
RPU: The Ring Processing Unit

Deepraj Soni†1, Negar Neda†1, Naifeng Zhang2, Benedict Reynwar3, Homer Gamil1,
Benjamin Heyman1, Mohammed Nabeel1, Ahmad Al Badawi4, Yuriy Polyakov4, Kellie Canida3,

Massoud Pedram5, Michail Maniatakos1, David Bruce Cousins4, Franz Franchetti2, Matthew French3,

Andrew Schmidt3, Brandon Reagen1

Abstract—Ring-Learning-with-Errors (RLWE) has emerged as
the foundation of many important techniques for improving
security and privacy, including homomorphic encryption and
post-quantum cryptography. While promising, these techniques
have received limited use due to their extreme overheads of
running on general-purpose machines. In this paper, we present
a novel vector Instruction Set Architecture (ISA) and microarchi-
tecture for accelerating the ring-based computations of RLWE.
The ISA, named B512, is developed to meet the needs of ring
processing workloads while balancing high-performance and
general-purpose programming support. Having an ISA rather
than fixed hardware facilitates continued software improve-
ment post-fabrication and the ability to support the evolving
workloads. We then propose the ring processing unit (RPU), a
high-performance, modular implementation of B512. The RPU
has native large word modular arithmetic support, capabilities
for very wide parallel processing, and a large capacity high-
bandwidth scratchpad to meet the needs of ring processing. We
address the challenges of programming the RPU using a newly
developed SPIRAL backend. A configurable simulator is built to
characterize design tradeoffs and quantify performance. The best
performing design was implemented in RTL and used to validate
simulator performance. In addition to our characterization, we
show that a RPU using 20.5mm2 of GF 12nm can provide a
speedup of 1485× over a CPU running a 64k, 128-bit NTT, a
core RLWE workload.

I. Introduction
The continued increase in security threats and demand for

better data privacy protections has incited many to re-think

security primitives and how data are computed on. From

the security viewpoint, the advent of quantum computing

has launched efforts into the next generation post-quantum

cryptography [1]. These new encryption techniques provide

security guarantees against quantum computers that break

many existing schemes. At the same time, users are demanding

more control over who can see and use their personal data.

Homomorphic encryption (HE) is another emerging type of

encryption where secured (encrypted) data can be computed on

directly, preserving confidentiality while granting users access

to high-quality services. While each of the above techniques

provides different security and privacy capabilities, they are

all Ring-Learning-With-Errors (RLWE)-based algorithms with

the same fundamental underlying structures: rings.

1NYU
2Carnegie Mellon University
3USC Information Sciences Institute
4Duality Technologies
5USC Viterbi School of Engineering
†Deepraj Soni and Negar Neda contributed equally to this work.
Correspondence to: Deepraj Soni and Negar Neda (dss545, negar)@nyu.edu

From a systems perspective, rings are large arrays of ele-

ments in a field (an integer and modulus). RLWE-based secu-

rity and privacy techniques have seen relatively little practical

use due to their poor performance on existing hardware. There

are three major sources of slowdown that can be understood

by looking at HE, an application based on RLWE. First,

computations in HE involve modular arithmetic with large

moduli. Modular arithmetic is significantly more involved

than standard integer math and is typically not supported

by existing hardware, especially when large primes are used.

Second, encryption incurs a large ciphertext expansion factor.

Plaintext data must first be organized into an array and is then

encrypted into two ciphertext arrays with elements ranging

from dozens to thousands of bits. Prior work has reported

up to a 50× size increase after encryption [2]. Finally, HE

operations require an exorbitant amount of computation. This

is because many HE operations, e.g., HE multiplication, are

not simple translations of their plaintext equivalent. These

operations require extra functions, such as the Number The-

oretic Transform (NTT), which greatly increase the number

of operations needing to be processed. These overheads result

in high latency, energy consumption, and memory pressure,

which limits the deployment of HE and ring applications.

To address the emerging needs of ring processing, we

present the Ring Processing Unit (RPU) and B512 vector ISA.

B512 was designed to address the needs of ring processing

while being programmable, as algorithms are still rapidly

evolving, and to support continued software improvements

post fabrication. It has a vector length of 512 elements to

increase the work per instruction while providing flexibility to

the programmer, as the smallest size ring is typically one to

two thousand elements. It includes a large, local scratchpad

to (double) buffer vector data, 64 vector registers, and native

support for large word modular arithmetic. The ISA was

designed with simplicity in mind and has only 17 instructions

to keep front-end overheads at bay.

The RPU is a highly parallel and decoupled implementation

of B512. Major components of the design include independent

pipelines for data access, compute, and shuffle, as well as

a front-end. Vector data memory (VDM) is parameterized to

support different SRAM implementation choices and memory

partitioning schemes to tradeoff bandwidth, frequency, and

area. Being a vector ISA, compute can be parallelized across

lanes. We develop a novel compute lane named the HPLE,

High-Performance LAW (Large Arithmetic Word) Engine, to

rapidly process compute instructions. Each HPLE is equipped

272

2023 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

979-8-3503-9739-0/23/$31.00 ©2023 IEEE
DOI 10.1109/ISPASS57527.2023.00034

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Pe

rf
or

m
an

ce
 A

na
ly

si
s o

f S
ys

te
m

s a
nd

 S
of

tw
ar

e
(I

SP
A

SS
) |

 9
79

-8
-3

50
3-

97
39

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

PA
SS

57
52

7.
20

23
.0

00
34

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 04,2025 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

with a slice of the Vector Register File (VRF) and modular

arithmetic units. Finally, to reuse data in the register file,

a shuffle pipeline is used to support register-register data

movement and breaking vectors. Each pipeline is decoupled

to improve resource utilization and instruction throughput.

The goal is to dedicate as much chip area as possible to the

backend of the RPU and limit the overheads associated with

general-purpose processing. As efficiency demands simplicity,

the front-end is intentionally kept as simple as possible. It

is in-order and does not support renaming. We introduce

a lightweight technique named busyboarding to track and

block all register data dependencies while dispatching ready

instructions to available pipelines. The busyboard guarantees

correctness while allowing instructions to execute and com-

plete out of order using the decoupled pipelines.

The challenge with having a simple front-end is high-

performance programming. RPUs provide high-performance

potential, but the rigid nature of the front-end places a heavy

burden on the compiler/programmer to schedule code and

layout data properly. Whenever the busyboard detects a de-

pendence, new instructions cannot issue until they resolve. To

improve performance, programs should be scheduled around

it. We address and automate this process by developing a new

SPIRAL [3] backend for the RPU. SPIRAL has a rich library

of transformations and optimizations we leverage to compile

and optimize code for the RPU. This is especially true for

NTT, which is the ring equivalent of the FFT. As we will

demonstrate, SPIRAL is able to effectively select an NTT

algorithm and generate high-performance B512 programs to

improve performance over a baseline program by 1.8×.
We evaluate and characterize the RPU using a detailed

cycle-level simulator. The simulator was parameterized to

consider a range of different IP, namely modular multiplier

design, number of HPLEs, and VDM partitioning (banking).

