
Leveraging High Dimensional Spatial Graph
Embedding as a Heuristic for Graph Algorithms

Peter Oostema Franz Franchetti
{poostema, franzf}@andrew.cmu.edu

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, Pennsylvania

Abstract—Spatial graph embedding is a technique for placing
graphs in space used for visualization and graph analytics.
The general goal is to place connected nodes close together
while spreading apart all others. Previous work has looked at
spatial graph embedding in 2 or 3 dimensions. These used high
performance libraries and fast algorithms for N -body simulation.
We expand into higher dimensions to find what it can be
useful for. Using an arbitrary number of dimensions allows all
unweighted graph to have exact edge lengths, as n nodes can
all be one distance part in a n − 1 dimensional simplex. This
increases the complexity of the simulation, so we provide an
efficient GPU implementation in high dimensions. Although high
dimensional embeddings cannot be easily visualized they find
a consistent structure which can be used for graph analytics.
Problems this has been used to solve are graph isomorphism
and graph coloring.

I. INTRODUCTION

Graph algorithms are typically discrete. Transforming
graphs into a continuous space may allow for tractable so-
lutions to non-polynomial problems for some graphs. To
transform graphs into a continuous domain, the nodes can be
placed into Euclidean space with forces applied to them.

Finding the iterations between all particles requires a N -
body algorithm. N -body simulation is an approach to approx-
imate the state over time of systems with multiple bodies
all interacting. Using a N -body approach on graphs involves
applying either attractive or repulsive forces between all nodes
and a form of spring force for edges.

Graph embedding techniques generally seek to preserve
the structure of the graph [3]. The embeddings are used
for visualization or to extract important info. Spatial graph
embedding has these same features. It creates a physical
structure of the graph, and where a node’s location represents
how similar it is to the nodes around it.

Spatial graph embedding requires knowledge of what con-
stitutes a good embedding, and how to solve for one. Current
methods attempt to embed a graph in 3 dimensions. There
are various issues with this, explained in [2]. Using a N -body
approach to find a minimum energy state is an optimization
problem, and many techniques apply from gradient descent
[5]. N -body simulations of large graphs need to be run in a
reasonable amount of time, so a high performance implemen-

tation is required for solving large and interesting cases [4].
Contributions. This paper makes the following contribu-

tions:

• We show how to perform geometric graph embeddings
using any number of dimensions from 1 to n− 1 where
n is the number of nodes. Using a large number of
dimensions smooths out the optimization. This allows
consistent high quality embeddings to be found.

• We provide an efficient high dimensional N -body im-
plementation on GPU. This uses annealing to quicken
convergence and obtain higher quality results.

• The resulting positions of the nodes can be related to
closeness centrality. Using these we can construct a graph
fingerprint to identify graphs. Our method can be used
as a heuristic to speed up graph isomorphism problems.
Graph embeddings can also solve the graph coloring
problem.

This paper will discuss other similar techniques and describe
implementing high dimensional graph embedding. The per-
formance of the CUDA implementation will be shown. The
usefulness of embedding for problems like graph isomorphism
and coloring will be examined.

II. RELATED WORK

Multidimensonal Scaling. Multidimensional Scaling
(MDS) is a method for visualizing data [6]. Information
comes from a distance matrix that specifies how far apart each
node is from others. An example of this would be a graph
of cities with their driving distances as edge weights. MDS
takes in this distance matrix and a set integer N and reduces
the data into N -dimensional space. Often implementations
of MDS are based on eigenvector decomposition. These
methods can fail to fully satisfy the distance measures in low
dimensions or use an excess number of dimensions.

Graph Signal Processing. This area of research defines the
notion of various signal processing techniques for graphs [11].
The Graph Fourier Transform (GFT), and shift operators allow
for a new representation of graph as frequencies. This repre-
sentation has aided various applications such at simulating the
brain, and predicting data labels in classification problems.

