PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 1

SPIRAL: Extreme Performance Portability

Franz Franchetti, Senior Member, IEEE, Tze Meng Low, Member, IEEE,
Doru Thom Popovici, Student Member, IEEE, Richard M. Veras, Member, IEEE, Daniele G. Spampinato,
Member, IEEE, Jeremy R. Johnson, Senior Member, IEEE, Markus Piischel, Senior Member, IEEE,
James C. Hoe, Fellow, IEEE, and José M. F. Moura, Fellow, IEEE

Abstract—In this paper we address the question of how
to automatically map computational kernels to highly efficient
code for a wide range of computing platforms, and establish
the correctness of the synthesized code. More specifically, we
focus on two fundamental problems that software developers
are faced with: performance portability across the ever-changing
landscape of parallel platforms, and correctness guarantees for
sophisticated floating-point code. The problem is approached as
follows: We develop a formal framework to capture computa-
tional algorithms, computing platforms, and program transfor-
mations of interest, using a unifying mathematical formalism
we call operator language (OL). Then we cast the problem of
synthesizing highly optimized computational kernels for a given
machine as a strongly constrained optimization problem that is
solved by search and a multi-stage rewriting system. Since all
rewrite steps are semantics preserving, our approach establishes
equivalence between the kernel specification and the synthesized
program. This approach is implemented in the SPIRAL system,
and we demonstrate it with a selection of computational kernels
from the signal and image processing domain, software-defined
radio, and robotic vehicle control. Our target platforms range
from mobile devices, desktops, and server multicore processors to
large-scale high-performance and supercomputing systems, and
we demonstrate performance comparable to expertly hand-tuned
code across kernels and platforms.

Index Terms—SPIRAL, program generation, program synthe-
sis, automatic performance tuning, performance engineering

I. INTRODUCTION

OMPUTER architects are experimenting with ever
more complex systems containing manycore processors,
graphics processors, field programmable gate arrays (FPGAs),
and a range of speculation techniques to keep Moores law on
track and to keep systems within their power envelope. This
enormous growth of computing power is a boon to scientists;
however, it comes at a high cost: the development of efficient
and correct computing applications has become increasingly
more difficult and complex. Already on a single CPU, the
performance of an inefficient implementation can be 10 to 100
times slower than the fastest code written by an expert. Thus,
significant effort has to be invested by highly sophisticated
programmers to attain the desired performance on modern
platforms that include multiple CPUs or accelerators.
At the heart of this effort is the inherent tension between
performance, software abstraction, and code maintainability as

F. Franchetti, T.M. Low, D.T. Popovici, J.M.F. Moura, and J.C.
Hoe are with the Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA, 15213 USA e-mail: (see
http://www.ece.cmu.edu).

M. Piischel is with ETH Zurich. J.R. Johnson is with Drexel University.
R.M. Veras is with Louisiana State University.

Manuscript received May 24, 2018; revised September 18, 2018.

programmers have to constantly develop for the latest release
of the newest platform.

Current tools such as advanced compiler frameworks and
automatic performance tuning (autotuning) systems allow
portability across a wide range of platforms and algo-
rithms while also attaining reasonable performance. How-
ever, automatically achieving near-optimal performance for
performance-relevant mathematical operations has been shown
to be difficult. Part of the reason for this difficulty is that
programs do not exactly capture the desired input-output
behavior. They are often over-specified either due to lan-
guage requirements or programmer decisions while writing
code. As such, the expert programmer often has to hand-
code their highly optimized implementation with low-level
machine-specific instructions (assembly) in order to attain high
performance appropriate when high-performance library code
is not available.

In this paper we present a complete overview of the SPIRAL
system. SPIRAL is a program and library generation/synthe-
sis and autotuning system that translates rule-encoded high-
level specifications of mathematical algorithms into highly
optimized/library-grade implementations for a large set of
computational kernels and platforms. The system has been
developed over the last 20 years and is freely available as
open source under a BSD-style license. SPIRAL formalizes a
selection of computational kernels from the signal and image
processing domain, software-defined radio, numerical solution
of partial differential equations, graph algorithms, and robotic
vehicle control, among others. SPIRAL targets platforms span-
ning from mobile devices, to desktop and server multicore
processors, and to large high performance and supercomputing
systems, and it has demonstrated performance comparable
to expertly hand tuned code across a variety of kernels and
diversity of platforms. To maximize portability and to leverage
the work of backend compiler developers, when producing
software SPIRAL usually targets vendor compilers such as the
Intel C compiler or IBM’s XL C compiler, or widely available
compilers like the GNU C compiler or LLVM, and only rarely
generates assembly code directly.

