
J Sign Process Syst
DOI 10.1007/s11265-012-0720-4

Local Interpolation-based Polar Format SAR: Algorithm,
Hardware Implementation and Design Automation

Qiuling Zhu · Christian R. Berger · Eric L. Turner ·
Larry Pileggi · Franz Franchetti

Received: 22 June 2012 / Revised: 8 November 2012 / Accepted: 20 November 2012
© Springer Science+Business Media New York 2012

Abstract In this paper we present a local interpolation-
based variant of the well-known polar format algorithm
used for synthetic aperture radar (SAR) image formation.
We develop the algorithm to match the capabilities of the
application-specific logic-in-memory processing paradigm,
which off-loads lightweight computation directly into the
SRAM and DRAM. Our proposed algorithm performs fil-
tering, an image perspective transformation, and a local 2D
interpolation, and supports partial and low-resolution recon-
struction. We implement our customized SAR grid interpo-
lation logic-in-memory hardware in advanced 14 nm silicon
technology. Our high-level design tools allow to instanti-
ate various optimized design choices to fit image processing
and hardware needs of application designers. Our simula-
tion results show that the logic-in-memory approach has
the potential to enable substantial improvements in energy
efficiency without sacrificing image quality.

Keywords Synthetic aperture radar · Interpolation ·
Logic in memory · Chip generator

Q. Zhu (�) · L. Pileggi · F. Franchetti
Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: qiulingz@andrew.cmu.edu

C. R. Berger
Wireless System R&D, Marvell Semiconductor,
Santa Clara, CA, USA

E. L. Turner
Department of Electrical Engineering and Computer Science,
University of California Berkeley, Berkeley, CA, USA

1 Introduction

The polar format algorithm (PFA) used for image forma-
tion in synthetic aperture radar (SAR) is computationally
demanding and data-intensive [1, 2]. Its realtime constraints
and low-power requirements make it a promising target
for advanced power-saving designs. On the other hand, its
overall system performance is often defined by the lim-
ited memory bandwidth as well as the high cost of memory
access. As a potential solution to address these challenges,
the application-specific logic-in-memory (LiM) computing
paradigm and its design methodology [3, 4] is proposed
to move simple computation directly into the memory, and
minimize the data movement from memory to the proces-
sors for superior energy efficiency (see Fig. 1).

This idea stems from recent studies of sub-20 nm CMOS
design, which indicate that memory and logic circuits
can be implemented together using a small set of well-
characterized pattern constructs [5, 6]. Our early silicon
experiments in a commercial 14 nm SOI CMOS process
demonstrate that this construct-based design enables logic
and memory bitcells to be placed in a much closer proxim-
ity to each other without yield or hotspots pattern concerns.
While such patterning appears to be more restrictive to
accommodate the physical realities of 14 nm CMOS, the
ability to make the patterns the only required hard IP
allows us to efficiently and affordably customize the SRAM
blocks. More importantly, it enables the synthesis (not just
compilation) of customized memory blocks with user con-
trol of flexible SRAM architectures and therefore facilitate
smart memory compilation.

Advances in this chip design methodology gives rise
to the application-specific LiM computational paradigm,
which moves part of a program’s computation directly into
the memory but keeps the usual memory interface. It is

mailto:qiulingz@andrew.cmu.edu

J Sign Process Syst

Figure 1 Logic-in-memory computing paradigm: application-
specific logic for localized computation is hidden behind a memory
abstraction.

easy to program, as all computational operations are hid-
den behind the memory abstraction. LiM builds on the idea
of earlier processing in memory [7], however, puts only
simple logic instead of actual processing cores right into
the memory structures. Moreover, it requires application-
specific logic to reach the desired energy savings. Thus, it
is more specialized than the processor-in-memory idea [7,
8]. On the architectural level, the logic-enhanced memories
look like normal memories to the CPU, but perform extra
(and cheap) operations on the stored data before returning
the requested data item to the CPU.

Design automation is required for handling the increased
complexity of memory-logic-mixing hardware accelerators
and the intricacies of cutting edge and next-generation sil-
icon technology. Physical implementation of our logic and
memory-mixing hardware is enabled by the smart memory
compiler [5, 6]. Further, we build application-specific high-
level design tools using the Genesis2 design tool [9, 10].
The combination of these tools enables designers to per-
form design space exploration at reasonable effort to opti-
mize their designs for energy budgets, image reconstruction
quality, and performance.

The major restriction of logic-in-memory is that only
localized neighborhood data access can be implemented
efficiently, and that algorithms requiring stride-like data
access patterns (e.g., the fast Fourier transforms, FFT)
are prohibitively expensive to implement. Therefore, algo-
rithms need to be adapted to match the constraints of the
logic-in-memory paradigm.

Related Work Synthetic aperture radar is essentially “taking
a photo with radar” where a plane’s flight path synthesizes
a large antenna. A radar mounted on a plane sends repeat-
edly pulses to the scene patch and records the reflections,
rotating the antenna to aim at the same scene center for
all pulses. The image is formed by computing the inverse
2D FFT of the recorded data. However, the data is sam-
pled on a polar grid, and the PFA needs to first convert
these polar samples into rectangular samples (i.e., polar-
to-rectangular re-gridding), so that a standard FFT can be
applied for image formation. Without this conversion, a
computationally infeasible non-uniform Fourier transform
would have to be applied [1]. The polar-to-rectangular con-
version is often done separably (first processing all rows and

then all columns of the data), for example using FFT-based
upsampling followed by picking the nearest neighbor to the
actual grid points of interest [2, 11]. The reliance on FFTs
makes this approach computationally intensive, moreover, it
requires non-local computation due to the well-known FFT
data access pattern. An algorithm for logic-in-memory can-
not rely on FFTs but requires local computation, thus we
need to develop a localized variant of polar-to-rectangular
re-gridding.

There are other relevant hardware accelerators for grid-
ding algorithms. For example, [12, 13] present an FPGA
accelerator for gridding in Non-uniform FFTs. Their work
targets a broader set of applications, regardless of the data
acquisition method, i.e., the sampling of source points can
be completely arbitrary. In contrast, we focus on the image
re-gridding from polar format to rectangular format; specif-
ically with large radian spatial frequency and small coherent
integration angular intervals. The prior knowledge from the
application allows us to build a dedicated hardware that is
particularly optimized to our specific needs. On the other
hand, their work demonstrated a complete system solution
on an FPGA platform. The purpose of this paper is not to
deliver a complete system solution but to implement the
kernel part of the re-gridding algorithm to demonstrate the
potential of LiM design methodology. Therefore, we narrow
our scope to the on-chip data processing and storage.

