic op-
erations. “∘” denotes multiplication, addition, or subtraction.
DCRTPoly ∘= DCRTPoly
DCRTPoly ∘= Poly
DCRTPoly ∘= Integer
DCRTPoly = DCRTPoly ∘ DCRTPoly
DCRTPoly = DCRTPoly ∘ Poly
DCRTPoly = DCRTPoly ∘ Integer
Poly ∘= Poly
Poly ∘= Integer
Poly = Poly ∘ Poly
Poly = Poly ∘ Integer

B. On-chip Pseudo Random Number Generation Algorithm
Development
FHE Keys represent a large part of our I/O budget. We de-

termined that approximately half the key is a random number
field that could be co-generated in both hardware and software
from a single seed, using a cryptographic pseudo-random num-
ber generator. Our design requires a robust random number
generator for its hardware architecture, particularly for efficient
128-bit integer generation modulo 𝑞𝑞 <128-bit strictly without
modular bias. We designed a new "hardware-friendly" rejection
sampling algorithm (See Figure 3) with significantly lower re-
jection rates compared to OpenFHE's current method. Specifi-
cally, the rejection rate is estimated as (2128 − 𝑦𝑦)/2128. By uti-
lizing this algorithm we expect cryptographically secure ran-
domness for FHE sampling, minimizing unnecessary pro-
cessing overhead associated with rejected samples.

Figure 3 - Low rejection-rate PRNG sampling algorithm for arbi-
trary uniform variables [𝟎𝟎…𝒒𝒒).

C. SPIRAL LAWS Optimizations
We use the SPIRAL system to generate NTT and inverse

NTT microcode generation. These made significant perfor-
mance strides: 1) vectorized bit-reversal algorithm specifically
for Automorphism Transforms was developed and validated in
the RPU simulator; 2) vectorized twiddle generation tech-
niques, both unrolled and looped, were implemented, slashing
the number of twiddles loaded from memory for a 217 NTT by

over 99%. This optimized microcode was also validated in the
RPU simulator; and 3) A crucial integration effort linked
SPIRAL-generated code through the RPU simulator to large
scale simulation on the AFRL PALLADIUM chip emulation
system, successfully verifying microcode correctness and re-
solving any integration issues.

V. PERFORMANCE MODEL
Trebuchet's performance analysis relies on a comprehen-

sive model known as the "speed-of-light" model. This model
focuses on Hybrid Key Switching (HKS), the most significant
on-chip operation with minimal off-chip traffic due to interme-
diate result caching. The crux of the model lies in optimizing
data movement for HKS. It calculates the precise computational
requirements (ring additions and multiplications) and data
transfers between on-chip and off-chip memory for each HKS
step. Armed with this detailed breakdown, the model employs
four key parameters:
1. ALU clock rate: Determines the processing speed of on-

chip computations.
2. Data movement speed (I/O bandwidth): Defines the rate of

data transfer between on-chip and off-chip memory.
3. On-chip memory size: Dictates the capacity for storing in-

termediate results, minimizing off-chip communication.
4. FHE scheme cryptographic parameters such as ring dimen-

sion, number, and size of moduli.
By taking these factors into account, the model calculates

the ideal "speed-of-light" runtime for HKS, encompassing both
computation and data transfer. For workload estimations, we
assume sequential execution of HKS operations on the hard-
ware accelerator. Therefore, the estimated workload runtime is
simply the product of the individual HKS latency and the total
number of HKS operations required. It's essential to note that
HKS complexity is depends on the size of the input DCRTPoly.
The model effectively incorporates this factor, offering a more
nuanced assessment than a simple worst-, best-, or average-case
analyses. This refinement further strengthens the model's relia-
bility and accuracy in real-world workload projections.

A. Hardware Configurations
We modelled the performance of two hardware configura-

tions, GPIO and SerDes, for two potential shuttle runs. Table 4
compares the two hardware configurations highlighting their
strengths and weaknesses for different applications. SerDes
packs a smaller chip and faster processing in a tighter package
with higher data transfer rate. GPIO is a simpler chip to prove
out the fundamental RPU designs.

Table 4. Chip configurations for GPIO and SerDes designs.
Specification GPIO SerDes
Total area of chip 175 mm2 150 mm2
Process size for chip [nm] GF12LP GF12LP
Base clock rate [GHz] 0.5 1.0
Power consumption < 100 W < 100 W
Integer size 128-bit 64-bit
Device Bandwidth (2 RPUs) 12.8 GB/s 200 GB/s
I/O requirements 536 pins 760 pins
Computational ALUs 32 256

- Given a 128-bit random integer x (generated with Blake2
either on the host or on the TREBUCHET RPU from
a synchronized seed)

- Given constant 𝑦𝑦 = 𝑘𝑘 ∗ 𝑞𝑞, where 𝑘𝑘 is the largest integer
such that 𝑦𝑦 < 2128

- reject x if 𝑥𝑥 > 𝑦𝑦 else return 𝑥𝑥 % 𝑞𝑞.

DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited.