Contributions. This paper presents an end-to-end descrip-
tion of the current status of the SPIRAL system and its
underlying program generation methodology. We detail

« the formal framework to describe computational kernels;

« the machine model used to target both known and novel,

yet-unknown machines;

« the constraint solving system that derives a search space

of candidate programs for a given platform and compu-
tational kernel;

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 2

« the autotuning approach that yields high performance;

« correctness guarantees and applied verification methods;

and

o results across a range of platforms for a range of com-

putational kernels.

High-level algorithm representation of linear signal transforms
using the Signal Processing Language (SPL) and ruletrees,
aspects of SIMD vectorization for SSE and SMP paral-
lelization using OpenMP, search and autotuning, as well as
performance modeling is discussed in the previous SPIRAL
overview paper [1], but will be discussed as necessary to make
this paper self-contained.

Synopsis. Section II describes the high level and conceptual
aspects of SPIRAL. Section III introduces hardware, algorithm,
and program transformation abstractions in a unified frame-
work. Section IV discusses how term rewriting, constraint
solving, and domain specific language compilers interact to
synthesize optimized software implementations and hardware
designs, as well as co-optimize combined hardware/software
systems. Section V demonstrates with select results the quality
of SPIRAL generated software and hardware. Section VI
describes current work aiming at extending its capabilities
and how to obtain the newly released open-source version of
SPIRAL. Finally, Section VII offers a summary and conclusion.

II. OVERVIEW

The key observation in the SPIRAL system is that the
mathematics underlying computational kernels changes slowly,
and provides a well-developed language to describe algo-
rithms, while target computer platforms change frequently.
Consider some of the basic mathematical and physical con-
cepts that underlie commonly-used computational kernels:
geometry (Euclid, 300 BC [2]), Gaussian Elimination (un-
known Chinese scholars, 179 AD [3]), equations of motion
(Newton, 1687 [4]), and the fast Fourier Transform (FFT,
Gauss, 1805 [5]). Further, consider how FFTs have evolved
since Gauss: rediscovered in 1965 by Cooley and Tukey [6],
further FFT variants in subsequent years, formalized in matrix
form extended and popularized in 1992 by Van Loan [7].

In contrast, consider the release timeline of classes of
processors that have been targeted by SPIRAL: single core x86
CPU with cache in personal computer (mid-1990s), multicore
CPU (Pentium D, 2005), GPGPU (GeForce 8800, 2006),
manycore CPU (Xeon Phi, 2011). Even if we were to restrict
the discussion to Intel CPUs, the rate at which new versions
and microarchitectures are released is staggering [8]. More-
over, the range of platforms successfully targeted by SPIRAL
spans orders of magnitude in peak performance: mobile and
embedded devices (ARM CPUs and multicores), desktop and
server class CPUs (up to tens of cores and GBs to TBs of
shared memory), accelerators (graphics processors, Xeon PHI,
FPGAs), and large parallel machines like BlueGene/L/P/Q and
the K computer with up to almost 800,000 cores.

A. Goal and Approach

Goal. The goal of SPIRAL is to provide performance
portability for well-defined, ubiquitously needed computa-
tional kernels across a wide range of continuously changing

computational devices. Specifically, SPIRAL aims to automat-
ically generate an implementation that satisfies the functional
specification of a given problem on a given platform. The
implementation should rival the performance that the best
human expert programmer can achieve. Further, SPIRAL aims
to provide evidence of correctness for this generated im-
plementation. This problem statement addresses questions of
programmability, performance portability, and rapid prototyp-
ing. SPIRAL builds on Johnson’s methodology that connected
the mathematics of fast Fourier transforms to programs and
computer architectures [9], [10], [11].

Approach. The SPIRAL solution is as follows: 1) Develop
a formal framework to capture computational algorithms,
computing platforms, and program transformations of interest
through a unifying mathematical formalism we call operator
language (OL). 2) Cast the problem of synthesizing highly
optimized computational kernels for a given machine as a
tightly constrained optimization problem that is solved by a
multi-stage rewriting system that uses semantics-preserving
operations. This approach allows us to formally prove the
equivalence between the kernel specification and the synthe-
sized program.

