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Abstract. Multidimensional discrete Fourier transforms (DFTs) are typically decomposed into
multiple one-dimensional (1D) transforms. Hence, parallel implementations of any multidimentional
DFT focus on parallelizing within or across the 1D DFT. Existing DFT packages exploit the inherent
parallelism across the 1D DFTs and offer rigid frameworks, that cannot be extended to incorporate
both forms of parallelism and various data layouts to enable some of the parallelism. However, in the
era of exascale, where systems have thousand of nodes and intricate network topologies, flexibility
and parallel efficiency are key aspects all multidimentional DFT frameworks need to have in order
to map and scale the computation appropriately. In this work, we show the need for a versatile
parallel framework that facilitates the development of a family of parallel multidimentional DFT
algorithms by (1) using different data layouts to distribute the data across the compute nodes, (2)
exploiting the two different parallelization schemes to different degrees, and (3) unifying the two
parallelization schemes within a single framework. We show that the flexibility of selecting different
parallel multidimentional DFT algorithms allows for almost linear strong scaling results for problem
sizes of 10243 on two supercomputers, namely, RIKEN's K-Computer and Oakridge's Summit.
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1. Introduction. The multidimentional discrete Fourier transform (DFT) has
proven to be an ubiquitous mathematical kernel, that is widely used in a multitude
of applications from different scientific fields like molecular dynamics [19, 21, 20], ma-
terial sciences [15, 14, 16], beam-plasma simulations [34, 35], and quantum mechan-
ics [13, 32, 28, 3]. As we move into the exascale era with massively parallel systems
that have thousands of compute nodes, it is vital that parallel multidimentional DFTs
be efficient. Multidimensional DFTs are defined in terms of multiple one-dimensional
(1D) DFTs. Hence, parallel implementations of the multidimentional DFTs can be
classified into two distinct classes. The first class focuses on exploiting parallelism
within the 1D DFTs [29, 7], while the second class exploits the inherent parallelism
across multiple distinct 1D DFTs. Most state-of-the-art frameworks for computing
three-dimensional (3D) DFTs, like FFTW [8], P3DFFT [18], FFTE [31], opt to par-
allelize across the 1D DFTs.

We illustrate the limitations of the conventional approach of parallelizing multidi-
mentional DFTs in Figure 1, where we report the performance of three different par-
allelization schemes for computing the 3D DFT of 643 and 10243 on the K-Computer.
Notice that for the data set of size 643, parallelizing the 3D DFT on a 1D grid of pro-
cessors such that each processor computes a two-dimensional (2D) plane yielded the
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Fig. 1. Strong scaling results for 3D DFTs of size 643 and 10243 using the slab-pencil, pencil-
pencil-pencil, and volumetric decompositions on the K-Computer. We report the execution time on
the log scale.

shortest execution time. However, for the 10243 input, the same parallelization scheme
scales only to 32 processors, while better performance can be attained by switching
to a parallelization scheme comprising a 2D grid of processors where each processor
computes a small batch of 1D DFTs. Just as with the 1D parallelization scheme, the
parallelism on a 2D grid of processors is restricted to at most 1024 processors. By
parallelizing within the 1D DFT for the last dimension, we obtain an even shorter ex-
ecution time using a much greater number of processors. These observations highlight
two major limitations of existing approaches: (1) there is a need for one to seamlessly
switch between parallel algorithms for computing the multidimentional DFT as differ-
ent parallel algorithms are superior for different problem sizes, and (2) there is a need
to parallelize both across and within the 1D DFTs to scale to larger number of nodes.

There is an increasing interest in scaling the parallel implementations of the multi-
dimentional DFT to higher number of nodes using higher-dimensional grids as shown
in Jung et al. [12]. These newer algorithms are a subset of the parallel DFT algorithms
highlighted in Johnson and Xu [11], that showed that a significant number of algo-
rithms can arise from the parallelization both within and across multiple 1D DFTs.
However, these algorithms are largely unexplored in practice as the existing parallel
DFT frameworks make implementing them quite difficult. Due to the rigidity of the
existing frameworks, the resulting performance is still unsatisfactory. Therefore, in
this work we show that a flexible framework for employing different parallelization
schemes to compute the multidimentional DFT on a multidimentional computation
grid of processors is needed. By recognizing that the inputs and outputs of a mul-
tidimentional DFT are multidimentional arrays of data, we leverage insights from
the multilinear algebra (tensor) community to simplify the management of network
communication and data layout on a multidimentional grid.

D
ow

nl
oa

de
d 

04
/2

2/
21

 to
 1

31
.2

43
.1

52
.1

34
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A FLEXIBLE FRAMEWORK FOR PARALLEL MULTIDIMENSIONAL DFTS C247

Contributions. This paper makes the following contributions:
\bullet Demonstrates the need for a family of parallel DFT algorithms in order to
attain high performance for a given problem size and network configuration.

\bullet Introduces a new data distribution inspired by the multilinear algebra (tensor)
community to facilitate the parallelization of the multidimentional DFTs.

\bullet Shows that a flexible framework that unifies both parallelization schemes for
multidimentional DFTs on multidimentional grids can be built on a multi-
linear algebra (tensor) framework.

2. The discrete Fourier transform. In this section, we briefly present the
decomposition of both the 1D and multidimentional DFTs, expressing the algorithms
in terms of linear algebra operations and outlining the opportunities for parallelization.