While FPGAs and GPUs are also good alternatives as
hardware accelerators to speed up compute-intensive sec-
tions of applications [14, 15], ASIC is still 10 to 100 times
more power efficient than FPGA and GPU alternatives [16].
In addition, modern FPGAs contain “hard” blocks such as
block memories whose functionality and sizes are fixed.
They are hard to customize with fine granularity, which
is the essential part of our approach. For example, [12]
proposed a multi-port local memory (MPLM) to solve
the limited memory bandwidth/port problem for the paral-
lel pixel accessing. Our rectangular access smart memory
architecture has the similar functionality as MPLM, how-
ever, we move one more step forward and realize the parallel
data accessing by embedding “intelligent” functionality into
the traditional interleaved multi-bank memory organization
and allowing multiple memory subbanks to share one com-
mon memory periphery. In other words, we customized
the traditional memory architecture in an unusual way to
reduce the overhead that exists in the multi-banking mem-
ory systems. Our LiM approach provides a novel regular
pattern constructs based ASIC solution targeting at sub-
22 nm technology nodes, demonstrating the possibilities of
re-designing algorithms and re-architecting the hardware to
match the advanced technology capabilities and achieving
dramatic performance improvements that was not possible
with general purpose computing or configurable hardware
computing.

J Sign Process Syst

Contribution The main contribution of this paper is the
derivation of an algorithm for performing SAR polar for-
mat re-gridding interpolation in the LiM paradigm, and
to provide the necessary design automation tool chain to
implement our proposed algorithm in advanced silicon tech-
nology. We combine filtering, geometric transformations,
and localized 2D interpolation to provide a virtual rect-
angular 2D memory address space that is overlayed on
the polar grid and performs the necessary interpolation
on demand. Enabled by this on-demand interpolation our
system further provides partial image reconstruction, allow-
ing for reconstructing both low-resolution thumbnails and
high-resolution patches at considerably reduced energy cost.

This paper is an extended version of our previous
papers that appeared in the proceedings of HPEC [3] and
ICASSP [4]. While these previous papers mostly focus on
the algorithmic side of our approach, this paper also presents
the details of the hardware implementation and the design
automation framework. More importantly, we show how
to leverage the proposed design framework to co-optimize
the algorithm, architecture and circuit design to achieve the
maximum performance and energy efficiency.

2 Localized SAR PFA Algorithm

In this section we discuss our localized interpolation-based
re-gridding algorithm that underlies our approach.

2.1 Local Interpolation Based Polar Reformatting

The measurements of the radar reflectivity function that are
performed by the radar sensor during the plane flight are
taken on partial polar annuli, which need to be converted to
outputs on a Cartesian grid before FFT-based image forma-
tion. Assuming a signal of necessary smoothness, the points
in the rectangular grid are similar to their neighboring ele-
ments of the Polar Annulus in both the range and cross-
range dimensions. Given the high noise in radar data, We

use simple local interpolations (e.g., nearest neighbor, bi-
linear or bi-cubic) to perform re-gridding, as opposed to the
usual FFT-based upsampling. In Section 5 we show that this
can be indeed done without significant loss of end-to-end
accuracy.

To derive the relationship, we take bilinear interpola-
tion for example and begin by superimposing a Cartesian
grid on the Polar Annulus. Then, for an output point P(x)

in Cartesian space (depicted as red star in Fig. 2a–c), we
find the coordinates (pulse number, sample number) of its
corresponding neighboring elements in the Polar Annu-
lus (original measurements), shown as four black points in
Fig. 2a. We then compute the value of the P(x) through
interpolation, taking the weighted sum of its four neigh-
bors, using their euclidian distance as weights. However, the
direct computation requires complex nonlinear operations
such as square root, arcus tangent, which are not suitable for
the LiM paradigm.

Coordinate Transformation The main idea underlying our
approach is to perform a coordinate transformation that con-
verts the polar grid into a rectangular grid while the original
rectangular grid is warped, and then perform interpolation
in the transformed space. This allows us to apply standard
2D surface interpolation for polar data to rectangular data
reformatting, which has the potential of being efficient in
logic-in-memory as no transcendental function needs to be
evaluated, neither for the coordinate transformation nor for
the interpolation in the transformed space.

The mapping from Fig. 2a to b shows the first step in
implementing the interpolation-based polar formatting. We
first approximate the partial polar annuli as straight lines,
making the full shape quadrilaterally tiled (Fig. 3). We then
map the polar annulus (the polar grid on which the SAR
data is collected) to a rectangular grid by using a four-corner
image geometric mapping, specifically a perspective trans-
formation [17]. The same perspective transformation is used
to map the tentative output locations into the same new

p(x,y)

dx

i, j i, j+1

i+1, j i+1, j+1

dy P(x,y)

dx
dy p(x,y)

(a) (b) (c)

Figure 2 Localized polar-to-rectangular grid interpolation. a Interpolation in original coordinates, b interpolation in “warped” coordinates, and
c bilinear interpolation in a square grid.

J Sign Process Syst

R_L

Figure 3 Image tiling for accurate geometric approximation.

coordinate system. After the coordinate transformation, the
measurements lie on a rectangular grid, while the tentative
outputs lie on a quadrilateral in the new coordinate sys-
tem, see Fig. 2b. In other words, this mapping distorts the
rectangular destination grid in the new coordinate system
but preserves its distances to the original data points. The
new x and y coordinates of the tentative output locations
after mapping indicate the the locations of the correspond-
ing neighborhood measurements and distances dx and dy

to each of the neighborhood measurements. Then we use
standard 2D surface interpolations to calculate the values of
the tentative outputs from their neighborhood measurements
and the interpolation weights. Figure 2c shows the example
of the bilinear 2D surface interpolation that requires four
neighborhood measurements.

Geometric Approximations Our localized grid interpola-
tion is based on several geometric approximations. Firstly,
as we mentioned, we approximate the polar annulus by
quadrilateral tiles (Fig. 3) so that a simple quadrilateral-to-
quadrilateral four-corner perspective geometry transforma-
tion can be used. Secondly, we assume that the measurement
grids are evenly distributed on a rectangular grid after the
transformation. These approximations could result in dis-
tortions in the resulting reconstructed image. As shown in
Fig. 3, accurate approximation is achieved if the radian spa-
tial frequency lower bound (RL) is large enough and the
coherent integration angular interval (�) is small enough,
which is true for most SAR applications. Therefore, an
effective solution is to tile the image into small enough
parts and perform the geometry approximation on each tile.
We tile the output image in the Cartesian grid and find
the minimum subset of the polar annulus that contains the
corresponding rectangular tile. The resulting distortion is
smaller than the intrinsic distortion of perfect SAR image
reconstruction.

2.2 SAR Image Partial Reconstruction

When reconstructing large data-set problems for small dis-
play devices (e.g., handheld devices) or for more detailed
analysis, partial reconstruction would be preferable to pre-
vent energy waste from processing all pixels and then using
only a subset. Since our local interpolation-based scheme is

reconstructing one pixel at a time in an on-demand fashion,
partial reconstruction becomes feasible (see Fig. 4). How-
ever, since Polar Annulus is sampled in the Fourier space,
this involves a series of digital signal processing opera-
tions across both the frequency domain and spatial domain.
In the following, we will discuss two partial reconstruc-
tion modes that our approach supports: (1) low resolution
full-size image display, and (2) high resolution partial-size
image display.

Thumbnail Reconstruction In the first scenario, we get a
quick overall view of the whole image without the fine-scale
details (a thumb nail). This coarse reconstruction corre-
sponds to multiplying the data in Fourier space (the original
data) with a mask which attenuates the high frequency com-
ponents. Only data elements that correspond to the low
frequency components are interpolated and computations
for high frequency components are omitted. A much smaller
2D inverse FFT can be used afterwards, saving a substantial
amount of operations.