This enables rapid design space exploration to quantify design

decisions. Our exploration indicates that an RPU design with

128 VDM banks and 128 HPLEs maximizes performance

per area when processing NTTs. To validate our results, we

implemented this design point in RTL and emulated it on a

Palladium system [4]. Additional experiments are provided

to quantify the benefit of optimized SPIRAL programs, the

impact of multiplier design on RPU performance per area,

speedup over a CPU across a range of ring sizes, and area

analysis.

This paper makes the following contributions:

1) We introduce B512, a novel vector ISA tailored to the

needs of ring processing. It supports a vector length of

512 for highly-parallel execution and ample registers and

local memory space to meet the memory needs of ring

processing.

2) We develop the Ring Processing Unit (RPU) that im-

plements B512 and addresses the three barriers in ring

processing. It includes decoupled pipelines to mask

data movement cost, an efficient front-end to mini-

mize general-purpose overheads, and a highly-parallel

backend constituting many HPLEs to handle the heavy

processing load.

3) We develop a SPIRAL backend to target RPU program-

ming to effectively and automatically generate high-

performance B512 programs. An in-depth evaluation is

done using NTT with a wide range of ring sizes.

4) We implement a cycle-level simulator to rigorously char-

acterize the design and understand tradeoffs via design

space exploration. The simulator is validated against

a RTL implementation and achieves 97% performance

accuracy. Our analysis shows that the best configuration

is with 128 VDM banks and HPLEs. This RPU can

process a 64k, 128-bit NTT in 6.7us using 20.5mm2 of

area in GF 12nm, providing a 1485× speedup over a

CPU.

II. Preliminaries
A. Ring Learning with Error (RLWE)
As the amount of information in the digital domain is

increasing rapidly, data security is a major concern of our time.

While modern cryptography has developed solutions to protect

data storage and transfer, large-scale quantum computing has

the potential to break the security of existing digital infrastruc-

ture [5]. Against the attacks from quantum computers, Fully

Homomorphic Encryption (FHE) protects data-in-use and

Post-Quantum Cryptography (PQC) guarantees the security of

the data, at-rest and in-motion. FHE schemes (such as BGV

[6], CKKS [7], and many more) and PQC schemes (such as

CRYSTALS-Kyber [8]) are RLWE-based schemes that operate

on polynomial rings. RLWE is a variant of standard LWE

with smaller computation complexity and a similar security

guarantee [9]. The RLWE-based cryptographic algorithms

perform arithmetic operations over ring Zq/(x
n + 1) where

n is power-of-two integer representing the polynomial degree
and q is the prime modulus.
HE, an RLWE-based cryptography algorithm, operates on

rings with large polynomial degrees and modulus sizes. CKKS

[7] supports operations on approximate numbers. BGV [6] op-

erates on integers in the finite field. These schemes implement

different applications that offer secure computation, secure

storage, secure data transfer, and secure machine learning tasks

[10]–[16]. These applications need a large modulus. Hence, we

decompose the large modulus to smaller ones using Residue

Number System (RNS) for faster performance.

B. Residue Number System (RNS)
In RNS, a large integer, modulus Q, is represented by

its value modulo L pairwise co-prime integers, qi, follow-
ing the Chinese Remainder Theorem (CRT), where Q =
q0q1q2...q(L−1). These pairwise co-primes are called residue

polynomials. RNS effectively breaks each polynomial into

several polynomials with smaller coefficients, achieving faster

modular arithmetic implementation.

Figure 1 shows a generic example of converting an input

image to ciphertext using RNS. First, we convert the input

into a vectorized format with plaintext modulus t. Next, we

273

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 04,2025 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Overview of converting an input image to ciphertext and breaking
down to small vectors using RNS.

encrypt the data using a public key that converts it into two

ciphertext polynomials with ciphertext modulus Q, where Q
>> t. As the Q is quite large, we divide it into smaller moduli.
In the case of ciphertexts, each pair of smaller polynomials

are called towers. During polynomial multiplication, each
tower operates independently. RNS supports a wide range of

polynomial coefficient widths. If the coefficient width is larger

than the modulus arithmetic, we can break it into multiple

towers. For example, if we design a 128-bit modular arithmetic

processor, a polynomial with 1,600-bit modulus is converted

to 13 towers where each tower has 128-bit elements. Hence,

we can use RNS for larger bit-widths and we can choose non-

RNS computation for lower bit-widths.

C. NTT
Polynomial multiplication is the process of multiplying two

polynomials together to create a new polynomial. Polyno-

mial multiplication is a major bottleneck for efficient ring

processing. Done naively, it has quadratic complexity O(n2).
These computations are typically sped up by transforming the

polynomial using the Number Theoretic Transform (NTT) [8].

NTT is the generalized form of the Discrete Fourier Transform

(DFT), and it is an integral part of the RLWE algorithms

for accelerating polynomial multiplications over finite fields

(e.g., NTT counts for 94% of homomorphic multiplication’s

execution time [17]). NTT is able to transform polynomials

into a domain that reduces the complexity of polynomial

multiplications to linear O(nlog n), making polynomial mul-
tiplication much faster.

III. The B512 ISA

We have designed a new vector ISA, named B512, to

balance the needs of high-performance ring processing with

programmable, general hardware. An ISA was chosen over a

fixed hardware design to support a wide range of potential

ring applications. While algorithms are still evolving, having

an ISA gives us the flexibility to map new algorithms to

previously designed hardware. The ISA has 17 64-bit instruc-

tions with spare encoding space for expansion in future work.

Instructions provide native modular arithmetic support with

special consideration for commonly used computations (e.g.,

butterfly), various load/store patterns, and register-register vec-

tor breaking via shuffling. B512 supports a maximum VDM

size of 32 MiB and 16 MiB scalar data memory (SDM).

Unique register files (amount) are specified for vector data

(64), scalar data (64), addresses (64), and moduli (64). The

vector length is 512. This was chosen to increase the work per

TABLE I
B512 ARCHITECTURE. INCLUDING COMPUTE, LOAD/STORE, AND

SHUFFLE INSTRUCTIONS.

[63:55] [54:49] [48] [47:44] [43:24] [23:18] [17:12] [11:6] [5:0]
Load/Store Instructions (LSI)

- - - Opcode Address VD Mode Value RM
- - - Opcode Address - - RT -

Compute Instructions (CI)
VD1 VT1 BFLY Opcode - VD VS VT RM
- - - Opcode - VD VS RT RM

Shuffle Instructions (SI)
- - - Opcode - VD VS VT -

instruction and reduce the front-end cost, while still providing

flexibility to the compiler to optimize schedules and data

layout. Rings tend to be large, e.g., the HE standard [18]

specifies a minimum ring size of 1024, and having a vector

size less than the ring size provides flexibility to the compiler.