2.1. The 1D discrete Fourier transform. The 1D DFT is a matrix-vector
multiplication, where given the input x, the output y is obtained as

y = DFTn \cdot x.(2.1)

The DFTn is the n\times n DFT dense matrix, defined as

DFTn =
\bigl[ 
\omega lk
n

\bigr] 
0\leq l,k<n

(2.2)

with \omega n = e - k 2\pi 
n being the complex root of unity. Typically, the computation of

the DFT is implemented using the fast Fourier transforms (FFT), where instead of
performing O(n2) complex arithmetic operations by doing the matrix-vector mul-
tiplication, a recursive decomposition of the DFT matrix is performed to obtain an
O(n log(n)) algorithm. The most widely known of these algorithms is the algorithm in
[5]. The Cooley--Tukey algorithm is described as a factorization of the DFTn matrix,
when n is a composite number such as n = n0n1.

An alternative view of the mathematical description of the Cooley--Tukey algo-
rithm defined in [5] is as follows:

\~y = (Twidn0\times n1 \odot (\~x \cdot DFTn1))
T \cdot DFTn0 ,(2.3)

where \~x and \~y are two matrices of size n0 \times n1 and n1 \times n0, that represent the input
x and output y, respectively. The columns of matrix \~x (\~y) are n1 (n0) contiguous
subvectors (i.e., xi, 0 \leq i < n0 or yi, 0 \leq i < n1) of the input (output) vector x (y),
and are obtained by splitting x (y) into subvectors of size n0 (n1) as follows:

\~x =
\bigl[ 
x0 | x1 | . . . | xn1 - 1

\bigr] 
.

The matrix \~y is similarly constructed.
The reason for the formulation of the Cooley--Tukey algorithm as described by

(2.3) is that the four stages of the algorithm (as depicted in Figure 2) are made
explicit. The first step applies the DFTn1 on the rows of the matrix \~x (I), assuming
data are stored in column major order. The elements within each column of either
matrix \~x or \~y are in consecutive locations in memory. This implies that in order to
compute the first stage of the DFT, elements are accessed at a stride of n0. The result
of the first stage is then pointwise multiplied with the so-called twiddle matrix (II),
which is defined as

Twidn0\times n1
=

\bigl[ 
\omega kl
n

\bigr] 
0\leq l<n0 \mathrm{a}\mathrm{n}\mathrm{d} 0\leq k<n1

,(2.4)
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Fig. 2. The decomposition of the 1D DFT using the Cooley--Tukey algorithm for a given problem
size of 16 = 4 \cdot 4. The algorithm requires four steps, namely, two batched DFTs (I) and (IV) of size
4, a pointwise operation (II), and a transposition (III). Data are stored in column major order.

Fig. 3. Two algorithms for computing the 3D DFT. The slab-pencil algorithm (a) decomposes
the 3D DFT into a 2D DFT and a 1D DFT. When applied, the 2D DFT is decomposed into the
corresponding 1D transforms. The pencil-pencil-pencil algorithm (b) decomposes the 3D DFT into
three 1D DFTs applied in the corresponding dimensions.

where \omega n represents the complex roots of unity. The resultant matrix is then trans-
posed (III) and finally the second DFT of size n0 is applied in the rows (IV). Again,
the elements required for the fourth stage of the computation are read at a stride.
Due to the transposition, the second DFT cannot start computation until all previous
stages have been completed.

2.2. \bfitn -Dimensional DFTs. Multi-dimensional DFTs can be defined in terms
of multiple 1D DFTs and multidimentional DFTs of lower dimensions. For example,
Figure 3 shows two variants for computing the 3D DFT. The first algorithm represents
the so-called slab-pencil decomposition [29, 6, 30], where the 3D DFT is decomposed
into a batch of 2D DFTs followed by a batch of multiple 1D DFTs. The second
algorithm represents the pencil-pencil-pencil decomposition [29, 6, 30], where the 3D
DFT is decomposed into three batches of 1D DFTs, where each 1D DFT is applied
in the three dimensions.

The slab-pencil algorithm views the input (output) column vectors x (y) as 2D
matrices \~x (\~y) of size (n0n1)\times n2. Mathematically the decomposition is expressed as

\~y = (DFTn0\times n1
\cdot \~x) \cdot DFTn2

.(2.5)

Data are stored in column major, hence the 2D DFT is applied on the columns, while
the 1D DFT is applied on the rows.

The pencil-pencil-pencil algorithm reshapes the input (output) vectors into 3D
cubes \^x (\^y) of size n0\times n1\times n2. The input (output) column vector x (y) is decomposed
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Fig. 4. The parallel implementation of the Cooley--Tukey algorithm for the DFT16 on p = 2
processors. Data are distributed between the processors, each processor does its local computation,
and then exchanges the data. This parallel implementation requires three communication stages.

into n2 groups of n1 subgroups of size n0. Hence, the 3D cube \^x can be viewed as a
matrix of matrices such as

\^x =
\bigl[ 
\~x0| \~x1| . . . | \~xn2

\bigr] 
,(2.6)

where each \~xi is the 2D matrix of size n0\times n1 for all values 0 \leq i < n2. Mathematically,
the pencil-pencil-pencil algorithm is expressed as

\^y =
\bigl[ 
(DFTn0 \cdot \~x0) \cdot DFTn1 | . . . | (DFTn0 \cdot \~xn2) \cdot DFTn1

\bigr] 
\cdot DFTn2

,(2.7)

where the DFTn0 is applied in the depth dimension, the DFTn1 is applied in the
column dimension, and finally the DFTn2

is applied in the row dimension. Data are
stored in column major and therefore the dimension corresponding to n0 is laid out
in the fastest dimension in memory, while the dimension corresponding to n2 is laid
out in the slowest dimension in memory.