Zoom-in Reconstruction In the second scenario we recon-
struct only a small portion of the image (however, at full
resolution). This can be seen as multiplication by a mask in
the spatial domain zeroing everything but the region of inter-
est, or equivalently, as decimation filtering in the frequency
space [18]. Filtering is necessary for image anti-aliasing and
the filter decimation factor corresponds to the proportion of
the image area to be reconstructed in space. Using Fourier
identities we can reconstruct sub-patches of an image at
arbitrary position with arbitrary size. In the implementation
we rely on the combination of a CIC (cascaded integrator-
comb) and short FIR (finite impulse response) filter for
decimation. The CIC filter requires no multiplications and
its simple hardware implementation can be easily integrated
with the logic-in-memory interpolation, however, accuracy
requires us to use some FIR filtering.

Computational Cost Savings In standard polar formatting
algorithms using FFT-based upsampling for re-gridding,
grid interpolation is the the most computationally inten-
sive portion as it involves two FFTs per segment/secant for
each range/crossrange line [2, 11]. In our local interpolation
approach, all the interpolation related FFT/IFFT operations
are avoided. The proposed grid interpolation has economi-
cal hardware implementations. Moreover, these operations
are computed locally in the memory and therefore con-
sume much less energy compared with in-CPU computing.
For partial reconstruction, additional in-memory computa-
tion for decimation filters are required. However, the chosen
CIC filter only involves eight adders and eight storage regis-
ters for any decimation factors. Under partial reconstruction,

J Sign Process Syst

Logic-in-Memory for Polar Formatting

Interpolation
+ filtering

2D
IFFT

Radar
Scan Sample

Figure 4 SAR partial image reconstruction.

inverse 2D-FFT size is reduced which saves the unneces-
sary operations and thus energy. Thus, our approach has a
huge potential for operations and energy savings. We will
evaluate practically achievable savings in Section 5.

3 Hardware Implementation

In this section we will describe the hardware implementa-
tion details of our proposed LiM-based SAR polar reformat-
ting and partial reconstruction algorithm.

3.1 Interpolation Memory Implementation

The core operation in our approach is 2D interpolation
(bilinear, biquadratic, bicubic), which is used after the per-
spectively transformation to calculate the values of the ten-
tative outputs from the neighboring measurements and the
interpolation distances in the transformed coordinate sys-
tem. To implement the interpolation operations efficiently,
we design a LiM block called interpolation memory. Inter-
polation memory holds function values at evenly spaced,
non-contiguous memory addresses, and the integrated logic
performs polynomial interpolation operations on each read
reference for locations that do not hold data. Thus, these
interpolation memory blocks contain a seed table that stores
the known function values, and compute “in-between” val-
ues on the fly. It has a larger memory read address space

than write address space. Interpolation memory is a very
general LiM building block that can benefit many signal and
image processing algorithms [17, 19–21].

Memory Access Logic In the left part of Fig. 5, we show
the hardware structure of a 2D cubic (bicubic) interpolation
memory. Assuming the array of polar format measurements
has the size of 2k × 2k and the interpolation distance has
r-bit resolution. After the perspective transformation, the
resulting x-coordinate and y-coordinate of the tentative out-
puts in the new coordinate system serve as the n-bit input
addresses here. Given the input addresses, the 2D inter-
polation memory returns the corresponding pixel value at
that location, which is actually interpolated from its neigh-
boring measurements in the original polar grid. Internally
the input address is split into two parts. The higher k bits
are used to address the measurement points in the original
polar grid. And the lower r = n − k bits are used to spec-
ify the distances between the evaluated output point and
its nearest neighborhood measurements. The output pixel
values are the weighted approximations of the neighbor-
hood measurements, and the weights are set by interpolation
distances. The number of nearest neighborhood memory
references to be considered is determined by the interpo-
lation order. Power-of-2 indexing mechanism is applicable
for most interesting problems, and it largely simplifies the
hardware implementation.

Figure 5 Interpolation Memory
Architecture: n bit read address
space and k bit write address
space (i.e., seed table size); the
“in-between” values are
approximated from 16
neighboring memory references
on the fly.

interpolated result (P)

smart memory access

n-kk

dx

n bits address x

P1

n-kk

dy

x
y

n bits address y

+/-

+/-
/*

f0 f1 f2 f3

z0

z0 z1

z0 z1 z2

w

r

2r

3r

K0 K1

>> >> >>
www

n-k

1D Cubic Interpolation Logic Data Path

2D cubic interpolation

K2 K3

w

P2

P3

P4

P

P1

J Sign Process Syst

Interpolation Logic In terms of interpolation operation, 2D
interpolation is separable and can be broken into multiple
1D interpolation in both orthogonal axes. For example, the
2D cubic interpolation in Fig. 5 can be separated into four
horizontal 1D cubic interpolations and one vertical 1D cubic
interpolation (or vice versa). In the right side of Fig. 5, we
illustrate the datapath of a 1D cubic interpolation operation.
We use Newton’s divided differences interpolation polyno-
mial since it is easy to realize in hardware and amenable to
be parameterized [22]. The dth-order function value Pd(x)

is calculated from its neighborhood pixels values f (x) at
points of x0, . . . , xd :

Pd(x) = k0 +k1 ·(x−x0)+ . . .+kd ·(x−x0) . . . (x−xd−1).

For i ∈ [0, d], ki = f (i)(x) is the ith order divided dif-
ference of f (x), and the computation of ki in hardware
for integer data types only involves additions and shifts.
zi = x − xi are so-called the interpolation distances, which
are determined by the lower r bits of the input address. The
computational complexity, and the overall hardware cost is
proportional to the interpolation order. The bit widths of the
data path can be precisely specified so as not to implement
excessive bits, and not to introduce additional error. This
approach can be cheaply implemented in logic-in-memory,
both for integer and floating-point output. This insight is a
crucial enabling step for our logic-in-memory SAR variant.

3.2 Rectangular-Access Smart Memory

The interpolation operation requires to access multiple con-
secutive elements in a 2D data array stored in SRAM within
a single cycle. Figure 6a and b show the access patterns for
the bilinear and bicubic interpolation memories. For exam-
ple, a 4 × 4 rectangular memory access is needed for the

bicubic interpolation. Larger block-size access is required
in the implementation of parallel image processing, i.e., to
construct multiple pixels in parallel. It is observed during
our experiments that the reconstruction of adjacent pixels
actually share some of the neighborhood measurements. As
shown in Fig. 6c, to compute the adjacent 6 × 6 pixels with
bilinear interpolation, all the required neighborhood mea-
surements are clustered within the block of neighborhood
8 × 8 polar grid array. Therefore, a 8 × 8 rectangular access
memory is required to output all the 8 × 8 measurements to
the processor and then the computation of the samples in the
6 × 6 block can be performed in parallel.