The formal system has three main components:

o Algorithms like the famous Cooley-Tukey FFT algorithm
are captured in OL, which encompasses a family of
domain specific languages (DSLs) that capture various
aspects and refinements of specifications and algorithms
for computational kernels. The top level DSL (called
tagged OL, tOL) captures the input/output behavior of
kernels (i.e., their semantics). A mid-level DSL (called
operator language, OL, which extends SPL) captures the
computation as data flow graph. At an even lower-level,
a DSL called ¥-OL (pronounced Sigma-OL) captures
folded data flow graphs and can be interpreted as pro-
viding loop abstractions. Finally, a DSL called icode
(an abstract internal code representation) captures a small
subset of C in the form of abstract syntax trees (ASTSs)
and can be given pure functional semantics for a relevant
subset of programs.

e Hardware like a multicore CPU, FPGA or GPU is mod-
eled through OL expressions that can be implemented
efficiently on the given hardware. The idea is that al-
gorithms that can be composed exclusively (or mainly)
from these expressions can be mapped efficiently to the
associated hardware.

e Program transformations like loop tiling, fission, and
fusion are captured as rewriting rules coupled with a
tagging mechanism. Rewriting rules transform OL/X2-OL
expressions into more efficient expressions that can be
composed from the hardware-based OL expressions. The
tagging mechanism facilitates the introduction of higher
level program transformations such as parallelism.

These three components of the system are used to construct
a space of suitable programs for a given OL specification
that can be mapped efficiently to SPIRAL’s machine model
of a given hardware instance. Conceptually, this is done by
intersecting a space of programs that run efficiently on the

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 3

given hardware with a space of algorithms that implement
the desired computational specification, subject to applicable
program transformations. The result is a search space in which
every point is an algorithm for the given specification that
runs efficiently on the given hardware. Finally, an autotuning
system traverses this search space and uses a DSL compiler to
translate the points in the search space into high performance
implementations.

This approach of mapping a specification to highly opti-
mized implementations across a wide range of machines solves
the forward problem: mapping computations to architectures.
The inverse problem of finding the best architecture for a given
specification, i.e., algorithm/hardware co-optimization can be
solved by iteratively solving multiple forward problems while
traversing the architecture space.

Success. The SPIRAL approach and associated systems have
been developed over the last two decades. The initial focus was
on linear transform algorithms including the FFT. The first
basic approach of mapping a mathematical DSL to efficient C
or Fortran code using a search mechanism for optimization
was presented in [12], [13], [14]. The approach was then
expanded to include a larger set of linear transforms and range
of computing platforms [1], [15], thus offering a program
generation solution for what is later identified as the spectral
dwarf in Berkeley’s 7 dwarfs/11 motifs classification [16]. The
focus of this paper is the work of the last decade in which
we expanded the SPIRAL approach to a much larger scope
of computational kernels, while earlier work before 2005 is
discussed in [1].

Using the systematic rewriting approach, SPIRAL has
demonstrated, over the last two decades, the automatic gen-
eration of expert-level performance code across a wide range
of microarchitectures. Specifically, SPIRAL has successfully
targeted modern CPUs with multi-level caches [12], [13], [1],
[17], [18], multiple cores [19], [20], SIMD vector instruc-
tions [21], [22], [23], [24], [25], [26], [27], [28], [29], and
multi-socket systems with large main memory [30], fixed-point
arithmetic [31], fused multiply-add instructions [32], modulo
arithmetic [33]), GPUs [34], [35], [36], DSPs [37], the Cell
BE [38], [39], Larrabee and Xeon PHI [40], FPGAs [41], [42],
[43], [44], [45], [46], [47], clusters [48], up to 128k cores on
BlueGene/L/P/Q [49], [50], [51], the K computer, and in pre-
silicon settings (IBM Cell BE [38], BlueGene/L, Intel AVX
and Xeon Phi [40]).

The original focus of SPIRAL was linear transforms [1],
[15] such as the discrete Fourier transform [20], [52], linear
filters [53], and the discrete wavelet transform [54], and is
described in detail in [1]. Since then, the approach and the
associated DSLs were expanded to a range of kernels [55], [56]
including the image formation algorithm in SAR [57], com-
ponents of JPEG 2000 [58], Viterbi decoders [59], software-
defined radio (SDR) [60], [61], [62], matrix multiplica-
tion [55], and quantum chemistry kernels [63]. An entire
generator devoted to small-scale linear algebra applications
was built in [28], [64], [65]. Support for some multigrid appli-
cations [66] and Poisson [63] solvers was also introduced, and
we synthesized sensor fusion and control code kernels [67].