2.3. Parallelizing the 1D DFT. Parallelizing the 1D DFT on p processors
requires the parallelization of all four compute stages. Traditionally, the input ma-
trix \~x (stored in column major order) is split such that each processor receives n1/p
columns of size n0. Distributing the data using this data layout implies that com-
putation cannot start since each processor does not have the necessary data points.
As such, an all-to-all communication step is needed to redistribute the data such
that each processor receives n0/p rows of size n1. The first and second stage of the
Cooley--Tukey algorithm can then be applied locally. A second all-to-all communica-
tion is performed to transpose (stage III) the data across the processors. After this
communication step, each processor owns n1/p rows of size n0 and thus can locally
compute the last stage of the algorithm. Storing the data in the correct order requires
a third communication step. The described computation gives the so-called six step
algorithm [33] defined as

\~y =
\Bigl( 
DFTn0

\cdot 
\bigl( 
Twidn0\times n1

\odot 
\bigl( 
DFTn1

\cdot \~xT
\bigr) \bigr) T\Bigr) T

.(2.8)

The parallel implementation of the six step algorithm is depicted in Figure 4, and
it requires a total of three communication steps. The astute reader will recognize
that some of the communication steps can be avoided by storing the initial data in a
different layout. This has been observed in literature, but seldom exploited in practice.
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Fig. 5. The parallel implementation of the slab-pencil algorithm for computing the 3D DFT on
a 1D mesh of two processors. Each processor applies batches of 2D DFTs followed by batches of 1D
DFTs. The implementation requires two communications stages.

Fig. 6. The parallel implementation of the pencil-pencil-pencil algorithm for computing the 3D
DFTs on a 2D mesh of size 2\times 2 compute nodes. Each processor computes batches of 1D DFTs in
each dimension. The implementation requires three communications stages.

2.4. Parallelizing the \bfitn -dimensional DFTs. Since the multidimentional DFT
can be decomposed into multiple lower-dimensional DFTs, most prevalent DFT frame-
works exploit this feature for parallelization. We illustrate this parallelization scheme
on the two previously presented algorithms for computing the 3D DFT. Parallelizing
the slab-pencil algorithm is performed by viewing the processors as a 1D grid and dis-
tributing the data cube such that each processor receives n2/p 2D slabs of data of size
n0 \times n1. Each processor then locally computes multiple 2D DFTs on the given slabs.
Data are then exchanged across the processors so that each processor can compute
(n0 \times n1)/p 1D DFTs of size n2. Finally, another communication step is required to
store the data in the correct format, as shown in Figure 5.

The pencil-pencil-pencil algorithm is parallelized in the two dimensions corre-
sponding to n1 and n2, across a mesh of processors of size py \times pz. Each processor
receives a batch of 1D pencils as seen in Figure 6. Each processor can apply 1D DFTs
locally. In order to apply the other two 1D DFTs data are first exchanged between the
processors in the py dimension of the mesh, followed by the communication between
the processors on the pz dimension. Each communication stage rotates the data cube
from xyz to yzx and zxy as seen in Figure 6. Each communication step requires data
to be packed and unpacked before and after the all-to-all communication. Finally,
in order to store the data in the correct format a global communication between all
processors is required. In practice, the overall execution time is reduced by dropping
the last communication stage. However, this comes at the cost of having to compute
the subsequent computations on shuffled data points.

2.5. Limitations of existing parallelization schemes. Notice that in both
cases, the amount of parallelism is limited by the size of a particular dimension of
the data. For the slab-pencil algorithm, the maximum number of processors that can
participate in the computation is max(n0, n1, n2) as each processor is assigned a 2D
slab of data. Similarly for the pencil-pencil-pencil case, the number of participating
processors is upper bound by max(n0n1, n1n2, n0n2) since each processor is assigned
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at least one 1D DFT to compute locally. However, using the maximum number of
processors in each dimension requires extra communication steps, unless data are left
permuted. The level of parallelism within the communication is also limited by the
algorithm. The slab-pencil distribution spreads the data on a 1D grid. Hence, data
exchange for computing the 1D DFT requires the communication between all proces-
sors. The pencil-pencil-pencil case parallelizes the communication in two dimensions,
which is done between groups of processors. All frameworks that implement the par-
allelization across the 1D DFT depend on efficient all-to-all communications [2, 25].
However, as we will briefly show in the results section, the all-to-all communication
cannot efficiently scale as the number of processors increases.

3. Parallelize \bfitn -dimensional DFTs in all \bfitn dimensions. In this section,
we present the approach for combining both forms of parallelism for computing n-
dimensional DFTs, focusing on the 3D case. First, we discuss the data layouts and
how they influence the communication of the parallel 1D DFT. Then, we use the
elemental cyclic distribution described in [24, 26] and outline the steps required to
compute a parallel 3D DFT. We emphasize the connection with the multilinear algebra
domain, since any multidimentional DFT can be decomposed as operations on the
dimensions of high dimension tensors, where the inputs and outputs are viewed as
multidimentional arrays.