Table I reports the encoding for B512 instructions. The

instructions interact with data memories, register files, and

HPLEs. Instructions are classified into three types: (1) Load/S-

tore Instructions (LSI), (2) Compute Instructions (CI), and (3)

Shuffle Instructions (SI). We note that in the microarchitec-

ture, there are three decoupled pipelines that support parallel

execution of each instruction type.

Load/Store Instruction (LSI): LSIs interact with data
memories (VDM and SDM) and register files (Vector Register

File (VRF) and Scalar Register File (SRF)). The VDM is used

to store the actual rings and twiddle factors. Vector load and

store interact with VDM and VRF to load vectors with 512

elements from the VDM to VRF and store back the results to

the VDM. In Table I, RM points to a register in the Address

Register File (ARF). The address of the first element in the

VDM would be defined as ARF[RM] + OFFSET, and the

rest of the elements are addressed based on the two other

fields, MODE and VALUE. MODE and VALUE together

implement four different addressing modes in vector load/store

instructions, where the two STRIDED-SKIP and REPEATED

modes enable efficient NTT implementation by transferring

each 2V ALUE and skipping other 2V ALUE . For scalar data,

only a load instruction is required to load data from SDM to

a register in SRF.

Compute Instructions (CI): B512 supports vector-vector
and vector-scalar modular addition, subtraction, and multipli-

cation. These instructions perform point-wise modular com-

putation between two vectors or a vector and a single scalar

value. There is a special butterfly instruction that combines

these three modular vector-vector instructions and is used to

accelerate NTT and reduce code size. As shown in Table I,

RM points to a modulus register to define the modulus of the

computation. VS and VT act as input registers for modular

arithmetic operations, and VD is the output register. VT1 and

VD1 are used as the two additional registers for butterfly.

Shuffle Instructions (SI): To improve NTT performance,
B512 includes register-register instructions to merge elements

of two vector registers into one. There are four different shuffle

instructions: (1) Unpack Low (UNPKLO), (2) Unpack High

274

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 04,2025 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

(UNPKHI), (3) Pack Low (PKLO), and (4) Pack High (PKHI).

Shuffle instructions have two source registers, VS and VT

and one destination register, VD. UNPKLO stores the first

half of VS and VT elements to VD in an interleaved fashion.

UNPKHI stores the second half of VS and VT elements to

VD in an interleaved fashion. PKLO stores the even indexed

VS elements to the first half of VD and the even indexed

elements of VT to the second half of VD. PKHI stores the

odd indexed VS elements to the first half of VD and the odd

indexed elements of VT to the second half of VD. These

instructions allow architectural vectors to be split up within

the VRF, and they were chosen to support the development

of efficient NTT programs leveraging SPIRAL and taking

pressure off the VDM. B512 shuffle instructions are similar to

those in x86 [19].

A. Parameter Selection
Vector width defines how many elements are processed in

one instruction. HE workloads are repetitive. Hence, we prefer

a larger vector width to increase the amount of parallel work

per instruction. However, a large vector width will restrict the

software from generating efficient code for smaller polynomial

sizes and using the compute resources efficiently. We choose a

vector width of 512, which is a good trade-off between parallel

computation and software flexibility. RPU backend enables

parallelism by transferring and computing data in parallel.

Each memory size is based on the requirements of the

key RLWE workload, NTT. The Instruction Memory (IM) is

512KB and the VDM supports storing at least one complete

instance of data for the 64K NTT workload, but we commonly

double buffer. The current design operates on 128b modulus

size, denoted as |q|, and 128b data types. With |q| equal to
128b, we have the flexibility to run different HE applications

with or without RNS, as reported in the homomorphic standard

[18].

The register file should be small enough to directly access

HPLEs with minimal latency and it should be large enough

to store more values for flexibility and for minimal data

movement between data memory and the register file. Hence,

we choose to have 64 registers in all register files.

IV. The Ring Processing Unit
In this section, we describe the microarchitecture of the

designed Ring Processing Unit (RPU). The RPU was designed

for general ring processing with high performance by taking

advantage of regularity and data parallelism. We achieve this

balance by designing explicitly managed hardware to elide

the high costs and complexity of caches, dynamic scheduling

logic, and prediction, and task the compiler with handling

scheduling and data movement at compile time. As we will

show, this philosophy works very well for ring processing.

Figure 2 shows an overview of the RPU. Based on the data

parallel nature of ring processing workloads, and notably

HE, parallel vector architectures are highly amenable for

meeting the performance needs. Below, we cover each major

component of the design.

A. Frontend
All RPU programs are stored in the local instruction mem-

ory. When a task is to be executed, a controlling RISC-V core

issues a start command to the front-end with an instruction

memory pointer to the first instruction of the kernel. To

mitigate the frontend overheads, the RPU is kept efficient using

in-order logic and lightweight dependence tracking. The front-

end fetches and decodes instructions in-order. Data hazards

are checked using a busyboard, which is used to describe our
lightweight scoreboarding technique. The busyboard is a bit

array that tracks all the vector registers being used by all in-

flight instructions. No renaming is supported, and whenever

a decoded instruction register is busy, the entire front-end

stalls. The design prioritizes efficiency and the area overheads

are negligible. Design is also highly sensitive to instruction

scheduling.

Once instructions clear all data hazards, they are dispatched

to one of three decoupled queues: (1) Load/store Queue for

LSIs, (2) Compute Queue for CIs, and (3) Shuffle Queue

for SIs. Once an instruction is in the queue, it can run in

parallel with any other instruction as we know (from the busy

board) there are no dependencies. The parallel execution via

the decoupled pipelines is a key to achieving high performance

with general-purpose processing, as it masks much of the data

movement time.

B. RPU Backend
The RPU backend provides the high-performance structures

needed for effective ring processing. The major components

include three decoupled pipelines for computing via High-

Performance LAW Engines (HPLEs), register-register data

shuffling, and Vector Data Memory (VDM). It also includes

a Scalar Data Memory (SDM) to house the constants needed

by HE.

1) High Performance LAW Engine (HPLE): The HPLE
is the computational unit in the RPU. Each has a Long

Arithmetic Word (LAW) engine and a partition of the VRF, or

a VRF slice. The LAW Engine contains a modular multiplier,

a modular adder, a modular subtractor, and two comparator

units. NTT/iNTT is a key kernel in RLWE, and the HPLEs

support native butterfly computation via a butterfly instruction.