Fig. 1: (a) US power-grid with 4,941 nodes and 6,594 edges. (b) and (c) are quasi-stable configurations resulting from two
random configuration as an initial state of the same network. [2]

Visualizing graph structures with N-body simulation.
N -body simulations have been used before to explore large
networks [2]. The paper looks at the production network of
Japan, where each company is a node and each edge indicates
the companies trade a non trivial amount of product. They
focus on the largest unconnected component G = {V,E} with
|V| = 100, 000 and |E| = 400, 000.

They give several criteria for a good visualization of a
graph. The nodes in the graph should be close to others they
are connected with. The nodes should also be well spread
apart and in an equilibrium state. They attempt to solve these
objectives by applying a spring force at each edge and a
Coulomb charge at each node. Spring forces keep connected
nodes close together, while electric charges make nodes push
each other apart. The simulation uses momentum so that
the minimum energy state can be found quicker. Drag was
introduced so that it would reach equilibrium. The authors
saw results where communities cluster close by, verified by
their clustering analysis.
Positions xi of the nodes are determined by the following
equations. Here q is the coulomb charge, ` is the proper length
of the edge, and γ is the drag coefficient.

mi
d2xi
dt2

= Coulomb + Spring + Frictional (1)

Coulomb = Cqi

N∑
i 6=j

qj
xi − xj
|xi − xj |3

(2)

Spring =

M∑
(i,j)∈|E|

Ki,j(|xi − xj | − `i,j) (3)

Frictional = −γi
dxi
dt

(4)

There were several issues identified in the simulation. Ran-
dom initializations resulted in random final configurations with
some nodes unnecessarily entangled inside other structures.
This can be seen in Figure 1. Here large branches of the
graph can get stuck inside the broader structure. They propose
starting the nodes in positions that best minimize the spring
forces.

The issues with consistently getting a good structure can be

Fig. 2: Three resultant configurations of the same graph
randomly initialized.

seen in this small example graph of twelve nodes, which falls
into three local minima Figure 2. The embedding on the right
has each edge at length one, while the others have error on
the edges. The two on the right are in equilibrium at higher
energy states, meaning they are not maximally separated.

III. BACKGROUND

Gradient descent optimization. The forces in N -body act
similarly to gradients in optimization problems. Both find an
optimum or minimum energy state.

Many methods have been developed to speed up gradient
descent [5]. Adding momentum can speed up the computation
as it moves like a ball down a slope. However it is inefficient to
have the ball roll back up so Nesterov accelerated gradient acts
like a ball that understands were it is moving next. This method
performs the gradient update before applying momentum, so
when the ball goes up a hill again it is not pushed further up
it.

Methods that help gradient descent find minima faster also
apply to N -body. Including momentum and drag drastically
improves the rate of convergence. The same challenges also
affect optimization with N -Body. It is important to find a good
learning rate schedule to find the minimum as well as to reach
an equilibrium state. N -Body is an expensive computation, so
minimizing how many iterations it takes to find the solution
is important.
N -Body Simulation with CUDA. Computing the interac-

tions of all pairs of bodies is the brute force approach, but
hierarchical methods still require an all pair solution at each
leaf or cell.

Fig. 3: The N -body execution pattern in CUDA has each
thread find the force on one body.

The all pairs approach has O(n2) independently com-
mutable forces, so O(n2) way parallelism, but would require
as much memory [4]. Computation is instead parallelized O(n)
ways and performed in tiles of dimension p as shown in
Figure 3. This allows p2 interaction computations per 2p reads
from memory. The tiles must be computed sequentially by
threads, but syncing on tiles ensures the shared memory is not
overwritten by any thread progressing faster than others.

The code presented in this paper achieves performance near
the theoretical peak of the 8800 GTX GPU. The performance
analysis is in relation to the binary instructions compiled to,
and so shows that the implementation does not lose time to
memory stalls. The performance was improved by altering the
tile size to insure the GPU’s computation units were saturated.