3.1. Data layouts. Data need to be distributed across the processing nodes.
Depending on how the data are distributed across the network, the 1D DFT compu-
tation may require one or more communication stages. In the following paragraphs,
we present three data layouts, block cyclic, blocked, and elemental cyclic, and discuss
how they influence the number of communication stages for a parallel 1D DFT.

The block cyclic distribution is de facto data distribution for linear algebra frame-
works such as ScaLAPACK [4]. Figure 7(B) shows the block cyclic layout for a 16
element vector across p = 2 processing nodes using a block size b = 2 elements. The
1D vector is split into eight chunks of two elements, and each chunk is round robin
distributed across the two processing nodes. Given this data layout, the 1D DFT
applied to the input vector requires only one communication step. Viewing the 1D
vector as a 2D matrix as shown in Figure 2, the block cyclic distribution spreads out
the data such that each of the two processing nodes receives b sequential rows. Each
processor can therefore start its local computation. After the inherent transposition
and the final local computation (stages III and IV of the 1D DFT algorithm), the
block cyclic distribution is preserved from input to output.

The number of communication steps for the 1D DFT is one and the block cyclic
distribution is preserved, if the following relationship,

p2 \leq n

b2
,(3.1)

holds for a given problem size n, a blocking size b, and p processing nodes. The prob-
lem size n must be divisible by b2p2. As such, the 1D DFT can at most be distributed
across

\sqrt{} 
n/b2 processing nodes. If the number of processing nodes is increased be-

yond that value, the number of communication steps is increased as shown in Inda
and Bisseling [10], and possibly the block cyclic distribution cannot be maintained
from input to output. For this work, we focus on the cases, where the constraints are
satisfied, and we leave the other cases as future work.

The blocked distribution is the preferred data layout for most DFT-based frame-
works [31, 9, 18]. The blocked data layout is a special case of the block cyclic distribu-
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Fig. 7. Distributions of a 16 element 1D vector across two nodes, p0 and p1. The block cyclic
layout distributes blocks of size two elements in a round robin fashion. The blocked layout distributes
eight sequential elements to each processor. The elemental cyclic layout scatters the even location
points to the first processor and the odd location points to the second compute node.

tion, when b = n/p. Figure 7(C) shows the blocked layout for the 16 element vector
on p = 2 processing nodes. The 1D vector is split evenly between the two nodes,
each receiving a continuous block of eight elements. As outlined in the previous sec-
tion, the parallel 1D DFT of size 16 requires three communication stages. Viewing
the blocked distributed 1D array as a 2D matrix, each processor receives multiple
columns of the original input vector. Since computation is done in the rows, a first
communication step is required. A final communication step is needed to preserve
the data distribution. The blocked distribution imposes that the problem size n be
divisible by p2 if the processor grid or the data layout is to remain invariant for the
duration of the computation. This suggests that a 1D DFT of size n can at most be
parallelized on

\surd 
n compute nodes.

The elemental cyclic distribution is used in linear algebra frameworks [24, 26] since
it offers better load balancing across the network. The elemental cyclic distribution
is a special case of the block cyclic distribution for the case where b = 1. Figure 7(D)
shows the elemental cyclic layout for the 16 element vector on p = 2 processing nodes.
Note that all even location elements are sent to the first processor, while all odd
location elements are sent to the second processor. Similarly to the block cyclic case,
a 1D DFT on elemental cyclic distributed data points requires one communication
step between the p nodes. The elemental cyclic distribution is preserved if

p2 \leq n.(3.2)

Since b = 1, the number of nodes p on which a 1D DFT of size n can be parallelized is\surd 
n nodes. Note that the 1D DFT on elemental cyclic distributed data points requires

a single all-to-all communication, while being able to be scaled to the same number
of processors as the blocked distribution case.
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Fig. 8. The 3D input \^x is elemental cyclic distributed on the 3D processing mesh. Each
processor applies its local computation, rotates the data, and packs it for the the communication
stage. Since the local data do not contain the entire data for a full 1D DFT 2, the local computation
is partial. After the communication, data are unpacked, and each processor applies the remaining 1D
DFT computation. The steps are repeated for the remaining 1D DFTs in the y and z dimensions.

3.2. Elemental cyclic parallel 3D DFT. In this section, we describe the 3D
DFT algorithm for a data cube \^x of size n0\times n1\times n2. The cube is distributed elemental
cyclically across the corresponding dimensions of a 3D mesh of px \times py \times pz compute
nodes. For the 3D DFT computation, we impose that the input and the output
have the same orientation and distribution, and that the processing grid remains
invariant. As discussed in the previous subsection, these requirements are satisfied if
the conditions p2x| n0, p

2
y| n1, and p2z| n2 hold.

Figure 8 shows how the initial cube \^x is distributed across the processor grid.
Note that each dimension of the input cube is elemental cyclic distributed on the
corresponding dimension of the grid. Let \^xl be the local copy of the initial distribution.
As outlined in section 2, \^xl is represented as a matrix of matrices such that

\^xl =
\Bigl[ 
\~xl
0| \~xl

1| . . . | \~xl
n2/pz

\Bigr] 
,(3.3)

where each \~xl
i is a 2D matrix of size (n0/px)\times (n1/py) for all values 0 \leq i < (n2/pz).