Decoder Sharing for Multiple Memeory Banks Tradition-
ally, these parallel memory accessing is accomplished by
distributing data across multiple memory banks so that for
any consecutive access all data elements are retrieved from
different banks without conflicts. Using multiple SRAM
banks incurs high overhead since every memory bank
requires its own decoder logic. Using logic-in-memory it is
possible to build multi-bank memories that share parts of
the decoder logic to exploit the known access pattern.

We exploit the fact that we always read a constant num-
ber of consecutive elements per cycle for each interpolation.
The core observation is that after address decoding, the acti-
vated wordlines of all memory banks are always adjacent
to each other. Based on that, it’s possible to optimize the
multi-banking memory system to save the periphery over-
head. We employ the a customized multi-banking SRAM
design topology [23], which provides around 50 % area and
power savings compared with the traditional multi-banking
memory design. However, the design of such customized
memory requires careful circuit design, sizing and layout,
which is a significant design cost if it cannot be automated.

Figure 6 Memory Access
Pattern: gray array represents
the stored function values and
the black points are the nearest
neighbors to be accessed for the
interpolation of the non-stored
function values (red stars).

(a) Bilinear interpolation
(2 2 memory access)

(b) Bicubic interpolation
 (4 4 memory access)

(c) Bilinear interpolation
 of 6 6 pixels in parallel

 (8 8 memory access)

Before Perspective Transformation

After Perspective Transformation

J Sign Process Syst

Single Cycle Rectangular Block Access We define the func-
tionality of memory to support one-clock-cycle rectangular
access of 2a × 2b data points from a 2m × 2n 2D data array.
The input of the memory system is the top-left coordinate of
the accessing rectangular block (x[m−1:0], y[n−1:0]) and the
outputs are all the data point inside the rectangular block.
For bicubic interpolation, we have a = b = 2 .

To support one-cycle consecutive access of 2a data points
in x dimension and 2b data points in y dimension, the
parameterized memory is divided into 2a memory blocks;
and in each block, there are vertically parallel 2b memory
banks. To control the memory block aspect ratio, we let each
word of a memory bank (bank word) holds 2c data points,
therefore a block word contains 2b+c data points. The 2D
data array first distributes its 2m data rows into 2a memory
blocks row by row (e.g., block i holds row[i], row[2a + i],
row[2 · 2a + i], etc.). All the 2a memory blocks have the
same structure. Figure 7 shows the organization of block 0
when m = n = 6, a = b = 2, c = 2.

Implementation The main idea is to let 2b memory banks
in each memory block share a modified X-decoder by using
the same method described in [23]. The X-decoder is specif-
ically designed to activate two adjacent wordlines simul-
taneously. That is, when one block wordline is asserted,
the next block wordline is also asserted by the OR gate

operation of every two adjacent wordline signals. Another
Y -decoder is used to select one of the two activated word-
lines for each memory bank with the AND operations. Each
memory bank word holds 2c data points but each time only
one data point of them is required. A column MUX is
designed to select one data element for each memory bank
and the column MUX is controlled by the lower b + c bits
of address y (y[b+c−1:0]).

As shown in Fig. 7, both the first wordline (WL[0]) and
the second wordline (WL[1]) are initially activated by X-
decoder but Y -decoder further selects the WL[1] for bank
0 and WL[0] for the other three banks. After the column
MUX, block 0 outputs data series of ‘8−5−6−7’, which are
then reordered to be ‘5−6−7−8’. With some simple logic
for data reordering, the smart memory outputs the required
2a × 2b data points in order simultaneously. As shown in
Fig. 7, the distributions of address bit to each memory com-
ponent are parameterized. By specify these parameters, the
resulting memory architecture can be precisely determined.

Compared with the conventional multi-banking memory
design, the amount of memory bank periphery circuits is
reduced from 2a+b to 2a . As is observed in Fig. 7, the result-
ing memory architecture has the embedded logic gates (e.g.
the AND gates) tightly integrated with the memory cells,
and each logic gate communicates with its local memory
cells. The hardware synthesis of these novel smart memories
will be presented in Section 4.

Figure 7 Customized
Rectangular Access Memory:
customized memory periphery
design allows parallel memory
banks to share the x-decoder.

J Sign Process Syst

3.3 Image Perspective Transformation

Perspective Transformation Another core component of
our SAR variant is the perspective transformation. We use
it to map both of the original polar measurements and tenta-
tive rectangular outputs to the new coordinate system such
that the measurements lie on a rectangular grid, while the
tentative outputs lie on a quadrilateral. After this mapping,
a standard 2D interpolation can be used for the image refor-
matting. The perspective transformation function is given by

[x′, y′, w′] = [u, v, w]
⎡
⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ , (1)

where x = x′/w′, y = y′/w′. The coefficients aij of the
transformation function are determined by establishing the
correspondences between four corners of the original polar
annuli and new coordinate grids [17]. Then the same trans-
formation function is used to map each point (u, v) of the
tentative rectangular output to the point (x, y) in the new
coordinate system from the following mapping functions,

x = a11u + a21v + a31

a13u + a23v + a33
and y = a12u + a22v + a32

a13u + a23v + a33
.

(2)

Division As we can see, the perspective transformation
mostly involves simple arithmetic logic like additions and
multiplications. Although the division operation is also
required, we observed that the denominator is a linear func-
tion of the u and v coordinates. Therefore, for the items
of 1/(a13u + a23v + a33) and 1/(a13u + a23v + a33), we
can first evaluate their values at the four corners, that is,
(u = 0, v = 0), (u = 0, v = 1), (u = 1, v = 0),
(u = 1, v = 1), and then the values at other locations can be
computed by a bilinear interpolation from the four corners.
This way we convert the division to a bilinear interpolation
and a multiplication leading to negligible accuracy loss.

Implementation in LiM The whole geometric transforma-
tion logic is embedded into the memory boundary together
with the 2D interpolation logic. From the user’s point of
view, the resulting LiM block is a normal memory that
stores the pixel values at rectangular grids and returns the
requested pixel value on command. However, internally it
actually stores the polar grid measurements in the physical
memory and has the application-specific logic computation
embedded in the memory boundary. Therefore, LiM block
provides a virtual rectangular 2D memory address space that
is overlaying the polar grid and performs the necessary logic
operation inside the memory abstraction.

3.4 Frequency Filter

The most important arithmetic operation for SAR image
partial reconstruction is the filtering, which enables us
to implement partial image reconstruction for both low-
resolution thumbnails as well as high-resolution scene
patches in logic-in-memory. We rely on simple Fourier
transform identities to translate phase shifts in frequency
space to time-domain displacements [18]. Using this identi-
ties we can zoom at any region of interest.

CIC and FIR Filters A wide range of decimation factors
is required for different problem size with different display
resolution and zoom factors. Straight-forward implementa-
tion of finite impulse response (FIR) filters becomes too
expensive for long tap lengths that are required to maintain
accuracy. In order to include the filters into the logic-in-
memory device, it is required that hardware implementation
is as simple as possible. A finely-tuned combination of FIR
and cascaded integrator-comb (CIC) filters can be imple-
mented very efficiently in logic-in-memory. After evalu-
ating the accuracy-cost decimation filter design space, we
use FIR polyphase filter for low decimation factors (for
instance, 2 or 4) and use CIC filters for high decimation
factor (for instance, 8, 16, 32, 64, or 128). CIC filters are
chosen because no multipliers and no intermediate stor-
age are required, and the same filter design can easily be
used for a wide range of decimation factors by adding an
additional scaling circuit and minimally changing the fil-
ter timing. However, a CIC compensation filter, which is
usually implemented as FIR inverse sinc filter is usually
required to compensate the non-flat passband and wide
transition-region of high decimation factor CIC filters. It
is performed after the decimation so that there is no much
additional cost.