Each CI interacts with the VRF slice and LAW Engine to

perform three tasks: read data from the VRF slice to the LAW

engine, start the computation in LAW Engine, and store the

output to the VRF slice. Here we use 128b to meet the needs

of HE precision, see Section III-A. The RPU allocates multiple

HPLEs as lanes in classic vector designs. Instantiating many

HPLEs addresses the high volume of computation in the ring

processing workloads.

In each HPLE, the LAW Engine is connected to the VRF

slice. VRF slice is part of VRF that is divided among HPLEs.

According to B512 ISA, the VRF has 64 vector registers with

512 elements. Each slice has 64 ∗ 512
num HPLEs elements. If

we store each register of VRF in a different memory, it will

require a smaller and more efficient memory. To increase area

efficiency, we stack four registers in one memory. The four

275

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 04,2025 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Ring Processing Unit (RPU) architecture.

registers in one memory cannot be accessed simultaneously.

Therefore, instructions require special scheduling and data

placement in the VRF, which is handled by SPIRAL. Hence,

each VRF slice constitutes 16 single-port memories with
512∗4

num HPLEs words.

A VRF slice interacts with HPLEs, Vector Crossbar

(VBAR), and Shuffle Crossbar (SBAR). Though the VRF

has 16 SRAM ports, 10 are exposed to the three pipelines;

five ports (three read ports and two write ports) for HPLEs,

three ports (two read ports and one write port) for SBAR,

and two ports (one read port and one write port) for VBAR.

For computation, each VRF slice simultaneously sends the

data from input registers to the corresponding HPLE. HPLE

performs the computation. Once the HPLE outputs the result,

the VRF slice stores it back to output registers.
2) Shuffle Crossbar (SBAR): The SBAR transfers the

data across VRF registers, executing SIs. It facilitates efficient

implementations of complex access patterns to improve NTT’s

efficiency by allowing register-register data shuffle. With the

SBAR, vectors can be broken in the VRF, saving round trips

through the VDM to restructure data in B512 vectors. The

SBAR supports all four modes of shuffle transfer.
3) Vector Data Memory (VDM): We instantiate an RPU

with a 4MiB VDM. Here, we find 4MiB is sufficient to double

buffer off-chip data loading (via HBM) with the execution of

a kernel. However, if more capacity is needed, the VDM can

be expanded to up to 32MiB. The large word size and capacity

of the VDM necessitates the use of large SRAM macros that

tend to run at relatively low frequency. Therefore, the VDM

limits the frequency of the RPU, as we assume a single clock

domain. When the VDM has 32 banks, it operates at 1.29GHz.

With 128 and 256 banks, it runs at 1.68GHz.
4) Vector Crossbar (VBAR): The VBAR transfers the

data between the VDM and VRF slices of HPLEs and executes

LSIs. It supports all four modes of data transfer, as described

in Section III. HPLEs can efficiently read or write data from

different VDM banks in parallel by utilizing the VBAR, which

transfers the data concurrently. In practice, we find striding

data across banks resolves nearly all bank collisions. We

designed a parameterized VBAR to support any number of

banks and HPLEs.

5) Scalar Unit: A Scalar Data Memory (SDM) and Scalar
Register File (SRF) are included to handle the many constants

needed in RLWE processing. SDM is 32KB and uses 128b

words, which loads data into SRF. The SRF sends values

to HPLEs when the RPU executes scalar instruction. To add

flexibility to operations, a Modulus Register File (MRF) has

been added to the scalar unit. The MRF enables modulus

changing at the instruction granularity, enabling the potential

to process different towers simultaneously. SRF and MRF data

are directly transferred to HPLEs. To enhance the flexibility,

we added an Address Register File (ARF) to the scalar unit

for indirect memory access. This allows moving the location

of stored data in the VDM, without the need of changing

instructions.

V. RPU Programming with SPIRAL
As noted earlier, due to the light-weight front-end of the

RPU, the performance of our design relies heavily on the

sequence of instructions. To overcome this challenge, we

use SPIRAL [3] for instruction generation. SPIRAL [3] is a

program generation/synthesis system that takes in high-level

specifications and produces highly optimized implementations.

SPIRAL has generated code whose performance is comparable

to expertly hand-tuned code across kernels and platforms,

especially linear transforms such as DFTs.

We extended SPIRAL and developed a formal framework to

capture computational algorithms (NTT) and computing plat-

forms (RPU), using a unifying mathematical formalism we call

SPIRAL’s Operator Language [20], [21]. Specifically, we built

on prior work on modular FFT (ModFFT) in SPIRAL [22]

and created the NTTX package to isolate and encapsulate all

NTT-related components. While the current prototype supports

the RPU and ANSI C, the code generation backend targets all

276

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 04,2025 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

SPIRAL-supported platforms. NTTX provides FFTW-like [23]

C/C++ API in line with FFTX-like [24] code generation.

We defined several APIs from the host processor (C/C++

API) to the kernel (kernel code in Listing 1) on RPU, modeled
after CUDA. Launch code is used to abstract low-level system

built-in constructs to convert the host C-based data structures

into scratchpad-based data structures.

To take advantage of the large vector instructions offered

by RPU, we added both Korn-Lambiotte FFT algorithm [25]

and the Pease FFT algorithm [26] as breakdown rules to

SPIRAL. The long vector length required a re-formulation of

the algorithms to map the dataflow to RPU capabilities. Using

the Korn-Lambiotte algorithm, NTTs of size rk are represented
in SPIRAL’s Operator Language (OL) [20] as [21]

NTTrk = Rrk

r

(
k−1∏
i=0

Lrk

rk−1 D
rk

i (NTTr ⊗ Irk−1)

)

.

We implemented a functional simulator in C++ to verify the

generated C code using OpenFHE [27] inputs and outputs,

and an analyzer simulating RPU to count the cycles as the

metric for our optimization. To optimize the performance of

the SPIRAL-generated code on RPU while abiding by the

hardware constraints, we implemented and automated register

allocation, register spilling, and store-to-load forwarding for

the kernel code. To interleave independent instructions within

the kernel and thereby hide latencies, we decomposed the NTT

kernel into multiple “rectangles” that consume parts of the

input sizes in one stage, and go as deep as they can until more

inputs from the starting stage are needed. At last, we used a

greedy instruction scheduler to detect any easily-achieved low-

level optimization, further reducing the overall cycle count.

Using SPIRAL, we generated both forward and inverse

vectorized radix-2 NTTs with sizes from 1,024 to 65,536,

whose correctness is verified against OpenFHE data. Listing

1 shows the radix-2 1,024-point NTT kernel code generated

by SPIRAL.