Given this distribution, the local computation cannot fully apply a 1D DFT. However,
each processor can apply partial computations.

The 3D DFT decomposes into three 1D DFTs applied in the corresponding di-
mensions of the data cube. However, given (2.3) where the 1D DFT is decomposed
into four stages that are applied on a 2D matrix, the 3D DFT can be viewed as
an operation on a six-dimensional (6D) tensor. Each dimension of the data cube is
interpreted as a 2D matrix. Since each dimension of the data cube is distributed
elemental cyclic, each processor owns rows of the 2D matrix interpretation, as shown
in section 3.1. As shown in Figure 8, each processor can apply the first DFT stage
in the x dimension and the corresponding twiddle computation, if the twiddle factors
are themselves distributed elemental cyclic in the same dimension. In addition to the
two compute stages, there is a subsequent data rotation, where the current dimension
on which the computation is applied is moved from the fastest dimension in memory
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Fig. 9. The transposition operation required by the 1D DFT computation in (2.3) is split into
two local and one global transpositions. The local transpositions are implemented as packing/un-
packing routines, while the global transposition is implemented as an all-to-all collective. Overall,
the three steps form the communication step required by the 1D DFT.

to the slowest dimension in memory. This data movement is required to improve
bandwidth utilization for the subsequent communication stage.

As outlined in (2.3), the 1D DFT algorithm requires a transposition. The transpo-
sition must be applied in each dimension. Typically, the transposition is decomposed
into multiple local transpositions and a global transposition, as shown in Figure 9.
The local transpositions are implemented as packing routines that reshape the data
into the send and receive buffers, respectively, while the global transposition is imple-
mented as an all-to-all communication collective. To avoid packing routines with inef-
ficient memory access patterns, where data are accessed elementwise at large strides,
the previous compute stages rotate the local data set. For example, in 8 it can be
seen that the x and y dimensions of the local data cube are moved into the slowest
and fastest dimensions in memory, respectively. The subsequent packing and unpack-
ing of the data cube in the x dimension is done at a larger granularity, that is more
favorable to the memory bandwidth.

The remaining DFT computation in the x dimension can be applied. Note that
the computation has to be applied in the slowest dimension in the memory, since
the data have been rotated in the previous stage. The same steps are applied for the
subsequent y and z dimensions. However, compute stages can be grouped together, to
reduce roundtrips to local main memory and to improve data locality. Note that the
last DFT stage of the 1D DFT in the x dimension can be merged with the first stages
of the 1D DFT in the y dimension, as shown in Figure 10. The same grouping can be
applied to the y and z computations. In addition, the cube rotation across the main
diagonal can also be fused with the computation. The rotation preserves the data
orientation, since this operation is applied three times. Given that the constraints are
satisfied, the output also has the same elemental cyclic distribution as the input.
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Fig. 10. The parallel implementation of the 3D DFT using the volumetric decomposition. The
data are distributed elemental cyclic in all three dimensions across a 3D mesh of 2\times 2\times 2 compute
nodes. The implementation requires three communication steps and the elemental cyclic distribution
is preserved between the compute stages.

4. Experimental results. In this section, we describe the experimental setup
and the results obtained on both the RIKEN AICS K-Computer and on the Oak
Ridge Summit Supercomputer, outlining the importance of having a flexible frame-
work to choose the appropriate algorithm for a given problem size and number of
nodes. We begin by presenting the characteristics of the two systems and then briefly
outline some of the implementation details for parallelizing the computation using
MPI and OpenMP. Last, we analyze strong scaling results of the 3D DFT for 643,
2563, and 10243 using the three decompositions (slab-pencil, pencil-pencil-pencil, and
volumetric). All implementations use the elemental cyclic distribution in the dimen-
sions specified by the algorithm. We impose that the distribution and orientation of
the input and output be the same. We give a breakdown of the performance and
emphasize that there is not one decomposition that gives the best solution.

4.1. System configuration. The RIKEN AICS K-Computer consists of ap-
proximately 80, 000 SPARC64 VIIIfx nodes. Each compute node has a single CPU
with 16 GB of main memory and a total bandwidth of 64 GB/s (main memory band-
width). Each SPARC64 VIIIfx has eight cores with one thread per core running at
2.0 Ghz and 6 MB of L2 cache. Each core can do 128-bit single instruction multi-
ple data (SIMD) instructions, giving a peak performance for double precision fused
multiply-add instructions of 128 GFlops. Each compute node is connected by a 6D
mesh/torus network (TOFU interconnect). The TOFU interconnect provides a logi-
cal 3D torus network for each job. The nodes have 10 links with a bandwidth of 10
GB/s full-duplex and the network allows for multiple pathways to communicate data.
The infrastructure allows programs to be adapted to 1D, 2D, and 3D torus networks.
The maximum number of nodes in one dimension is 54, while the maximum torus size
is 48\times 54\times 32 [1].