Performing a high dimensional N -body simulation needs to
use many of the same techniques.

Faster Algorithms for N -body. There exist several algo-
rithms that take the all pairs complexity of O(n2) to an approx-
imate solution with O(n log(n)). They do not generalize well
to high dimensions. Tree methods break down the computation
into 2d parts for d dimensions. Particle mesh methods do
not simulate close field interaction, which for this problem
are often the most important. Clustering the graph during the
simulation would give similar execution times, but this has not
been implemented.

Graphs Models. This paper uses several random graph
models for embedding. First is the Erdős–Rényi model (Gn,p)
[12]. These graphs have n nodes and all of the possible edges
from pairs of nodes are present with equal probability p.
The Barabási–Albert model (BA) [13] generates a graph by
adding in nodes one by one while adding a set amount of
edges for each node, preferring the heavy nodes. BA graphs
have power law degree distributions, which simulate some real
world graphs better than the exponential distribution of the
Erdős–Rényi model. Other graphs used to showcase features
of the embedding are random split graphs. Split graphs are
those made up of a fully connected clique and an independent

set of nodes. The paper also uses graphs made specifically to
be hard on which to solve graph isomorphism [1].

Graph Isomorphism Problem. A graph isomorphism is a
one-to-one mapping between two graphs G and H such that
each pair of adjacent vertices in G are adjacent in H . The
graph isomorphism problem asks whether or not two graphs
are isomorphic to each other. The problem is known to be in
NP, but not known to be part of P or NP-complete. Recent
developments give it a ”psuedo polynomial” runtime [7].

Several fast solvers exist such as Traces [9] and Conauto [8].
This paper compares performance to MATLAB’s implementa-
tion, which does not have state of the art speed. Improving on
it does not change the state of the art speed, but demonstrates
the potential for finding a solution faster.

Graph Coloring. Graph coloring is a diverse set of prob-
lems, but this paper will focus on vertex coloring. This
problem asks how to color each vertex in a graph such that
adjacent vertices do not have the same color. Typically the
goal is to find the least number of colors needed, called the
chromatic number. This is a well known NP-complete problem
[10]. The greedy algorithm for graph coloring runs in linear
time and looks at each node one at a time assigning new colors
as necessary. Here the order matters and determines how many
are used. The worst ordering gives the Grundy number, or the
maximum number of colors a greedy coloring will use on a
graph.

IV. PROBLEM STATEMENT

Previous work has struggled to produce consistent high
quality embeddings. They suffer from random configurations
and results that do not always satisfy that connect nodes are
close with others farther apart. So we define a setup to find
consistent embeddings.

It should be possible for graphs of edges with lengths that
do not violate the triangle equality to be placed perfectly
into Euclidean space using a bounded number of dimensions.
Perfect implies two conditions. First, nodes connected by an
edge should be exactly their edge weight apart. This paper
focuses on unweighted graphs were all distances are set to
one. Secondly while the edge distances need to maintain
correctness, the system should find the global maximally
separated state of the nodes. The nodes can be separated by
adding repulsive forces between all nodes, similar to electric
charges at each node. These constraints are specified in the
following equations, where ni is a node, xi is a node’s position,
and wi,j is the weight between nodes i and j.

For constants c0 and c1 the force from each particle is:

F (ni) = FElec(ni) + FEdge(ni) (5)

FElec(ni) =
∑

i,j≤|V |

c0
||xi − xj ||22

(6)

If wi,j ∈ E then add to the force

FEdge(ni, nj) = −c1 3

√
||xi − xj ||2 − wi,j (7)

V. HIGH DIMENSIONAL IMPLEMENTATION

The goal of spatial graph embedding is to find an alternative
representation to find interesting features or solve graph prob-
lems. Large graphs are not easily placed in low dimensional
space, so we use as many dimensions as necessary.