4 Design Automation Framework

We now discuss the design trade-off space and our design
automation tools.

4.1 Design Trade-off Analysis

The SAR image formation process requires the choice of
a series of problem parameters, and each parameter setting
leads to a different hardware implementation. In addition,
as the major components of the system, both interpolation
and filtering are trade-off problems in terms of perfor-
mance/accuracy/cost.

J Sign Process Syst

Accuracy vs. Interpolation Order Our 2D interpolation
memory is based on polynomial interpolation for numeri-
cal function evaluation [19, 20]. We only consider up to the
3rd interpolation order, that is, bilinear (d = 1), biquadratic
(d = 2), and bicubic (d = 3). The interpolation order
(d) together with physical memory size (2k) determine the
interpolation accuracy (binary precision bits, w). Numeri-
cal analysis shows that for any function f (x) that has d + 1
derivatives, d+1 additional precision bits w of the computed
P(x) are obtained for each additional physical address bit
k for interpolating order d [19]. The tradeoff among these
parameters is shown in Eq. 3, in which e is the error bits in
the precision bits w that are tolerated by the application.

(w − e) ∝ (d + 1)k (3)

Equation 3 gives rise to a design space involving data pre-
cision bits, interpolation accuracy, interpolation order, and
interpolation resolution. These choices further lead to dif-
ferent memory/logic area and power costs for a desired
accuracy.

Filter Design The parametrization of filter specifications
also give rise to a large design space. For example, the
transition region of a non-ideal filter will result in added
distortion at the image edge. Therefore, the narrower the
transition region the better the edge quality, but the higher
the filter degree, thus higher the hardware cost. In essence,
we can reconstruct a slightly larger image and disregard the
boundary region to enable the utilization of a lower-quality
(and computationally cheaper) filter. In our implementation,
we use an region-of-interest (ROI) parameter to specify the
ratio of the used image center area compared to the over-
all image area, which determines the transition-region of the
filter (rolloff factor).

This shows that different design decisions will result
in different tradeoffs. The combination of these design
choices constitutes a huge design space. Further, explor-
ing the design tradeoff space requires customized memory

designs, which are traditionally prohibitively expensive.
Thus, a strong design automation tool is required to make
the hardware synthesis feasible.

4.2 LiM Design Framework

We have developed a design generation and design space
exploration tool for the LiM design. The complete design
framework structure is shown in Fig. 8.

Our design framework provides designers with a graph-
ical user interface to select application functionality and
parameters and then generates synthesizable RTL designs
for a specified functionality. Free or un-specified param-
eters can be optimized by the system. A designer then
evaluates the obtained designs and can explore the design
space and optimize the design for the application by vary-
ing the parameters. The design framework consists of the
tool frontend which is built from the architectural chip gen-
eration infrastructure Genesis [10, 24] and the tool backend
that is built from the pattern-construct based smart memory
compiler [5, 6].

Genesis Chip Generator The frontend of the design tool
chain is a standalone design tool framework named Genesis
[10, 24, 25]. It is responsible for application interfacing,
design optimization and efficient RTL generation. Genesis
is a framework that simplifies the construction of highly
parameterized IP blocks. Unlike existing HDLs that cal-
cify any existing flexibility at instantiation, Genesis leaves
low level optimization “knobs” free even after aggregation
into bigger IP blocks, allowing them to be set and opti-
mized later in the design process. To achieve that, Genesis
enables the hardware designers to simultaneously code in
two interleaved languages when creating a chip module: a
target language (SystemVerilog) to describe the behavior of
hardware and a meta-language (Perl) to decide what hard-
ware to use for given specs (see the left part of Fig. 8b).

 //;if ($d =~ m/linear/i) {
 //; for(my $i = 0 ; $i < $N ; $i++)
 //; {my $sin= floor(sin(2*pi* $i/$N) * $w) ;

`$i` : dout <= `$ sin `;
 //; $i++ ;
 //; }
//; } ……

Optimizer

Optimal

LiM IP

(gds, rtl,

.lib, .lef)

Design Space Exploration and

RTL Generation (Frontend)

Timing, area, power, precision …

Dual Language Programming

LiM Physical

Synthesis (Backend)

RTL

+

Specs

Regular pattern

constructs based

logic and memory

co-design/

co-synthesis

User Interface

(XML)

Design

Parameters

Performance
Target + Power

Budget

Performance/
Cost Report

Constructs-based
Logic and Memory

Co-design

Smart Memory
Physical Synthesis

Logic-in-Memory
RTL Generation

Design Space
Exploration

User
Specification

Optimization
Engine

(a) LiM Design Flow (b) LiM Design Framework

Figure 8 LiM design framework.

J Sign Process Syst

The net result is that Genesis enabled us to design an entire
family of LiM designs, all at once. After the parameterized
design was complete, there is still the matter of control-
ling all the parameters and they can be made explicitly by
the user or automatically by optimization tools. The gener-
ator mechanism provides a standardized way, via an XML
form, for optimization tools to make design decisions for
various given parameters throughout the design hierarchy.
Genesis classifies parameters into three groups. First, an
inherited or constrained parameter is one that is inherited
from, or constrained by decisions made in other modules in
the design hierarchy (e.g., interface bit width). The second
type of parameter is the free parameter-parameters whose
values can be freely assigned by the system and it is best
to allow an optimization engine to set the value that maxi-
mizes performance under a given power or area constraint.
A third type of parameter is the architectural parameter
that changes the function or the behavior of the module.
These are the parameters that must be set by application
designer. An inherit priority rule in Genesis determines the
assignment/overwritten policy of parameter values.

Smart Memory Compiler The automated design frame-
work discussed so far is capable of mapping applica-
tion specifications to optimized RTL. Equally important,
a smart backend of the design tool chain is required to
efficiently co-synthesize logic and memory (the right part
of Fig. 8b). Generic SRAM compilers enable automatic
SRAM IP creation based on user specification, but they
“compile” memory blocks from a set of pre-determined
SRAM hard IP components (e.g., bitcells and peripheral
circuits). This compilation strategy not only limits the pos-
sibility of application-specific customization but also hin-
ders comprehensive design space exploration, leading to
a sub-optimal IP. We have been exploring opportunities
for synthesis (not just compilation) of customized logic-in-
memory blocks in a commercial sub-20 nm CMOS process
and successfully developed a smart memory design and syn-
thesis methodology. The smart memory is composed of a
group of Memory Arrays, peripheral circuits and applica-
tion specific random logic implementing a special function.