Listing 1 SPIRAL-generated radix-2 1,024-point NTT
// SPIRAL generated NTT Code for RPU vector architecture
#include <rpu.h>
// kernel code
void _ntt1024x512_b1() {

enter(OP_DEFAULT);
_vload_512x128i(REG_V60, REG_A1, 0);
_vload_512x128i(REG_V20, REG_A1, 8192);
_vbroadcast_512x128i(REG_V19, REG_A3, 1, 1);
_vimulmod_512x128i(REG_V59, REG_V20, REG_V19, REG_M1);
_vaddmod_512x128i(REG_V58, REG_V60, REG_V59, REG_M1);
_vsubmod_512x128i(REG_V57, REG_V60, REG_V59, REG_M1);
_vunpacklo_512x128i(REG_V56, REG_V58, REG_V57);
...
_vstores_512x128i(REG_A2, 16, REG_V21, 2);
leave(OP_DEFAULT);

}

VI. Evaluation & Characterization
In this section, we evaluate and characterize the RPU

via design space exploration to understand area-performance

Fig. 3. 64K NTT area-latency trade-off varying HPLEs and VDM banks.
Pareto optimal designs are marked as: (HPLEs, banks).

tradeoffs and energy consumption. We use large NTTs in the

evaluation, as NTT is the key kernel of RLWE. The analysis

includes how performance scales with ring size, speedup over

a CPU, and the effectiveness of code optimizations.

A. Methodology
A cycle-level performance and functional simulator have

been developed to study the RPU and conduct design space

exploration. The simulator, written in C++, models all aspects

of the design and faithfully process B512 codes generated

by SPIRAL. The simulator is configurable to consider differ-

ent VDM banking strategies, allocations of HPLEs, pipeline

depths, and component IP (e.g., multiplier). Each parameter-

ized component (HPLE, VRF, VDM, SBAR, VBAR, SDM,

SRF, MRF, and ARF) is synthesized using Synopsys’ Design

Compiler (DC) with GF 12nm targeting 2GHz. We used a

commercial SRAM compiler to model all memories. Logic

units’ area and frequency numbers are taken from DC. We

report the memory power from the datasheet and other com-

ponents using Synopsys DC. 32 core 2.5GHz AMD EPYC

7502.

Validation: We used test vectors from OpenFHE [27] for

functional validation of B512 code and the RPU. All codes

generated by SPIRAL run through the functional simulator and

match OpenFHE’s output. We further implemented a full RPU

design in RTL, synthesized it, and sent to a Palladium [4] for

full system emulation. Our emulations also used the real inputs

from OpenFHE and execute SPIRAL B512 programs under

full circuit emulation. We confirmed the outputs of emulation

matched outputs from openFHE. Our simulation performance

estimates further matched within 97%.

B. NTT Performance
In this section, we evaluate RPU’s performance using NTT,

a key kernel in all RLWE schemes. Figure 3 shows the trade-

off between area and runtime when running optimized NTT

code on RPU, by varying the number of HPLEs and the

number of VDM banks. The red line shows the Pareto op-

timal points. We denote each Pareto configuration as (HPLEs,

banks). For example, configuration with 64 HPLEs and 128

banks are denoted as (64, 128). The (4, 32) configuration

277

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 04,2025 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Performance per area (P/A) of 64K NTT under different RPU
configurations.

has the lowest area (and performance) because there are only

4 HPLEs, which require high area, and 32 VDM banks. In

addition, it has the fewest connections between the VDM,

HPLEs, and VRF slices, minimizing VBAR and SBAR over-

head. Due to the limited parallelism, the (4, 32) configuration

has the longest runtime. The (256, 256) configuration has the

highest number of parallel hardware components, maximizing

performance. The RPU frequency is set to the VDM frequency,

as we find VDM runs slowest. We run the RPU at 1.29 GHz,

1.53 GHz, 1.68 GHz, and 1.68 GHz for 32 banks, 64 banks,

128 banks, and 256 banks, respectively.

To analyze RPU trends, we have examined the area and

runtime for RPU configurations with both minimum and max-

imum resources, i.e., 4 and 256 HPLEs. With four HPLEs, we

observe a significant increase in area, but little improvement

in runtime when doubling the VDM banks. The (4, 256) con-

figuration requires 2.5× more area and has 0.75× less runtime
compared to (4, 32) RPU configuration. This is because having

more banks increases the load/store bandwidth, but the limited

number of HPLEs is unable to process the loaded data, which

limits the overall performance improvement. With 256 HPLEs,

we observe a minor area increment and a significant improve-

ment in runtime by doubling the number of VDM banks. The

(256, 256) configuration requires a 20% area increment and

3.5× runtime improvement compared to the (256, 32) RPU

configuration. As mentioned above, more banks create faster

execution of load/store operations, which were a bottleneck

for RPU configuration with 256 HPLEs. Additionally, we have

found that most Pareto points correspond to the configurations

where the number of HPLEs equals the number of banks or

twice the number of banks. This is because such configurations

provide an opportunity for continuous parallel execution for

LIs and CIs; without CIs waiting for LIs to complete or

vice versa. This kind of pipeline creates fewer stalls, uses

the hardware components efficiently, and provides optimized

performance.

Figure 4 shows the performance per area (P/A) of different

RPU configurations running 64K NTT. High P/A indicates that

the design achieves faster execution per mm2. In Figure 4, the

lower P/A values are indicated by dark blue and higher P/A

values are depicted using light yellow. The (128, 128) RPU

configuration is the most efficient configuration, and (64, 64)

has a second-best efficiency. With 128 HPLEs, we observe P/A

improvement up to 128 banks and P/A drops for 256 banks.

This is because further increasing banks provides no speedup

while significantly increasing the vector crossbar area by 2×,
which is the principal contributor to the efficiency drop. For

128 VDM banks, we observe P/A improvement up to 128

HPLEs and P/A drops for 256 HPLEs. This is because at

(256, 128), performance improvement is only 16% compared

to (128, 128) while the large HPLE area doubles. With 256

HPLEs, only two vector elements per instruction are mapped

to an HPLE, which can create bubbles as the front-end cannot

find the next compute instruction fast enough. In practice,

going beyond 128 HPLEs is not practical as crossbar cost

begins to dominate at this point (see Section VI-C).

C. Area Breakdown
Figure 5(a) and Figure 5(b) show the area breakdown

of RPU components: Instruction Memory (IM), Vector Data

Memory (VDM), High performance LAW Engine (HPLE)

(constituting a Vector Register File (VRF) slice and LAW En-

gine), Vector Crossbar (VBAR), and Shuffle Crossbar (SBAR)

when varying the number of HPLEs and VDM banks. Fig-

ure 5(a) shows an area breakdown of RPU components when

the number of HPLEs is fixed and we increase VDM banks. As

expected, we observe that VBAR scales poorly as the number

of banks increases, because the VBAR needs to accommodate

parallel transfer between VDM banks and HPLEs. For 128

HPLEs, we find that the VBAR area remains minimal for up

to 64 VDM banks. However, beyond this point, the VBAR area

doubles when doubling the number of VDM banks. Banking

the VDM has less of an impact on the overall area. As the

VDM banks double, RPU area increases by 10%-24%. The

remaining components are not changed.