The graph G = {V,E}, |V| = n, |E| = m is initialized to a
n − 1 dimensional simplex of n nodes. This solves the issue
of random initializations arriving at suboptimal solutions. This
works for unweighted graphs where each edge is the same
length. A simplex solves the problem of correct edge lengths
as each node is the same distance apart from all others. The
nodes can move from the simplex down convex paths to a
lower energy state. It is conjectured that the repulsive electrical
forces push the system to a unique rotationally invariant global
optimum.

The N -body simulation is implemented as an all pairs
computation. This algorithm makes good use of the GPU
architecture as there is potential for O(n2) way parallelism.
The code is optimized for GPUs and written in CUDA. One
of the most costly parts of the computation has been rewritten
as a matrix multiplication, and implemented with a cuBLAS
call. The rest of the computation has code written with access
patterns that effectively use the memory system.

The algorithm makes use of several well known optimiza-
tion techniques. Momentum is used to quicken the computa-
tion as nodes often move in the same direction for multiple
iterations. Dampening is used to make sure the movements
do not get too chaotic, and to bring the structure into an
equilibrium state. Simulated annealing lowers the error on
edges below a threshold.

Hyper parameters need to be set correctly to find an
embedding quickly. The forces need to be small enough so that
the edges are not pulled too far each iteration. The comparative

Fig. 4: Forcing functions in 2D and 3D of the repulsive and
edge forces on a node. The triangle and line can embed in 2D,
but is convex in 3D.

Fig. 5: Convergence of embedding error (edge forces) on a
400 node graph.

Fig. 6: Convergence of embedding energy (repulsive forces)
on a 400 node graph.

strength of the forces creates an overshoot from the optimum
edge length. For this reason the constant on repulsion needs
to be small, while it needs to be strong enough to push all
other nodes further apart.

Convexity in High Dimensions. A large number of dimen-
sions can be required to properly embed a graph. It is often
necessary for at least one additional dimension than required
to give a convex optimization space. A simple example can
be seen in Figure 4. This shows the intensity of the forcing
functions as the point circled in red moves in the drawn plane.
This point is strongly pushed away from the nodes in the
triangle. This can cause it to fall into a local minimum internal
to the triangle. Adding a third dimension gives a convex path
to a lower energy state. It can find a lower energy state by
maintaining its edge length and rotating outside the triangle.

Convergence and annealing. Embeddings are initialized
to a simplex, so that the edge lengths constraints are fulfilled.
To find the maximally separated embedding the nodes need to
rotate around each other maintaining the edge lengths. After
the maximally separated state has been found, annealing
can start. This cools the structure making it possible for the
nodes to move exactly to fulfill the edges lengths, while
maintaining the low energy state. This process is shown in
Figure 5 and Figure 6. These show the error (different of
length and required length) and energy (total repulsive force)
after every time step. The overall process seeks to find the
minimum energy state while keeping the error on the edge

Fig. 7: An example graph with mass rotated along the Y-axis.

length small. The error starts at zero because it is initialized
to a simplex. It quickly jumps up from the step size of the
simulation, but remains within one percent of the required
length. Lowering the step size allows the nodes to get to
the exact distance apart. The measure of separation, energy,
shows that the structure separates greatly at first, but take a
long time to settle to a minimum.

Orientation Optimization. A possible rotationally invariant
position can be found for each embedding. It works by rotating
the structure to minimize the sum of positions in the highest
dimension. It then goes through each dimension performing
this operation. An example can be seen in Figure 7. The graph
is made up of a four point line graph attached to a clique of
four nodes. Here the amount of mass not on the Y-axis is
minimized. The line can be rotated along this axis, but the
tetrahedron cannot. The loss function of this is in Figure 8. It
shows the amount of mass times distance not on the Y-axis
as the graph is rotated around the other two axes. The peaks
indicate misalignment of the structure. The contour repeats
as the structure is symmetrical by rotation. It was found to
consistently find the same orientation for some small graphs.
But larger graphs have not been tested as this naive approach
has a complexity of O(n4).