The major step in the design of smart memory is to co-
optimize logic, memory and process. In order to predictably
print the tight pitches in extreme nodes, the design rules
require an extremely regular and gridded design making
logic and memory co-design easier, for that we have cre-
ated a bitcell compliant area-efficient unidirectional logic
fabric. This methodology allows to remove any distinc-
tion between pushed memory design rules and logic design
rules. Therefore, customized memory periphery is synthe-
sized using lithographically compliant unidirectional stan-
dard cells which can be mapped together with memory to a
small set of pre-characterized layout pattern constructs [5,
6]. Lithographic compliance between the co-designed logic
and memory ensures sub-20 nm manufacturability of LiM
circuits.

The architectural frontend and physical backend are com-
bined to build an end-to-end LiM design framework [3, 4,
26]. Its input is the design specification and the output is
ready to use hardware (RTL, GDS, .lib, .lef). When gener-
ating a specified design point, our framework also reports
the area, power and latency and send them back to the fron-
tend user interface, from which the designer can evaluate
the resulting design and reset the design specs for redesign
if necessary. Our LiM framework allows an application
designer to generate the optimized “silicon” templates by
simply tuning the “knobs”.

User Interface Illustration In Fig. 9 we show the user inter-
face of our LiM-based SAR image reformatting design
tools. The design parameters are listed in the left panel and
module structure is shown in the right panel. Functional
parameters (e.g., Data precision, interpolation order) are
set by the application designer. In our example in Fig. 9,
the selected operation is the reformatting of a 256 × 256
polar grid array to a rectangular grid array, using bilinear
interpolation. The interpolation resolution is set to be 8 bits.
To achieve this, a 2D bilinear interpolation memory with
a 256 × 256 physical memory size and a 2 × 2 rectangu-
lar access size is required, which is a separate LiM design
tool we built. It here acts as a sub-module of the image
reformatting tool. Constrained by the higher-level image

Figure 9 Design framework user interface.

J Sign Process Syst

reformatting tool, its parameters are shown in right part of
Fig. 9b. This interpolation memory contains a second-level
sub-module: a 2 × 2 rectangular access memory for supply-
ing 2×2 block pixels to its higher level bilinear interpolation
memory module. When satisfied with the parameters, the
user simply clicks the “Submit Changes” button, and the
tool will start to run to generate the dedicated hardware
description in Verilog.

As seen in the example, we are building a LiM tool that is
hierarchically composed from lower-level LiM design tools.
All of these submodules in the designs provide users the
hierarchical graphical tools to design instances of the algo-
rithm with the capability of exploring the design space to
trade off cost and performance.

5 Experimental Results

In this section we evaluate our logic-in-memory based SAR
implementation for accuracy, performance, as well as com-
putational and energy cost. We use our design tool to
automatically synthesize the hardware for measurement and
build an architectural model to simulate the algorithm.

Consecutive Access Smart Memory Evaluation The smart
rectangular access memory is a core component, which we
first evaluate in isolation. In Fig. 10a, we compare the hard-
ware cost of rectangular access memory (smart memory)
to a traditional multi-banking memory design (dumb mem-
ory) in terms of power-delay-product. Both designs have the
same functionality to read out 2×2 consecutive memory ele-
ments in one clock cycle. We observe that the smart memory
achieves around one order of magnitude savings. Figure 10b
compares the smart memory area and dumb memory area,
for a 128 × 128 size image divided in one tile, four tiles and

16 tiles. The image is loaded into the chip and to be pro-
cessed one tile after tile. As we can seen, the on-chip local
memory size is decreasing proportionally with the increase
of the tile number. We also plotted the corresponding com-
putational logic area cost. As can be observed, the logic area
is relatively small compared with memory area, especially
for the smaller tile numbers (larger tile sizes). This proves
that the on-chip system is dominated by the memory area.
The dynamic power and leakage power comparison results
are shown in Fig. 10c and d. The leakage power savings
of the smart memory is not as large as the corresponding
dynamic power saving. Smart memory is designed to save
the overhead cost of the periphery circuit, but has the same-
size memory cell array, and the latter is the major consumer
of the leakage power.

Accuracy and Hardware Cost Evaluation We next compare
the accuracy of our local interpolation (nearest-neighbor,
bilinear and bicubic) SAR algorithm to the conventional
FFT upsampling based approach. We simulated a random-
ized radar scene of point targets and performed re-gridding
using each interpolation method, see Fig. 11. As the entire
process is linear and any image is a super-position of
point-targets, analysis of point-targets is sufficient to emu-
late a real-world SAR scene. A reference gold standard
is included that is based on the computationally infeasible
non-uniform inverse FFT that has a closed-form solution
for point targets. We simulated 1000 randomized scenes and
Fig. 12 shows the statistical analysis of the mean square
error (MSE) distribution for each method relative to gold
standard method. For each trial, the MSE across all pixels
is computed for that image compared to the gold standard
technique. The x-axis on each figure of Fig. 12 represents
the mean square error (MSE). The y-axis is a count of
image trials that has this magnitude of MSE. Some trials

Figure 10 Smart memory cost
evaluation.

0.0E+00

1.5E+04

3.0E+04

4.5E+04

6.0E+04

7.5E+04

One-tile 4-tiles 16-tiles

One-tile 4-tiles 16-tilesOne-tile 4-tiles 16-tiles

(b) Area Evaluation

Dumb_memory

Smart_memory

Logic

Area [um2] vs. tiling number

0.0E+00

1.5E+04

3.0E+04

4.5E+04

6.0E+04

(c) Dynamic Power Evaluation

Dumb_memory

Smart_memory

Logic

Dynamic power [uW] vs. tiling number

0.0E+00

1.0E+03

2.0E+03

3.0E+03

4.0E+03

(d) Leakage Power Evaluation

Dumb_memory

Smart_memory

Logic

Leakage power [uW] vs. tiling number

1.0E+00

1.0E+02

1.0E+04

1.0E+06

1.0E+08

16X16 16X32 32X32 32X64 64X64

(a) Smart Memory Cost Saving

Dumb_Memory
Smart_Memory

Area-Power-Delay Product [um^2·mW·nS] vs. Memory Size

J Sign Process Syst

(a) Original scene (b) Gold standard method (c) FFT upsampling method

(d) Near_neighbor (e) Bilinear interpolation (f) Bicubic interpolation

Figure 11 An original and five reconstructed point target scenes.

have accuracy that are really close to the gold standard,
and thus have smaller errors, so they contribute more to
the counts on the left-hand side of these histograms. A trial
whose image has a higher MSE contributes to the counts
on the right-hand side of these histograms. We see that the

distortions caused by the traditional FFT upsampling based
approach and the local bilinear and bicubic interpolation
methods are statistically indistinguishable while the near-
neighbor approach is shown to be relatively inferior. Thus,
in these SAR settings, using local bilinear or bicubic

(a) FFT upsampling (b) Near-neighbor

(c) Bilinear interpolation (d) Bicubic interpolation

Figure 12 Mean square error comparison.