In Figure 5(b), we fix VDM banks to 128 and sweep HPLEs.

Here, we find that as the number of HPLEs doubles, the area of

LAW Engine also doubles, while the area of the VRF jumps

by 1.5×-2×. The VRF is divided between the HPLEs, and
each VRF slice (512 divided by HPLEs) has 64 registers.

Therefore, by increasing the number of HPLEs, the VRF slice

gets smaller. Smaller VRF slice is mapped using small but

inefficient memory macros, which stores fewer bits permm2.

E.g., 512B single-port memory, has 2010μm2 area, storing 255

KB/mm2, while 256B memory, has 1818μm2 area, storing 140

KB/mm2. VBAR area remains minimal and more than doubles

with doubling the number of HPLEs. As the number of HPLEs

doubles, the SBAR area triples. However, for 256 HPLEs, the

SBAR area is 5× larger compared to 128 HPLEs.

D. Energy Consumption
Figure 5(c) shows the energy breakdown of 64K NTT on

a RPU with 128 HPLEs and 128 VDM banks. The total

energy required for 64K NTT execution is 49.18μJ. The

278

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 04,2025 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 5. (a) RPU area breakdown, sweeping VDM banking and fixing 128 HPLEs and (b) sweeping HPLEs and fixing 128 VDM banks. (c) 64k NTT
energy breakdown on a (128, 128) RPU.

Fig. 6. 64K NTT runtime for optimized and unoptimized code.

LAW Engine and VRF consume 66.7% and 19.3% of the

total energy, respectively, combining for 86% of the total. The

VDM, which has 8× the memory size of the VRF, consumes

only 10.5% of the energy, as the VDM employs large and

efficient memory macros and is accessed less than VRF. We

also find that the 128b modular multipliers dissipate significant

power at 104mW each; in the future we plan to research new

low-power designs. The vector crossbar and shuffle crossbar

consume 2.3% and 1.0% of the total energy, respectively. The

total average power of the (128, 128) RPU is 7.44W .

E. Impact of Code Optimization

Figure 6 shows the runtime of two programs for executing

a 64K NTT, one naive and one optimized with SPIRAL.

We vary the number of HPLEs and keep the number of

banks at 128. The unoptimized program has no knowledge

of the RPU micro-architecture. The optimized program is

aware of the design and schedules instructions for maximum

parallelism, as described in Section V. Figure 6 shows that

a program considering the underlying microarchitecture of

RPU is on average 1.8× faster than an unoptimized program.

Hardware-aware optimized program effectively schedules code

compared to unoptimized program. For example, when using

256 HPLEs, shuffle instructions in unoptimized code wait for

3,840 clock cycle to release resources from busyboard. On

the other hand, shuffle instruction in optimized code wait only

128 clock cycles. This is because in the unoptimized program,

the shuffle, like other instructions, is always stalled waiting

Fig. 7. RPU sensitivity towards multiplier latency and II while running
64K NTT for (128, 128) configuration.

for the result of the previous instruction, whereas SPIRAL

intersperses independent instructions.

F. RPU Sensitivity
We now conduct performance sensitivity studies of the RPU.

Figure 7 shows the clock cycles needed to compute a 64K

NTT as a function of multiplier pipeline depth (latency) and

initiation interval (II). We first observe that the RPU is not

highly sensitive to multiplier latency, which is intuitive as

all units are fully pipelined. However, clock cycles generally

increase by 1.5× when we increase II. This is natural as

increasing II decreases the throughput of the functional units.

Interestingly, we find an II of 2 only increases clock cycles by

16%. This is because the 64K NTT has 1024 CIs and 1920

SIs and SIs create bottleneck.

Figure 8 shows the clock cycle required for 64K NTT code

when changing the SBAR (shuffle latency) and VBAR (LS

latency). Figure 8 shows that total cycles increase slightly

when increasing LS latency. If shuffle latency is constant, a

LS latency of 10 has 1.7% clock cycle increment compared to

LS latency of 4. If LS latency is constant, clock cycles do not

change if we increase shuffle latency to 7. For higher shuffle

latency, the total cycle count increases marginally with shuffle

latency.

There are two key takeaways from the sensitivity study: (1)

This study guides us in hardware component selection. For

279

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 04,2025 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. RPU sensitivity towards multiplier latency and II while running
64K NTT for (128, 128) configuration.

Fig. 9. Comparing NTT runtime on RPU with the theoretical latency
and load store latency for HBM2.

example, we can select a small multiplier with II=2 for the

LAW engine as a larger multiplier with II=1 has a similar

runtime. We can also increase shuffle latency if the area is

reduced. (2) RPU sensitivity study can help optimize code. For

example, even though NTT has fewer load/store instructions

compared to shuffle instructions, the RPU is more sensitive to

load/store latency. Therefore, we can focus more on scheduling

load/store instructions for further optimization.

G. Performance Comparison
The VDM interacts with a high-bandwidth off-chip memory,

HBM2. We assume a 512GB/s HBM2 as in prior works [2],

[28]. We have evaluated the runtime of NTT for polynomial

degrees between 1K to 64K using the (128, 128) RPU.

Figure 9 compares the obtained results for RPU with HBM2

and the theoretical/ideal case, explained below.

HBM load and store show the time it takes to load data

from off-chip memory (HBM2) to VDM and store back the

NTT result. The theoretical latency is the ideal time it would

take to finish NTT’s execution using the allotted multipliers,

ignoring data movement and data dependence. NTT includes

O(n log n) compute instructions, which in our design are
divided between HPLEs all working in parallel. We calculate

the theoretical latency using
n log2 n

HPLEs∗frequency , where n is

Fig. 10. RPU speedup for various polynomial degrees over CPU for 64
and 128bit data.

the polynomial degree. Labels on each bar represent the

ratio of NTT’s runtime on RPU over the theoretical runtime.

Figure 9 shows how as the polynomial degree increases,

the ratio decreases. For 1K, the RPU is 3.86× slower than

theoretical runtime, while it reduces to 1.38× for 64K. For

larger polynomial degrees, there is more parallel work to do on

the RPU, making the RPU’s runtime closer to the theoretical

limit.

To overlap the execution of NTT with loading data from

HBM2, HBM2’s latency should be less than or equal to NTT

runtime. For 64K to 8K, the runtime drops more than two

times as we half the polynomial degree, e.g., 32 NTT is2×
faster than 64K. However, HBM2’s latency is proportional to

the polynomial degree. As a result, for 16K, HBM2 becomes

0.041us faster than NTT, which is only 2.77% of 16K NTT’s

runtime. For NTTs smaller than 8K, the amount of work per

loaded data decreases, as we half the polynomial degree the

runtime drops less than 2×. This trend causes the HBM2
latency to again become less than NTT. In total, a 512GB/s

HBM2 satisfies the off-chip bandwidth requirement for NTT

execution on RPU for various polynomial degrees.