VI. CUDA IMPLEMENTATION

N -Body simulation can be an expensive operation
with complexity O(n2). Using many dimensions brings
the complexity up to O(n3). So an efficient parallel
implementation of the algorithm is necessary for solving
large problems.

The code for embedding focuses on two major
considerations when writing CUDA code. First the memory
access needs to be properly coalesced. To avoid bank conflicts
every piece of data a warp requests at the same time need to
come from distinct addresses modulus 128. Memory should
be read sequentially when possible to reduce excess writes to
cache.

The second consideration is to make sure there are
enough warps per Simultaneous Multiprocessor (SM) to hide

Fig. 8: Loss function on angles of rotation in X and Z
Dimensions.

instruction and memory latencies. Most computations here
have a n2 level of parallelism, which even for a 100 node
graph means 300 warps. Enough for the 40 SM’s on the RTX
2070 Super.

Listing 1: Electric Forces Kernel

g l o b a l
vo id NBodyMul (f l o a t * N, f l o a t * V, f l o a t * p a r t i a l s ,

u n s i g n e d d , u n s i g n e d n){
i n t k = b l o c k I d x . y * 8 ;
i n t i = b l o c k I d x . x * 1024 + t h r e a d I d x . x ;
i n t i T i l e = t h r e a d I d x . x / 8 ;
i n t i T i l eD i m = t h r e a d I d x . x % 8 ;

s h a r e d f l o a t NShd [6 4 * 8] ;
f l o a t myNPos0 = N[i *d + k + 0] ;
f l o a t myNPos1 = N[i *d + k + 1] ;
f l o a t myNPos2 = N[i *d + k + 2] ;
f l o a t myNPos3 = N[i *d + k + 3] ;
f l o a t myNPos4 = N[i *d + k + 4] ;
f l o a t myNPos5 = N[i *d + k + 5] ;
f l o a t myNPos6 = N[i *d + k + 6] ;
f l o a t myNPos7 = N[i *d + k + 7] ;
f o r (i n t t i l e I D = 0 ; t i l e I D < n ; t i l e I D += 64){

i n t t i l e B o u n d a r y = t i l e I D + 6 4 ;
i n t t i l e B o u n d a r y = (n < 64) ? n % 64 : 64

s y n c t h r e a d s () ;
i f (i T i l e < t i l e W i d t h){

NShd [t h r e a d I d x . x] = N[(i T i l e + t i l e I D)* d +(k+ i T i l eD i m)] ;
}

s y n c t h r e a d s () ;
i f (i < n){

f o r (i n t j = 0 ; j < t i l e W i d t h ; j ++){
f l o a t p a r t i a l C o m p = p a r t i a l s [i *n+ t i l e I D + j] ;
f o r c e 0 += (myNPos0−NShd [0+ j * 8]) * p a r t i a l C o m p ;
f o r c e 1 += (myNPos1−NShd [1+ j * 8]) * p a r t i a l C o m p ;
f o r c e 2 += (myNPos2−NShd [2+ j * 8]) * p a r t i a l C o m p ;
f o r c e 3 += (myNPos3−NShd [3+ j * 8]) * p a r t i a l C o m p ;
f o r c e 4 += (myNPos4−NShd [4+ j * 8]) * p a r t i a l C o m p ;
f o r c e 5 += (myNPos5−NShd [5+ j * 8]) * p a r t i a l C o m p ;
f o r c e 6 += (myNPos6−NShd [6+ j * 8]) * p a r t i a l C o m p ;
f o r c e 7 += (myNPos7−NShd [7+ j * 8]) * p a r t i a l C o m p ;