J Sign Process Syst

Figure 13 Design tradeoff evaluation.

interpolation for re-gridding does not result in an accuracy
loss relative to FFT based upsampling. In Fig. 13a we vary
tile numbers and interpolation complexity. As expected, we
see the MSE decreasing for larger tile numbers and higher
interpolation order. However, as we can seen from Fig. 13b
to d, the area and power consumption of the computational
logic is also increasing for higher interpolation order. On the
other hand, the number of tiles does not have huge impact

on the hardware cost of the computational logic. The reason
is that when we divide the image into more smaller tiles and
process one small tile each time, the bit-precision of data
path (e.g., memory address) is decreasing which saves the
hardware cost. However, as the processing for different
tiles has different geometry related design parameters, it
costs extra control logic to configure the hardware at the
beginning of the processing based on different tile indices.

Figure 14 More experimental results.

J Sign Process Syst

Figure 14a shows the design trade-off of the interpo-
lation memory in terms of the bit precision, interpolation
order and the size of the seed table that stores the mea-
sured data points. Quadratic interpolation is also included
for the completeness of the discussion, though it is actually
not used in our design. As we can see, the accurate data
precision bits (y axis) is proportionally increasing with the
increasing of the physical memory address bits (x axis) for
all the linear/quadratic/cubic interpolation methods. Also as
expected, higher order interpolation method achieves bet-
ter accuracy for the same seed table size. Figure 14b shows
the decimation filter area with different region-of-interests
(ROIs) and different filter stopband attenuation (ast). The
ROI is defined as the ratio of the area of the image centric
subset that needs to be accurately reconstructed compared
with the overall image area. As expected, either higher
ROI or higher ast indicates higher image quality but con-
sumes more hardware cost. Figure 14c demonstrates the
overall hardware cost of LiM blocks on a 14 nm commer-
cial CMOS technology; the y axis values are the logic area
relative to the memory area. The bottom curve shows the
grid interpolation area for the full image reconstruction. For
partial reconstruction, the top three curves add in the deci-
mation filter area for three filter design specifications. We
see that although the area for partial reconstruction increases
slightly with the increase of the decimation factor, the y

axis values are fairly small for all the design points. Thus,
the logic area is negligible compared to the memory area
for both full and partial reconstruction. In Fig. 14d, we
observe that the number of arithmetic operations for the
2D IFFT is decreasing with the increase of the decima-
tion factor in partial reconstruction. Figure 14c and d show
that the decrease of operations through smaller IFFTs in
partial reconstruction is not increasing the hardware cost
substantially.

Energy Efficiency To evaluate the energy efficiency of our
logic-in-memory SAR implementation, we simulate the
whole SAR polar formatting algorithm in two variants:
(1) we run the image reconstruction on a simple proces-
sor with a standard SRAM cache, and (2) we replace the
cache with our logic-in-memory hardware that performs the
interpolation in the memory and run a program reconstruct-
ing the image using this memory. We measure the energy
consumption using the Wattch simulator, which is an archi-
tectural level power simulator based on SimpleScalar [27].
We model the logic-in-memory as direct-mapped on chip
memory and scale the memory accessing energy by adding
the normalized embedded logic cost from the hardware
characterization results. We plot the results for both the
conventional and logic-in-memory architecture at different
problem sizes from 32 to 512. The results in Fig. 15 show

Figure 15 Energy consumption evaluation.

multiple orders of magnitude of energy savings achieved by
logic-in-memory especially for large data-size problems.

6 Conclusion

Advances in integrated circuit design enable the energy-
saving logic-in-memory paradigm, which moves a part
of the computation directly into the memory array. This
cutting-edge design methodology requires redesign of well-
known algorithms to match its performance characteristics.
In this paper we derive a logic-in-memory variant of the
polar formatting algorithm used in SAR image formation,
and it has the accuracy comparable to the traditional FFT-
based polar formatting algorithm but requires much less
processing energy. Our algorithm further supports partial
image reconstruction. We provide the necessary design
automation tool chain to enable users to study the design
trade-offs in the energy and performance space. Our exper-
imental results show substantial energy saving at the same
accuracy level.

Acknowledgments The authors acknowledge the support of the
C2S2 Focus Center, one of six research centers funded under the
Focus Center Research Program (FCRP), a Semiconductor Research
Corporation entity.

References

1. Carrara, W., Goodman, R., Majewski, R. (1995). Spotlight syn-
thetic aperture radar: Signal processing algorithms. Artech
House.

2. McFarlin, D., Franchetti, F., Püschel, M., Moura, J. (2009). High
performance synthetic aperture radar image formation on com-
modity multicore architectures. In SPIE.

3. Zhu, Q., Turnerz, E.L., Bergery, C.R., Pileggi, L., Franchetti,
F. (2011). Application-specific logic-in-memory for polar format
synthetic aperture radar. In HPEC.

J Sign Process Syst

4. Zhu, Q., Bergery, C.R., Turnerz, E.L., Pileggi, L., Franchetti, F.
(2012). Polar format synthetic aperture radar in energy efficient
application-specific logic-in-memory. In ICASSP.

5. Morris, D., Rovner, V., Pileggi, L., Strojwas, A., Vaidyanathan,
K. (2010). Enabling application-specific integrated circuits on
limited pattern constructs. In Symp. VLSI technology.

6. Morris, D., Vaidyanathan, K., Lafferty, N., Lai, K., Liebmann, L.,
Pileggi, L. (2011). Design of embedded memory and logic based
on pattern constructs. In Symp. VLSI technology.

7. Kogge, P.M., Sunaga, T., Miyataka, H., Kitamura, K., Retter, E.
(1995). Combined DRAM and logic chip for massively parallel
systems. In Conf. advanced research in VLSI.

8. Brockman, J.B., & Kogge, P.M. (1997). The case for processing-
in-memory. IEEE Computer.

9. Shacham, O., Azizi, O., et al. (2010). Rethinking digital design:
Why design must change. IEEE Micro, 30(6), 9–24.

10. Shacham, O. (2011). Chip multiprocessor generator: automatic
generation of custom and heterogeneous compute platforms. PhD
thesis, Stanford.

11. Rudin, J. (2007). Implementation of Polar Format SAR Image
Formation on the IBM Cell Broadband Engine. In Proc. HPEC.

12. Kestur, S., Park, S., Irick, K., Maashri, A., Narayanan, V. (2010).
Accelerating the nonuniform fast fourier transform using FPGAs.
In FCCM.

13. Kestur, S., Irick, K., Park, S., Maashri, A., Narayanan, V.,
Chakrabari, C. (2011). An Algorithm-Architecture Co-design
Framework for Gridding Reconstruction using FPGAs. In DAC.

14. Sorensen, T., Schaeffter, T., Noe, K., Hansen, M. (2008). Accel-
erating the nonequispaced fast fourier transform on commodity
graphics hardware. In IEEE tran. on medical imaging.

15. Che, S., Li, J., Sheaffer, J.W., Skadron, K., Lach, J. (2008). Accel-
erating compute-intensive applications with GPUs and FPGA. In
SASP.

16. Kuon, I., & Rose, J. (2007). Measuring the Gap between FPGAs
and ASICs. In IEEE transactions on computer-aided design of
integrated circuits and systems.

17. Wolberg, G. (1990) Digital image warping (systems). IEEE Com-
puter Society Press.

18. Lyons, R. (2004). Understanding digital signal processing.
Prentice Hall.

19. Noetzel, A.S. (1989). An interpolating memory unit for function
evaluation: analysis and design. IEEE Transactions on Computers,
38(3), 377–384.