The Oak Ridge Summit Supercomputer consists of approximately 4608 physical
nodes, each node having two IBM Power 9 processors and six NVIDIA Volta V100
GPUs. We provide information about the CPUs and skip the details of the GPUs
since the current implementation only targets the CPU side of the system. Each
compute node has two sockets, each socket with a local main memory of 256 GB with
a bandwidth of 135 GB/s (main memory bandwidth). The two sockets are connected
via an X-Bus that provides almost 64 GB/s between the two CPUs. Each socket has
21 cores, four threads per core, and a last level cache of approximately 120 MB that is
distributed between pairs of cores. The cores can execute 128-bit SIMD instructions,
similarly to the K-Computer. All the compute nodes are connected via a fat-tree
topology, that provides approximately 25 GB/s full-duplex per link.
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The current implementation of the DFT framework is built on top of the ten-
sor framework, namely, the redistribution operations and tensor expressions (ROTE)
framework [26]. ROTE provides a formal notation for describing the data layout of
tensors that are distributed on multidimentional meshes. By describing the data lay-
outs before and after a data redistribution operation, ROTE provides the infrastruc-
ture to map the necessary data movement into a sequence of one or more collective
communication subroutines to achieve the desired data movement. The ideas are not
tied to the ROTE framework and can easily be implemented in any tensor framework.
While the data distribution and redistribution is handled by ROTE, we use FFTW for
the local DFT computation. In the following section, we describe how we parallelize
the computation within and across the compute nodes.

4.2. OpenMP + MPI parallelism. The framework uses OpenMP [17] paral-
lelism for the local computation and MPI [27] for the distributed computation. The
MPI is hidden away by the ROTE infrastructure. ROTE allows users to specify the
grid, the tensors, the distribution, and the communication and, hence, writing the
communication is straightforward. The construction of the compute node grid re-
quires the \ttM \ttP \ttI \ttC \ttO \ttM \ttM \ttW \ttO \ttR \ttL \ttD global communicator and the size and shape of the grid.
Based on the shape of the grid, the global communicator is split accordingly. The
construction of the data tensors requires information about the shape, dimensions,
and the grid on which the tensors are going to be distributed upon. Each tensor
object provides the necessary functionalities to specify the communication, such as
the all-to-all communication which is required by the 1D DFTs as described in Fig-
ure 9.

Parallelizing the computation using OpenMP is made explicit. We use \#\ttp \ttr \tta \ttg \ttm \tta 

\tto \ttm \ttp \ttp \tta \ttr \tta \ttl \ttl \tte \ttl \ttr \tte \ttg \tti \tto \ttn to specify and create a pool of threads. Based on the thread id
(\tto \ttm \ttp \ttg \tte \ttt \ttt \tth \ttr \tte \tta \ttd \ttn \ttu \ttm ), each thread will compute on its own chunk of data as shown
in Figure 8 and discussed in the previous section. We use the clause \#\ttp \ttr \tta \ttg \ttm \tta \tto \ttm \ttp 

\ttb \tta \ttr \ttr \tti \tte \ttr to synchronize the threads and the clause \#\ttp \ttr \tta \ttg \ttm \tta \tto \ttm \ttp \ttm \tta \tts \ttt \tte \ttr to specify
that only the master thread can perform the all-to-all communication. The ROTE
framework has been updated so that a pool of threads is created up front, without
having to deal with nested thread creation. The benefit is that a single pool of threads
is created up front at the beginning of the code, and that pool is used for both the
computation and the packing operations. The K-Computer provides eight threads in
total, and in the current implementation we use all of them. As for Summit, we use
only one socket with 16 threads, each thread on its own core. We do not use the
hyperthreads for the results presented in this paper.

4.3. Results and discussion. In the section, we focus on the 3D DFT results
for cubic data sets of sizes 643, 2563, and 10243, using all three algorithms, slab-pencil,
pencil-pencil, and volumetric. For all of the configurations, we report strong scaling
results, where we keep the problem size fixed and increase the number of compute
nodes in each dimension as shown in Table 1. We focus on the power of two-sized grids
of nodes, and we try to use all the allowable compute nodes. On the K-Computer we
use 32K nodes, while on Summit we can scale up to 4K nodes. We run one MPI rank
per physical node and use eight or 16 threads per node, depending on the system. For
measurements, we use the \ttM \ttP \ttI \ttW \ttt \tti \ttm \tte function and measure the 3D DFT computation
in steady state. We run the 3D DFT in a loop for approximately 10 minutes on the
K-Computer and 5 minutes on Summit. We then take the average execution time
for each experiment. We try to reduce network noise by forcing each MPI process to
sleep for 30 to 60 seconds, and then to execute 10 to 20 dry runs that are not timed.
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Table 1
Table showing the different configurations for the 1D, 2D, and 3D grids. For the RIKEN K-

Computer [1] we choose all configurations, since the system has 48\times 54\times 32 compute nodes on the
3D torus. On Summit, we execute up to 4k compute nodes, the maximum number of physical nodes
available on the system. For the current experiments, we only allocate one MPI rank per physical
compute node; we leave as future work the analysis for multiple ranks per node.