}
}
i f (i < n){

V[i *d + k + 0] += f o r c e 0 ; V[i *d + k + 1] += f o r c e 1 ;
V[i *d + k + 2] += f o r c e 2 ; V[i *d + k + 3] += f o r c e 3 ;
V[i *d + k + 4] += f o r c e 4 ; V[i *d + k + 5] += f o r c e 5 ;
V[i *d + k + 6] += f o r c e 6 ; V[i *d + k + 7] += f o r c e 7 ;
}

}
}

The computation of electric forces is shown in Listing.1.
Each thread handles eight dimensions of data from one node,
comparing them to the same dimensions of all other nodes.
Blocks work on different dimensions so data can be reused
within a block. The computation iterates through tiles of the
matrix reading into shared memory for fast access. Tile size is
determined by the size of the cache to prevent overflow. The
for loops are unrolled to increase performance, but anymore
would overflow the registers needed for a thread block.

Distance Calculations as a Matrix Multiply. The largest
bottleneck in the computation comes from calculating the all
pairs forces. This can be found with a high performance matrix
multiply kernel.

Nearly half the computation of this problem involves finding
the distances between all pairs of points. This computation can
be performed as a matrix multiply. For all nodes ∀i, j ∈ N
the distance di,j = ||xi − xj||2 equals:

=

√√√√ d∑
k=1

(xi,k − xj,k)2 (8)

=

√√√√ d∑
k=1

(x2i,k − 2xi,kxj,k + x2j,k) (9)

=

√√√√ d∑
k=1

(x2i,k) +

d∑
k=1

(−2xi,kxj,k) +
d∑

k=1

(x2j,k) (10)

The middle summation is a scaled dot product of two
vectors. Computing the dot product of all pairs of columns
is exactly a matrix multiplied by its transpose. Finding all
pairs of distances can be implemented as a call to a cuBLAS
kernel.

The rest of the computation involves computing the forces
on each node given the distance between them. As with finding
distances these are O(n3) operations with O(n2) parallelism.
They make up the current bottleneck as seen in Table.1.

A. Performance

Tables 1 and 2 show the performance of the implementation in
detail. GFLOPs indicate how many floating point operations
are performed in the computation and GFLOPS measures how
many operations are performed per second. Most of the run
time is spent computing the electric forces from the distances
and edge forces. Both take similar time, but the electric forces
are a denser computation and run more efficiently.

Testing was performed on a RTX 2070 Super, which has
a theoretical peak performance of 8.2 TFLOPS for single
precision floating point arithmetic. The matrix multiplication
is performed by a cuBLAS kernel and reaches 6 TFLOPS,
which shows it making nearly full use of the GPU. It must
be noted that a fused multiply-add operation has a latency of
one cycle and so is treated as one operation. The electric force
functions reaches 1 TFLOP. The edge forces are found with

Run Time (s) GFLOPs GFLOPS
Distances 0.16 1000 6,180
Electric Forces 1.93 2004 1,040
Edge Forces 1.82 32 17.5
Force Update 0.04 2 52.4
Memory Alloc/Copy 0.11
Total 4.07 3038 747

Table 1: Performance over 1,000 iterations on Gn,p where
n = 1, 000, p = 8/n

Run Time (s) GFLOPs GFLOPS
Distances 0.16 1000 6,210
Electric Forces 1.92 2004 1,050
Edge Forces 2.97 514 173
Force Update 0.04 2 52.0
Memory Alloc/Copy 0.11
Total 5.19 3520 678

Table 2: Performance over 1,000 iterations on Gn,p where
n = 1, 000, p = 128/n.

Fig. 9: Sorted centrality of a PAM graph with n = 1, 000 and
10 edges per node.

a dense computation and so do not achieve great performance
for sparse graphs. These operations average out to the overall
performance to around 700 GFLOPS in these graphs.

VII. APPLICATIONS

A. Closeness Centrality

Closeness is a measure of centrality in graphs. It is computed
by finding all pairs of shortest paths in the graph. The
closeness of each node is a measure of how large the sum of
its shortest paths are.