20. Meijering, E. (2002). A chronology of interpolation: from ancient
astronomy to modern signal and image processing. In Proceedings
of the IEEE (pp. 319–342).

21. Williams, L. (1983). Pyramidal parametrics. Computer Graphics,
17(3).

22. Atkinson, K.A. (1988). An introduction to numerical analysis.
Wiley.

23. Murachi, Y., Kamino, T., Miyakoshi, J., Kawaguchi, H.,
Yoshimoto, M. (2007). A power-efficient SRAM core architecture
with segmentation-free and rectangular accessibility for super-
parallel video processing. (Vol. 107 pp. 47–52): IEICE Tech. Rep.

24. Shacham, O., et al. (2012). Genesis2 chip generator interac-
tive GUI: http://genesis2.stanford.edu/mediawiki/index.php/
Main Page.

25. Solomatnikov, A., Firoozshahian, A., Qadeer, W., Shacham, O.,
Kelley, K., Asgar, Z., Wachs, M., Hameed, R., Horowitz, M.
(2007). Chip multi-processor generator.

26. Zhu, Q.L., Vaidyanathan, K., Shachamy, O., Horowitz, M.,
Pileggi, L., Franchetti, F. (2012). Design automation framework
for application-specific logic-in-memory blocks.

27. Brooks, D., & Tiwari, V. (2000). Wattch: a framework for
architectural-level power analysis and optimizations.

Qiuling Zhu received her B.S. degree in Department of Electronic
Science and Technology from Huazhong University of Science and
Technology, Wuhan, China and her M.S. degree in the Institute
of Microelectronics of Tsinghua University, Beijing, China in 2007
and 2009 respectively. She is currently pursuing a Ph.D. degree in
Department Electrical and Computer Engineering at Carnegie Mellon
University, Pittsburgh, PA, USA., with research interests in sub-22 nm
VLSI design and design automation methodology, application-specific
computer architecture focusing on memory architecture, and hardware
accelerators for signal processing, image processing and computer
vision applications.

Christian R. Berger was born in Heidelberg, Germany in 1979. He
received the Dipl.-Ing. degree from the Universitaet Karlsruhe (TH),
now Karlsruhe Institute of Technology (KIT), in Karlsruhe, Germany
in 2005; the Ph.D. degree from the University of Connecticut, Storrs,
in 2009, both in electrical engineering. From 2009–2011 he was a
Post-Doctoral researcher at Carnegie Mellon University, Pittsburgh,
PA. He is now a Staff Systems Engineer in the Wireless R&D Group at
Marvell Semiconductor, Santa Clara, CA. His research interests are in
the area of signal processing for wireless communication, specifically
implementation of multicarrier systems such as OFDM, with focus on
synchronization, channel estimation, and implementation complexity.
Dr. Berger has served as reviewer for various technical journals and
conferences, as well as on the technical program committee of the
Fusion conference and the PIMRC symposium.

http://genesis2.stanford.edu/mediawiki/index.php/Main_Page
http://genesis2.stanford.edu/mediawiki/index.php/Main_Page

J Sign Process Syst

Eric L. Turner received his B.S. degree in Electrical and Computer
Engineering from Carnegie Mellon University in 2011. He worked
for MIT Lincoln Laboratory, focusing in Synthetic Aperture Radar
Coherent Change Detection. He is currently a Ph.D. Candidate at
U.C. Berkeley in Electrical Engineering and Computer Science. His
research interests include 3D Modeling, Surface Reconstruction, and
Digital Signal Processing.

Larry Pileggi is the Tanoto Professor of Electrical and Computer
Engineering at Carnegie Mellon University and the director of the
FCRP Center for Circuit and System Solutions (C2S2). He previously
held positions at Westinghouse Research and Development and the
University of Texas at Austin. He received his Ph.D. in Electrical and
Computer Engineering from Carnegie Mellon University in 1989. His
research interests include various aspects of digital and analog design
and design methodologies. He has consulted for various semiconduc-
tor and EDA companies, and was a co-founder of Fabbrix (acquired
by PDF Solutions in 2007) and Extreme DA (acquired by Synopsys in
2011).

He has received various awards, including Westinghouse corpora-
tion’s highest engineering achievement award, the best CAD Transac-

tions paper awards for 1991 and 1999, a Presidential Young Inves-
tigator award from the National Science Foundation, Semiconductor
Research Corporation (SRC) Technical Excellence Awards in 1991
and 1999, the inaugural Richard A. Newton GSRC Industrial Impact
Award, the SRC Aristotle award in 2008, and the IEEE Circuits
and Systems Society Mac Van Vlakenburg Award in 2010. He is a
co-author of “Electronic Circuit and System Simulation Methods,”
McGraw-Hill, 1995 and “IC Interconnect Analysis,” Springer, 2002.
He has published over 250 refereed conference and journal papers and
holds 30 U.S. patents. He is a fellow of IEEE.

Franz Franchetti is an Associate Research Professor with the Depart-
ment of Electrical and Computer Engineering at Carnegie Mellon
University. He received the Dipl.-Ing. (M.Sc.) degree in Technical
Mathematics and the Dr. techn. (Ph.D.) degree in Computational Math-
ematics from the Vienna University of Technology in 2000 and 2003,
respectively. In 2006 he was member of the team winning the Gordon
Bell Prize (Peak Performance Award) and in 2010 he was member of
the team winning the HPC Challenge Class II Award (most productive
system).

Dr. Franchetti’s research focuses on automatic performance tun-
ing and program generation for emerging parallel platforms, includ-
ing multicore CPUs, clusters and high-performance systems (HPC),
graphics processors (GPUs), field programmable gate arrays (FPGAs),
and FPGA-acceleration for CPUs. As member of the Spiral research
team (www.spiral.net), his research goal is to enable automatic gen-
eration of highly optimized software libraries for important kernel
functionality. In other collaborative research threads Dr. Franchetti
is investigating the applicability of domain-specific transformations
within standard compilers, and hardware and software co-design based
on high-level hardware and algorithm descriptions, as well as the pos-
sibility of application-specific logic within memory. Dr. Franchetti
is Thrust Leader of the Security Thrust in Carnegie Mellon’s SRC
Smart Grid Research Center and Faculty Senator for the ECE Depart-
ment at Carnegie Mellon. He is CTO and co-founder of SpiralGen, a
Pittsburgh, PA company commercializing the technology developed in
the Spiral project.

http://www.spiral.net

	Local Interpolation-based Polar Format SAR: Algorithm, Hardware Implementation and Design Automation
	Abstract
	Introduction
	Localized SAR PFA Algorithm
	Local Interpolation Based Polar Reformatting
	SAR Image Partial Reconstruction

	Hardware Implementation
	Interpolation Memory Implementation
	Rectangular-Access Smart Memory
	Image Perspective Transformation
	Frequency Filter

	Design Automation Framework
	Design Trade-off Analysis
	LiM Design Framework

	Experimental Results
	Conclusion
	Acknowledgments
	References