\# of nodes 1D Grid 2D Grid 3D Grid

2 (2) - -
4 (4) (2,2) -
8 (8) (4,2) (2,2,2)
16 (16) (4,4) (4,2,2)
32 (32) (8,2) (4,4,2)
64 - (8,8) (4,4,4)
128 - (16,8) (8,4,4)
256 - (16,16) (8,8,4)
512 - (32,16) (8,8,8)
1k - (32,32) (16,8,8)
2k - - (16,16,8)
4k - - (16,16,16)
8k - - (32,16,16)
16k - - (32,32,16)
32k - - (32,32,32)

Figure 11 shows the strong scaling results for data cubes of sizes 643 and 10243.
The results for the 2563 data cube are depicted in the top two plots in Figure 13. The
main theme is that there is not one algorithm that gives the shortest execution time.
Choosing the slab-pencil algorithm over pencil-pencil and volumetric algorithms, de-
pends on the problem size and the number of compute nodes. For example, for a
problem size of 643, the slab-pencil algorithm seems to provide the best performance,
compared to the other two algorithms. The disadvantage is that the execution time
cannot be scaled to more than eight nodes, given the current implementation. Recall
that we impose the output to have the same distribution and orientation as the input.
Note that on Summit, the scaling of the 643 on more nodes can be done by changing
the DFT algorithms, however, as we will discuss in the next sections, some issues
related to computation and packing need further attention.

As the problem size increases, it is clearer that having multiple algorithms can
provide advantages when scaling to larger number of nodes. For example, scaling the
2563 3D DFT to 4k nodes requires all three algorithms. While, the slab pencil works
for a small number of processors (2 to 16 nodes), and the pencil-pencil algorithm gives
better results for a medium number of processors (32 to 128 nodes), the volumetric
algorithm is needed to further scale the problem to 4k nodes. Note the same scaling
behavior of the 3D DFT on the 10243 data cube on the K-Computer. On Summit, the
same implementation gives different results. In Figure 11, the bottom-left plot shows
that the volumetric algorithm provides the shortest execution time, irrespective of the
number of nodes. As we will show in the next subsections, the network communication
clearly shows different regimes where one algorithm is better than the other, however,
we argue that computation and packing routines need to be further optimized, and
we leave the optimization of the local computation as future work.

The execution of the parallel 3D DFT can be split into three parts as shown in
Figure 8. Nodes communicate via the all-to-all collective to exchange data points.
Each processor packs and unpacks the data before and after the all-to-all communi-
cation. Finally, each processor applies local 1D DFTs, pointwise scaling operations
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Fig. 11. Strong scaling results for data cubes of sizes 643 (top plots) and 10243 (bottom plots)
obtained on the K-Computer and on Summit. The plots show the strong scaling results for all three
algorithms, assuming the data are distributed elemental cyclic across the corresponding 1D, 2D, and
3D grids of nodes, respectively.

and rotations on their local data. In the next sections, we dive in analyzing each
of these components in order to understand the execution times. First, we focus on
the communication layer, outlining the crossing points between the all-to-alls, which
will give a rough estimate of where to swap DFT algorithms. If computation and
packing are efficiently done, then the 3D DFT should have similar behavior to the
all-to-all communication. Second, we present a breakdown of the execution for the
2563 problem size, analyzing the computation and packing. We emphasize that some
components need further work.

4.3.1. MPI all-to-all. The 3D DFT algorithm requires one or more all-to-all
communication steps. The slab-pencil algorithm requires one all-to-all, since one di-
mension of the data cube is distributed on a 1D mesh using the elemental cyclic
layout. The pencil-pencil algorithm requires two all-to-all communication steps, be-
cause two dimensions of the data cube are elemental cyclic distributed on 2D mesh.
Finally, the volumetric implementation requires three all-to-all communications, since
all dimensions of the data cube are distributed elemental cyclic on a 3D mesh. The
scaling behaviors of the three DFT algorithms are highly correlated with the scaling
behaviors of the multiple all-to-alls.

In Figure 12, we show the execution times of only the network component for
the DFT algorithms. We remove the local computation and packing and measure the
one, two, and three all-to-alls. Each experiment assumes a distributed data cube on
a 1D, 2D, and 3D mesh for each of the three problem sizes, 643, 2563, and 10243. We
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Fig. 12. The execution of one, two, and three all-to-alls applied on 1D, 2D, and 3D grids of
nodes, respectively. The number of all-to-alls depends on the 3D DFT algorithm, slab-pencil, pencil-
pencil, and volumetric. The plots report the execution time when the number of nodes is increased
for three problem sizes 643, 2563, and 10243.

measure the code in steady state, forcing a warm-up phase similar to measurements
of the 3D DFT. For the all-to-all experiments we increase the number of nodes to
be equal to the size of the cube's dimensions, in contrast to the DFT experiments
where we keep the number nodes in each dimension bounded by the elemental cyclic
constraint. For example, for a data cube of size 643 distributed on a 1D mesh, the
number of nodes is increased to 64 nodes, rather than eight as in the DFT case.

Two aspects can be extracted from the results shown in Figure 12. First, all ex-
periments show that for a fixed problem size, the execution of the all-to-alls decreases
as the number of nodes is increased. However, beyond a certain number of nodes,
the execution experiences slowdowns. For example, for the 643 data cube distributed
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on a 1D mesh, the single all-to-all exhibits a slowdown when the number of nodes
goes beyond 32 nodes on both the K-Computer and Summit. This may be due to
the change in the all-to-all algorithms. Bruck et al. [2] have shown that there are two
algorithms for the all-to-all, each having the following asymptotic bounds:\bigl\lceil p - 1

k

\bigr\rceil 
\alpha +

\bigl\lceil p - 1

k

\bigr\rceil n

p2
\beta ,(4.1)

logk+1(p)\alpha + logk+1(p)
n

(k + 1)p
\beta ,(4.2)