This was shown to have a close parallel to the distance
from center of gravity of the resulting spatial embedding.
How similar these measures can be can be seen in Figure 9.
The closeness centrality, distance from center of mass, and
average distance to other nodes were found for each node. The
data was then sorted on the closeness centrality. Many nodes
have similar centrality, but those with high and low levels

(a) Same Graph (b) One Swapped Edge

Fig. 10: Distances in embedding of a 400 node graph with permuted labels.

are accurately identified by either approach. The measure of
centrality does not differ greatly at any node. This establishes
the distance of a node from the center of gravity as a measure
of centrality, although an expensive one as each iteration has
the same complexity of an all pairs shortest path algorithm,
which is used to compute closeness centrality. Using euclidean
distance gives a measure of centrality in a continuous space,
which can better distinguish nodes.

B. Graph Fingerprint

We have observed that embedding graphs with permuted node
labels result in similar resulting structures. While it is difficult
to definitively show them to be that same we can simply find
the distance to the center of gravity for each point. By sorting
these distances and comparing the series we can see how
similar two graphs are.

In Figure 10 we see two permutations on the node labels of
a graph result in identical graph fingerprints. These are found
by finding the distance to center of mass for each node, and
sorting the distances. After swapping one edge the fingerprints

become distinct. The difference in the distances is also plotted.
The differences are near 10−5 for identical graphs, while the
differences are 300 times greater after swapping an edge. We
cannot expect the fingerprints to always be distinct for different
graphs. But it does give an understanding of the graph and
some concept of how similar two graphs are. This fingerprint
could potentially be used as a signal of a graph.

C. Graph Isomorphism

The graph isomorphism problem tests to see if the structure of
two graphs are the same. In other words given two adjacency
matrices can the rows and columns of one be swapped to
match the second. Checking graphs for the same structure
should be easy in a spatial embedding. However checking
that a geometric structure is the same under rotation is as
intractable a problem. The embeddings of two permutations
of the same graph do not come out exactly the same, but
extremely close.
Embeddings can also be used to refute graph isomorphism.
This can be seen in Figure 10. Here two permuted graphs

Fig. 11: Ranking of nodes in a 150 node split graph for two
permutations by original index.

Time (s) Time after Reordering (s)
Average 137 45
Std Dev 225 87
Minimum 0.08 0.03
Maximum Timeout 281

Table 3: Times for MATLAB’s isomorphism() function. Re-
ordering takes an additional 16 seconds in every case.

are embedded and the distances are seen to overlap. After
swapping one edge the ”fingerprints” distinctively no longer
overlap, showing the graphs to be different.

Graph Isomorphism Speedup. As a heuristic the distance
from the center of mass can be used to classify nodes. This
works well for small graphs, but fails for similar nodes at the
same distance from the center of mass. Figure 11 shows the
ranking of nodes of a split graph, with a clique of size 100,
and three groups of nodes in the independent set of degrees
of 1, 2, and 3. Nodes are classified by their distance to center
of mass, with the closest being assigned the label 1 and the
last label n. It correctly classifies nodes of difference degrees,
but struggles among nodes of the same degree. Nodes that
are misclassified are labeled close to what they should be.

Table.3 shows the computational benefit of reordering the
nodes from the embedding of a 200 node graph from [1].
20 different permutations were run and solved using the
MATLAB built in function isomorphism(). A timeout of 10
minutes was set. Several tests were faster to solve before
reordering, but on average reordering is faster. This can be
seen in Figure 12. Many permutations run significantly longer
before reordering. MATLAB solves the isomorphism problem
using a local search from the starting point. This shows that
ranking the nodes by distance is in general closer to the
original labeling than a random permutation.