B. Speed of Light Model
We developed the speed of light model to estimate work-

load performance based on the total number of Hybrid Key
Switching (HKS) operations. Our model minimizes off-chip
data movement and calculates the required computation (in ring
additions and multiplications) and data transfer between off-
chip and on-chip memory for each HKS step. Given the ALU
clock rate, data movement speed (I/O bandwidth), and on-chip
memory size, the model determines the theoretical minimum
runtime for computation and data transfer within HKS. Assum-
ing serialized HKS execution in the hardware accelerator,
workload runtime is estimated by multiplying the latency of a
single HKS operation by the total number of HKS operations in
the workload.

To obtain the total number of HKS operations in the testing
workloads, we instrumented OpenFHE to report all basic ring
operations of interest and ran the workloads to print out the
counts of these operations.

C. Workloads Characteristics
To evaluate the performance of our chip, we used the two

CKKS-based workloads identified by DARPA: logistic regres-
sion training and CNN inference. We implemented both work-
loads in OpenFHE: We log the HKS operation counts from the
instrumented code for comprehensive analysis. One iteration of
logistic regression training includes 83 full HKS operations
and 1 bootstrapping operation, whereas single image infer-
ence of CNN requires 196 HKS operations and 3 bootstrap-
ping operations.

Note that to significantly speed up CNN inference on our
hardware, we applied three key optimizations: reducing number
of bootstrapping operations, switching to a real-number-
friendly variant of CKKS [5], and processing images in batches.
Our optimizations are motivated by the capacity of ciphertexts
to hold many slots, which would be underutilized without
batching.

VI. RESULTS
Table 5 presents a comparison of the performance estima-

tion of their performance on two tasks: Logistic Regression
(LogReg) and Convolutional Neural Network (CNN) inference
using the GPIO and SerDes hardware designs. The parameters
used for comparison are benchmark time and speedup for
LogReg, and inference time for CNN. For the LogReg task,
SerDes outperforms GPIO significantly. SerDes takes slightly
less time at 89 milliseconds and meets the performance metric
target. In contrast, GPIO takes a much longer time of 2.67 sec-
onds. The speedup achieved by SerDes is also much higher,
with SerDes achieving a 3,146x speedup, compared to GPIO’s
109x. For the CNN inference task, SerDes completes the task
in about 200 milliseconds, while GPIO takes a significantly

longer time of 3.8 seconds. This suggests that for both tasks, the
SerDes design demonstrates enhanced performance.

VII. CONCLUSIONS
We showed that the TREBUCHET project, under the

DARPA MTO Data Privacy for Virtual Environments
(DPRIVE) program, has made significant strides in advancing

the field of secure computation. By integrating with the
OpenFHE library and accelerating its standard Fully Homo-
morphic Encryption (FHE) schemes, the project has developed
a custom hardware accelerator designed to address the high
computational overhead of software-only FHE implementa-
tions. This has been achieved by leveraging the underlying
mathematical transforms used with many parallel ALUs per-
forming vectorized modular arithmetic.

As the project completes its second phase, it presents
promising results on the estimated performance of the system.
The target performance is to achieve 4 orders of magnitude in
speedup over a single-threaded software-only implementation,
significantly closing the computation gap of FHE. This ad-
vancement brings us closer to making encrypted processing
practical for everyday use, enabling end-to-end encrypted anal-
ysis of sensitive data, even if computation is done on untrusted
computer resources. This has profound implications for sectors
where personally identifiable information (PII) is accessed,
such as the Department of Defense (DoD), finance, and
healthcare, marking a significant milestone in the journey to-
wards secure computation.

VIII. REFERENCES
[1] D. Cousins et al. “TREBUCHET: Fully Homomorphic Encryption

Accelerator for Deep Computation” GOMACTech 2023,
https://arxiv.org/abs/2304.05237

[2] A. Al Badawi et al., “OpenFHE: Open-Source Fully Homomorphic
Encryption Library”, https://eprint.iacr.org/2022/915

[3] Li, B., Micciancio, D., Schultz, M., & Sorrell, J. (2022, August). Securing
approximate homomorphic encryption using differential privacy. In
Annual International Cryptology Conference (pp. 560-589). Cham:
Springer Nature Switzerland.

[4] D. Soni, et al., "RPU: The Ring Processing Unit," in 2023 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), Raleigh, NC, USA, 2023 pp. 272-282.

[5] Kim, D., & Song, Y. (2019). Approximate homomorphic encryption over
the conjugate-invariant ring. In Information Security and Cryptology–
ICISC 2018: 21st International Conference, Seoul, South Korea,
November 28–30, 2018, Revised Selected Papers 21 (pp. 85-102).
Springer International Publishing.

Table 5. Performance estimation of Logistic Regression (LogReg)
Training and CNN Inference.

Parameter Phase 2 Goal GPIO SerDes
LogReg benchmark <= 100 ms 2.67 sec 89 ms
LogReg speedup 5,000x 109x 3,146x
CNN Inference time <= 250 ms 3.8 sec 200 ms

https://eprint.iacr.org/2022/915

	I. Introduction
	II. Technical approach
	III. The hardware layer
	IV. the software layer
	A. HAL Integration with Surrogate FPGA Accelerator Carrier Board
	B. On-chip Pseudo Random Number Generation Algorithm Development
	C. SPIRAL LAWS Optimizations

	V. Performance Model
	A. Hardware Configurations
	B. Speed of Light Model
	C. Workloads Characteristics

	VI. Results
	VII. Conclusions
	VIII. References