Figure 10 illustrates the RPU’s speedup over the CPU. We

use a 32-core 2.5GHz AMD EPYC 7502 and run different

polynomial degrees of NTT provided by OpenFHE bench-

marks [27] for 64-bit and 128-bit data on the CPU. Our

designed RPU achieves a speedup of 545× to 1484×over
CPU implementation of NTT for 128 bit data. Even if we run

64-bit data on the CPU (and use the 128-bit RPU), the RPU

is still 77× to 205× faster. Therefore, by having a 128-bit

design, we can support a wide range of data bitwidths and

still get a high speedup over the CPU. For polynomials larger

than 8k, as we double the polynomial degree, the runtime

increases more than 2×, as the data cannot fit in the VRF
and the workload would require more load/stores from VRF

to VDM. As a result, the slope of the speedup over CPU will

start to decrease, reaching 1484× for 64K.

VII. Related work
Most prior work focuses on accelerating FHE primitives [2],

[29]–[33]. F1 [2] designs specialized functional units to accel-

erate the primitive computations shared among various FHE

schemes. One of those specialized functional units is designed

to accelerate NTT. For a fair comparison between our RPU and

F1, we consider NTTs’ functional unit and vector register file

area only for F1 and the HPLE and VRF for RPU. F1 uses

280

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 04,2025 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

32-bit data; therefore, we scale their reported area by 4, as

a conservative assumption given multiplier scale quadratically

with input size, to match the RPU’s 128-bit design. In addition,

because we do not have a multi-RPU design, we only assume

one compute cluster for F1. Considering these assumptions, a

16K NTT on F1 would take 2864ns to execute, with an area

of 11.32 mm2. The RPU takes 1500ns, while the area is 12.61

mm2. F1’s throughput/area is 2× more than RPU. However,

F1 only supports up to 16K polynomial degrees, while our

work has no limit. Also note that in this comparison, F1 can

only process NTTs, as we did not count the area of the other

functional units. Additionally, F1 uses 32b data, while we use

128b data as it has been shown to be needed for 128b security

without any information leakage [34]. To conclude, our RPU’s

throughput/area is close to the fixed approach used in F1 while

the RPU is not limited in the polynomial degree and flexible

for different existing and future ring-based applications, which

may require higher polynomial degrees.

Comparing with GPU, according to [35], a 64K, 30-bit

NTT an a V100 is 6x slower than the RPU using 128-bit.

In addition, the RPU uses 40× less area and 40× less power

than a V100. If 128-bit is used on a GPU, we expect the RPU

speedup to improve significantly.

Recently, several HE compilers have been developed. Por-

cupine [36] generates optimized and vectorized HE kernels

through program synthesis. Ramparts [37], directly translates

Julia functions to HE workloads using PALISADE [38] library.

nGraph [39] has added support for CKKS and BGV schemes

to an existing machine learning compiler. Eva [11] introduces

a new input language for vector arithmetic that targets the

SEAL library and hides the cryptographic complexities from

the programming.

VIII. CONCLUSION

This paper develops the RPU to accelerate RLWE-based

workloads. The RPU is an accelerator that realizes our pro-

posed ISA, B512. In addition to the hardware, we pro-

pose a compiler flow based on SPIRAL to automate high-

performance programming. Using a newly developed simu-

lator, we rigorously explore the design-space to understand

tradeoffs and identify efficient designs. We show that an RPU

with 128 banks and HPLEs, can execute 128-bit 64K NTT in

6.7 μs using 20.5mm2 of GF 12nm, achieving a speedup of

1485× over a CPU.

ACKNOWLEDGMENT

This work was supported in part by the Applications Driving

Architectures (ADA) Research Center, a JUMP Center co-

sponsored by SRC and DARPA. Additionally, this research

was developed with funding from the Defense Advanced

Research Projects Agency (DARPA), under the Data Pro-

tection in Virtual Environments (DPRIVE) program, contract

HR0011-21-9-0003. Reagen received supported from the NY

State Center for Advanced Technology in Telecommunications

(CATT). The views, opinions, and/or findings expressed are

those of the authors and do not necessarily reflect the views

of the sponsors.

REFERENCES

[1] I. T. L. Computer Security Division, “Post-Quantum Cryptogra-
phy | CSRC | CSRC,” Jan. 2017. https://csrc.nist.gov/projects/
post-quantum-cryptography.

[2] A. Feldmann, N. Samardzic, A. Krastev, S. Devadas, R. Dreslinski,
K. Eldefrawy, N. Genise, C. Peikert, and D. Sanchez, “F1: A Fast
and Programmable Accelerator for Fully Homomorphic Encryption
(Extended Version),” Sept. 2021. arXiv: 2109.05371.

[3] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato,
J. R. Johnson, M. Püschel, J. C. Hoe, and J. M. Moura, “Spiral: Extreme
performance portability,” Proceedings of the IEEE, vol. 106, no. 11,
pp. 1935–1968, 2018.

[4] “Palladium Emulation.” https://www.cadence.com/en US/home/tools/
system-design-and-verification/emulation-and-prototyping/palladium.
html Accessed on Dec-11-2022.

[5] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM Review, vol. 41,
pp. 303–332, Oct 1990.

[6] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully ho-
momorphic encryption without bootstrapping,” in Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, ITCS
’12, (New York, NY, USA), pp. 309–325, Association for Computing
Machinery, Jan. 2012.

[7] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in International conference
on the theory and application of cryptology and information security,
pp. 409–437, Springer, 2017.

[8] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehle, “CRYSTALS - Kyber: A CCA-
Secure Module-Lattice-Based KEM,” in 2018 IEEE European Sympo-
sium on Security and Privacy (EuroS P), pp. 353–367, Apr. 2018.

[9] V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and
Learning with Errors over Rings,” in Advances in Cryptology – EU-
ROCRYPT 2010 (H. Gilbert, ed.), Lecture Notes in Computer Science,
(Berlin, Heidelberg), pp. 1–23, Springer, 2010.

[10] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux,
“Efficient Bootstrapping for Approximate Homomorphic Encryption
with Non-sparse Keys,” in Advances in Cryptology – EUROCRYPT 2021
(A. Canteaut and F.-X. Standaert, eds.), Lecture Notes in Computer
Science, (Cham), pp. 587–617, Springer International Publishing, 2021.

[11] R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine, and M. Musu-
vathi, “Eva: An encrypted vector arithmetic language and compiler
for efficient homomorphic computation,” in Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 546–561, 2020.

[12] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, “CHET: an optimizing compiler for
fully-homomorphic neural-network inferencing,” in Proceedings of the
40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, (New York, NY, USA), pp. 142–156,
Association for Computing Machinery, June 2019.