D. Graph Coloring

Graph coloring, as described in Section 3.5, is equivalent to
embedding a graph into a simplex where connected points may
not be at the same point. This is true as nodes at the same
point in space will make up an independent set and can be
assigned the same color. Nodes connected by an edge will
not be at the same position as the edge forces them apart. An

Fig. 12: Graph isomorphism times for 400 Node Graph run
with MATLAB.

Fig. 13: Coloring of the Golomb Graph. From Wikipedia
”Golomb Graph”.

Fig. 14: Embedding for coloring of the Golomb Graph.

example of this is in 14. Here each node at the same position
in the tetrahedron can be assigned the same color for a valid
coloring using the chromatic number of colors.

This embedding can be found by minimizing the distance
between nodes instead of maximizing for finding unique
embeddings. In the computation the sign of the N -Body
force can simply be flipped. Figure 14 shows a tetrahedron
embedding of the Golomb graph with chromatic number four.

Future work will look at larger, more interesting graphs for
coloring. Given that this is a heuristic approach it may not
always give a coloring using the least number of colors. The
usefulness of this approach will be determined by how well
the results compares to the chromatic and Grundy number. It
will also be compared to the speed to solve graph coloring
with state of the art solvers. Here we present the potential use
of this approach for graph coloring.

VIII. CONCLUSION

High dimensional spatial embeddings with exact edge
lengths can be quickly found and used to solve graph
isomorphisms and colorings. Embeddings can be used for
solving existing graph algorithms faster or for understanding
graphs in a new way. The uniqueness of the structure makes
it useful for the graph isomorphism problem. Finding a
minimally separated embedding can be used for graph
coloring. A high dimensional N -body simulation is more
expensive than a 3D problem, but this paper provides a way
to run the high dimensional simulation efficiently.

REFERENCES

[1] A. Dawar and K. Khan, ”Constructing hard examples for graph isomor-
phism.” J. Graph Algorithms Appl., 23(2), pp. 293–316, 2019.

[2] Y. Fujiwara, ”Visualizing a large-scale structure of production network
by N-body simulation,” Progress of Theoretical Physics Supplement, 179,
pp. 167–177, 2009.

[3] P. Goyal and E. Ferrara, ”Graph embedding techniques, applications, and
performance: A survey.” arXiv preprint arXiv:1605.09096, 2017.

[4] L. Nyland, M. Harris, and J. Prins, ”Fast N-Body simulation with CUDA.”
GPU Gems 3, Addison Wesley, pp. 677–795, 2007.

[5] S. Ruder, ”An overview of gradient descent optimization algorithms.”
arXiv:1609.04747, 2016.

[6] J. D. Carroll, P. Arabie, ”Multidimensional scaling,” Annual Review of
Psychology, 31, pp. 607-649, 1980.

[7] Babai L, ”Groups, graphs, algorithms: The graph isomorphism problem.”
Proc Internat Congr of Mathematicians, 2018.

[8] J. L. López-Presa, A. F. Anta, and L. N. Chiroque, ”Conauto-2.0:
Fast isomorphism testing and automorphism group computation.” CoRR,
abs/1108.1060, 2011.

[9] B.D. McKay, and A. Piperno, ”Practical Graph Isomorphism,
II” Journal of Symbolic Computation 60, pp. 94-112, 2014
https://doi.org/10.1016/j.jsc.2013.09.003.

[10] E. Lawler, ”A note on the complexity of the chromatic number problem,”
Inform. Process. Lett. 5, pp. 66-67, 1976.

[11] A. Ortega, P. Frossard, J. Kovacevi, M.F. Moura, and P. Vandergheynst,
”Graph signal processing: Overview, challenges, and applications.” Pro-
ceedings of the IEEE, 2018.

[12] P. Erdo˝s and A. Re´nyi, ”On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad.Sci. 5, 17, 1960; (Academic Press, London,
1985).

[13] R. Albertand, A. L. Barabasi, ”Statistical mechanics of complex net-
works,” Rev. Modern Phys. 74, pp. 47–97, 2002.