where p represents the number of nodes, n represents the total amount of data across
all p, and k represents the number of ports a compute node can send and receive. \alpha 
represents the start-up cost and \beta represents the inverse of the bandwidth on each of
the links. The first algorithm 4.1 minimizes data movement and is useful when the
number of nodes is small and the amount of data is large. The second algorithm 4.2
minimizes latency and is useful when the number of nodes is large but the amount of
data is small. For a given size n, one would use the first algorithm as long as

p2 \geq n\beta 

\alpha 
,(4.3)

and after he/she would choose the second algorithm.
Second, there are crossing points, where the execution time of a single all-to-all is

slower than two all-to-alls or where the execution time of two all-to-alls is slower than
three all-to-alls, for the same problem size n and the same number of nodes p. This
emphasizes that given a problem size n, it is better to do multiple smaller all-to-alls
on fewer compute nodes than one single all-to-all between a large number of nodes.
In addition, note that these crossing points appear when the all-to-all algorithms are
presumed to be swapped, given the above description of the asymptotic bounds. A
model can be derived to decide when to choose the algorithms and the number of
all-to-alls. However, we leave that as future work, since the current framework uses
the all-to-all collectives from the OpenMPI library, where each routine is treated as
a black box.

4.3.2. Execution breakdown. The network communication is just one part of
the DFT computation. The timing of the full DFT algorithm also requires the timing
of the local computation and the timing of the packing routines, which may be a
significant percentage of the overall execution. The time spent in the local operations
depends on the local problem size, the implementation of the local computation, and
the hardware characteristics of the compute nodes, such as number of threads, cache
hierarchy, and bandwidth to main memory. We isolate the local computation, the
packing routines, and the network communication by surrounding each section with
\ttM \ttP \ttI \ttW \ttt \tti \ttm \tte function calls. We run the DFT algorithms in steady state and gather
the averaged timings from each MPI rank. We report the slowest execution time for
each section. In Figure 13, we provide results to show how much of the execution
time is spent in computation, packing, or data movement over the network, for a
data cube of size 2563 using all three algorithms. Two important insights can be
drawn from these results. First, as the number of nodes gets larger, the time spent
in the local computation becomes insignificant. Second, as the number of nodes
increases, a higher fraction of time is spent in the packing routines and network
communication.
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Fig. 13. Strong scaling results for the 3D DFT of size 2563 using the three algorithms and a
breakdown of their execution. The bottom six plots show the time spent on the network (blue line),
the time spent in packing (yellow line), and the time spent in compute (red line).
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As shown in Popovici, Franchetti, and Low [22], computation can be improved
even for the small number of nodes. First, local DFT operations are implemented
using FFTW's sequential Guru interface. While the interface provides the flexibility
of applying small DFTs in different dimensions and rotating the data as the results
are written back into memory, similarly to the rotations depicted in Figure 8, the
performance is somewhat lacking. The FFTW Guru interface does not efficiently
utilize the cache hierarchy, and it does not offer the capabilities to merge pointwise
operations with the DFT calls. Lack of these capabilities imposes an additional pass
through the data in order to perform the pointwise multiplication. Second, the DFT
operations are well known to be memory latency bound problems [23], in the sense that
computation stalls waiting for data from memory. However, using double buffering
techniques, where some threads do computation and some threads prefetch data, can
improve local computation by almost two times.

The packing routines can be implemented to make better use of the memory
hierarchy. Data packing becomes more significant as indicated by the increased gab
between the blue and orange lines, as outlined in the bottom two plots in Figure 13.
One reason is that the packing routines are not cache friendly. Due to how the
parallelization of the packing routines is done, threads will start conflicting on the
cache-line length. The number of threads does not change as the number of compute
nodes is increased and the amount of data is decreased. We leave the compute and
the packing optimizations as future work. The optimizations are meant to bring the
DFT execution time closer to that of the communication, which clearly emphasizes
good scaling and the need for multiple algorithms for the same problem sizes.

5. Conclusion. In this paper, we presented a flexible framework for implement-
ing parallel multidimentional DFTs on multidimentional processing grids. Specifically,
we show that for different input problem sizes and different computational resource
availability, different parallel multidimentional DFT algorithms are necessary for at-
taining efficient performance. In addition, we show that it is necessary to parallelize
within the 1D DFT in order to scale the computation of the multidimentional DFT
towards higher number of processing units. Despite incurring more rounds of com-
munication, we show that for large enough data sizes, parallelizing with the 1D DFTs
can improve the overall execution time over the conventional approach of simply par-
allelizing across multiple 1D DFTs.

While we showed improved performance as we scale to a larger number of nodes,
further improvements to performance can be attained. As shown in Figure 13, a
drawback of the current ROTE framework is that a local packing step is required to
repack the data back into elemental-cyclic form after the collective communication.
The time for the repacking is significant as it could be as much as 50\% of the overall
execution time. One possibility for reducing this packing time is to expose the packing
performed by ROTE or allow ROTE to accept data in packed form. This is something
we are currently exploring. We also believe that the ROTE notation for describing
data layout and the processing grid can be extended to other architectures such as
GPUs and multi-GPU systems. This can be achieved by replacing the MPI routines
with the appropriate data movement primitives for GPUs and multi-GPUs. As the
hierarchy of threads, thread blocks, streaming processors, and GPUs can be described
as a multidimentional array, this suggests that ROTE can be used as the notation for
porting the existing code to GPUs and multi-GPU systems.
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