[13] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying Neural Networks to Encrypted Data
with High Throughput and Accuracy,” in Proceedings of The 33rd
International Conference on Machine Learning, pp. 201–210, PMLR,
June 2016. ISSN: 1938-7228.

[14] K. Han, S. Hong, J. H. Cheon, and D. Park, “Logistic Regression
on Homomorphic Encrypted Data at Scale,” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, pp. 9466–9471, July 2019.
Number: 01.

[15] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee,
J. Lee, D. Yoo, Y.-S. Kim, and J.-S. No, “Privacy-Preserving Machine
Learning With Fully Homomorphic Encryption for Deep Neural Net-
work,” IEEE Access, vol. 10, pp. 30039–30054, 2022. Conference Name:
IEEE Access.

[16] R. Podschwadt and D. Takabi, “Classification of Encrypted Word
Embeddings using Recurrent Neural Networks,” p. 5, 2020.

[17] S. Fan, Z. Wang, W. Xu, R. Hou, D. Meng, and M. Zhang, “Tensorfhe:
Achieving practical computation on encrypted data using gpgpu,”arXiv
preprint arXiv:2212.14191, 2022.

281

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 04,2025 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

[18] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio,
D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan, “Homo-
morphic encryption security standard,” tech. rep., HomomorphicEncryp-
tion.org, Toronto, Canada, November 2018.

[19] “Intel® c++ compiler classic developer guide and reference.”
https://www.intel.com/content/dam/develop/external/us/en/documents/
cpp compiler classic.pdf.

[20] F. Franchetti, F. d. Mesmay, D. McFarlin, and M. Püschel, “Opera-
tor language: A program generation framework for fast kernels,” in
IFIP Working Conference on Domain-Specific Languages, pp. 385–409,
Springer, 2009.

[21] N. Zhang, H. Gamil, P. Brinich, B. Reynwar, A. Al Badawi, N. Neda,
D. Soni, K. Canida, Y. Polyakov, P. Broderick, et al., “Towards full-stack
acceleration for fully homomorphic encryption,”

[22] L. Meng, Y. Voronenko, J. R. Johnson, M. Moreno Maza, F. Franchetti,
and Y. Xie, “Spiral-generated modular fft algorithms,” in Proceedings of
the 4th International Workshop on Parallel and Symbolic Computation,
pp. 169–170, 2010.

[23] M. Frigo and S. G. Johnson, “Fftw: An adaptive software architecture
for the fft,” in Proceedings of the 1998 IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No.
98CH36181), vol. 3, pp. 1381–1384, IEEE, 1998.

[24] F. Franchetti, D. G. Spampinato, A. Kulkarni, D. T. Popovici, T. M.
Low, M. Franusich, A. Canning, P. McCorquodale, B. Van Straalen,
and P. Colella, “Fftx and spectralpack: A first look,” in 2018 IEEE 25th
International Conference on High Performance Computing Workshops
(HiPCW), pp. 18–27, IEEE, 2018.

[25] D. G. Korn and J. J. Lambiotte, “Computing the fast fourier transform
on a vector computer,” Mathematics of computation, vol. 33, no. 147,
pp. 977–992, 1979.

[26] M. C. Pease, “An adaptation of the fast fourier transform for parallel
processing,” Journal of the ACM (JACM), vol. 15, no. 2, pp. 252–264,
1968.

[27] A. A. Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli,
N. Genise, S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu, D. Micciancio,
I. Quah, Y. Polyakov, S. R.V., K. Rohloff, J. Saylor, D. Suponitsky,
M. Triplett, V. Vaikuntanathan, and V. Zucca, “Openfhe: Open-source
fully homomorphic encryption library.” Cryptology ePrint Archive,
Paper 2022/915, 2022. https://eprint.iacr.org/2022/915.

[28] J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky,
“Nvidia a100 tensor core gpu: Performance and innovation,” IEEE
Micro, vol. 41, no. 2, pp. 29–35, 2021.

[29] B. Reagen, W.-S. Choi, Y. Ko, V. T. Lee, H.-H. S. Lee, G.-Y. Wei,
and D. Brooks, “Cheetah: Optimizing and accelerating homomorphic
encryption for private inference,” in 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pp. 26–39, IEEE,
2021.

[30] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture
for computing on encrypted data,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 1295–1309, 2020.

[31] S. Kim, J. Kim, M. J. Kim, W. Jung, J. Kim, M. Rhu, and J. H. Ahn,
“Bts: An accelerator for bootstrappable fully homomorphic encryption,”
in Proceedings of the 49th Annual International Symposium on Com-
puter Architecture, pp. 711–725, 2022.

[32] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,
S. Devadas, K. Eldefrawy, C. Peikert, and D. Sanchez, “Craterlake: a
hardware accelerator for efficient unbounded computation on encrypted
data.,” in ISCA, pp. 173–187, 2022.

[33] M. Nabeel, D. Soni, M. Ashraf, M. A. Gebremichael, H. Gamil,
E. Chielle, R. Karri, M. Sanduleanu, and M. Maniatakos, “Cofhee: A co-
processor for fully homomorphic encryption execution,” arXiv preprint
arXiv:2204.08742, 2022.

[34] B. Li, D. Micciancio, M. Schultz, and J. Sorrell, “Securing approximate
homomorphic encryption using differential privacy,” in Annual Interna-
tional Cryptology Conference, pp. 560–589, Springer, 2022.

[35] Ö. Özerk, C. Elgezen, A. C. Mert, E. Öztürk, and E. Savaş, “Efficient
number theoretic transform implementation on gpu for homomorphic
encryption,” The Journal of Supercomputing, vol. 78, no. 2, pp. 2840–
2872, 2022.

[36] M. Cowan, D. Dangwal, A. Alaghi, C. Trippel, V. T. Lee, and B. Reagen,
“Porcupine: A synthesizing compiler for vectorized homomorphic en-
cryption,” in Proceedings of the 42nd ACM SIGPLAN International

Conference on Programming Language Design and Implementation,
pp. 375–389, 2021.

[37] D. W. Archer, J. M. Calderón Trilla, J. Dagit, A. Malozemoff,
Y. Polyakov, K. Rohloff, and G. Ryan, “Ramparts: A programmer-
friendly system for building homomorphic encryption applications,” in
Proceedings of the 7th acm workshop on encrypted computing & applied
homomorphic cryptography, pp. 57–68, 2019.

[38] Y. Polyakov, K. Rohloff, and G. W. Ryan, “Palisade lattice cryptography
library.” Accessed on March 2023.

[39] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski, “ngraph-
he2: A high-throughput framework for neural network inference on
encrypted data,” in Proceedings of the 7th ACM Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, pp. 45–56, 2019.

282

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on March 04,2025 at 02:27:35 UTC from IEEE Xplore. Restrictions apply.