Rewriting in SPIRAL handles the basic mapping to a given

target platform, but leaves a space of candidate alternatives for
further tuning. To navigate this space, SPIRAL uses various
search methods [1], models [68], but also machine learning
approaches [69], [70], [71], [72].

SPIRAL can be used as a low-level backend code generation
tool and kernel generator for polyhedral compiler infrastruc-
tures [73], [74] and as a programming tool for special purpose
hardware [75]. The formal framework of SPIRAL lends itself
to mathematical correctness arguments [76], [67]. SPIRAL was
used to produce parts of Intel’s MKL and IPP libraries (it gen-
erated 1 million lines of code for IPP’s ITPPgen module) [77],
[78], codelets for the BlueGene/L/P/Q FFTW version [49],
[79], and Mercury’s Scientific Algorithms Library (SAL) [80].
A more principled design and implementation of SPIRAL using
modern language features including pattern matching, staging,
and embedded DSLs was studied in [81], [82] and provides
a SPIRAL prototype implemented in Scala. An experimental
Haskell version was also developed in this context [83]. Cur-
rent work includes extending SPIRAL to support graphs and
sparse matrices algorithms, as well as proving the correctness
of SPIRAL’s program generation toolchain within the Coq
system.

Limitations. Generating code that is competitive with the
best human-written code across a wide range of platforms
is inherently a difficult task. This task is made even more
complex when one requires the system to be extensible. Within
SPIRAL, we simplify this task by restricting the problem
domain to domains and algorithms that can be described
in terms of recursive specifications. In addition, possible
variations and developer choices must be extracted as free
parameters. The specification needs to be encoded as a rewrite
rule in a term rewriting system in a domain specific language
with mathematical semantics, and all relevant algorithmic and
parametric degrees of freedom need to be expressed. Devel-
oping such a specification can be a hard research problem,
even for well-understood mathematical kernels, as evidenced
by the development time line of SPIRAL’s FFT capabilities
[15]. As listed above, we have shown that it is possible
to capture other domains beyond FFTs, but the effort in
each case was considerable. Further, adding a new hardware
feature, computational paradigm (such as vector instructions
or multiple cores as they appeared), or program transformation
also requires encoding this knowledge in SPIRAL’s formal
system. Surprisingly, this tends to be an easier task than adding
a new kernel.

While the SPIRAL developers have strived for complete
coverage of the supported architecture and kernel/application
space, a number of the results detailed above were demon-
strated as one-off solutions. At one end of the spectrum, the
FFT is most completely supported across all platforms targeted
by SPIRAL. At the other end of the spectrum, some coding and
communication kernels are only prototypically supported for
a single platform [58].

SPIRAL’s internal languages are DSLs with mathematical
semantics. A mathematics-style notation lends itself to cap-
turing algorithm and program optimization rules concisely,
e.g. as done in a book. However, the mathematical notation
and its implementation in the dated computer algebra system

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 4

it was built on still poses a considerable hurdle to adoption.
Therefore we often wrapped up a part of SPIRAL’s capabilities
in easy-to-use parameterized generators (e.g., on the web
at www.spiral.net) or as a command line tool in a
compiler tool chain [73], [74]. We have also exposed part of
SPIRAL’s SPL/OL language as a Matlab tensor library with
high-dimensional map, reduce, reshape, and rotate operations
in the style of hierarchically tiled arrays (HTA) [84], [85].

Writing OL specifications is complicated. The specification
needs to capture the exact semantics of the computational
kernel without introducing superfluous information that may
obscure the mathematical specification. Machine abstractions
need to be structurally accurate, and standard program trans-
formations need to be recoded as OL rewrite rules. SPIRAL
is implemented in a dated version of the computer algebra
system GAP (groups, algorithms, and programming, version
3) [86], which adds to the complexity of writing specifications.
At this writing, we have had success with web interfaces
that expose only part of SPIRAL’s capabilities and with an
experimental Matlab frontend that implements a subset of OL
and a C library frontend that extends the FFTW interface [87].
Building SPIRAL and its DSLs within a powerful multi-
paradigm language like Scala can increase maintainability and
extensibility [81], [82]. Further, we are pursuing efforts to
enable SPIRAL as a just-in-time compiler (JIT). We hope that
these advancements make SPIRAL more accessible to general
programmers.

B. Related Work

We now discuss the most important approaches and projects
of the various technologies that are related to the SPIRAL
project.

Performance libraries. Mathematical performance libraries
provide a uniform interface to key functionality across multiple
platforms, but have been optimized by hand for each target
platform to obtain performance. Prominent examples include
the Intel Math Kernel Library (MKL) [77] and Integrated
Performance Primitives (IPP) [78], AMD’s Core Math Library
(ACML) [88], Cray’s Scientific Library (SciLib) [89], IBM’s
Engineering and Scientific Subroutines Library (ESSL) [90],
Mercury Computing’s Scientific Algorithms Library (SAL),
the Basic Linear Algebra Subroutines (BLAS) [91], [92], [93],
[94], and LAPACK [95]. The BLAS-like Library Instantiation
Software (BLIS) [96] is a framework for instantiating a set
of functions larger than BLAS from a set of microkernels.
SPIRAL originated as a tool to help automate FFT kernels for
some of these libraries, and SPIRAL-generated kernels can be
found in the Intel MKL, IPP, and Mercury’s SAL.

Compilers. Polyhedral compiler frameworks like
PetaBricks [97], CHILL [98], R-Stream [99], PLuTo and
PTile [100], Polly [101], [102], and the Polyhedral Parallel
Code Generator (PPCG) [103] have their strength in regular
and dense computations on standard parallel machines and
accelerators, and extensions to sparse polyhedral computations
have been investigated. Other approaches include annotation-
based compilation [104] and the concept of telescoping
languages [105].

Many HPC high-level languages follow the partitioned
global address space (PGAS) paradigm to provide portability
across distributed memory machines. The historically most
important examples are HPF and FortranD [106], [107].
Chapel [108], X10 [109], UPC [110], and Co-Array Fortran
[111] are other example of languages in this space. Systems
like PEAK [112], PetaBricks [97], Sequoia [113], CHiLL [98],
the polyhedral infrastructures Pluto [100], Primetile [114],
CLooG [115], as well as the Gnu C interactive compilation
interface (GCC ICI) and Milepost GCC [116] use autotuning
and machine learning. SPIRAL captures many of the program
transformation techniques used by these languages and sys-
tems, and its internal representation allows for extracting and
capturing information that usually has to be derived by analysis
or provided via annotations.

LLVM, Open64, and the GNU compiler suite are open
compilers designed to be retargeted to a wide range of ISAs.
These compilers have backends that can accept new ISAs and
that can support novel instructions. SPIRAL is leveraging the
intrinsics interface and vector data type abstractions provided
by these open compilers as well as commercial compilers like
the Intel C++ compiler and IBM’s XL C compiler to provide
portable code generation across a wide range of SIMD vector
extensions of CPU instruction set architectures (ISAs) like
x86, POWER, and ARM.

Language extensions. OpenCL, CUDA, OpenMP, and
OpenACC extend C or FORTRAN with language constructs
and/or pragmas to annotate the source code with information
and instructions for the parallelizing/offload compiler. These
language extensions require powerful high level optimizing
compilers to generate highly efficient code. SPIRAL utilizes
them as backend compilers to abstract hardware details and
attain better portability, but performs all necessary high level
transformations itself.

High level synthesis. Vivado HLS and BlueSpec [117]
translate higher-level language programs into hardware blocks
(IP blocks) for FPGAs so that users are freed from some of
the tedious work required when directly specifying hardware
in Verilog or VHDL. SPIRAL directly targets Verilog and
experimentally targets Vivado HLS to enable quick porting
to novel FPGA architectures.

Code generators and autotuners. The autotuning commu-
nity is the home of a number of influential projects that in-
clude code generators and/or autotuning systems for numerical
software. Important autotuning projects include the adaptive
FFT library FFTW [118], [119], the dense numerical linear
algebra project ATLAS [120], [121], the sparse matrix-vector
multiplication library OSKI [122], [123], and the quantum
chemistry tensor contraction system TCE [124]. SPIRAL is
firmly rooted in this community. General autotuning infras-
tructures that can be used independently of the optimization
target include ActiveHarmony [125], Orio [126], and ppOpen-
AT [127].

Generative programming for performance. Generative
programming has gained considerable interest [128], [129],
[130], [131], [132]. The basic goal is to reduce the de-
velopment, maintenance, and analysis of software. Among
the key tools, domain-specific languages (DSLs) provide a

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 5

compact representation that raises the level of abstraction
for specific problems and hence enables the manipulation of
programs [133], [134], [135], [136]. C++, Haskell, MetaO-
Caml, and Scala are often used as host languages to embed
DSLs [137]. The SEJITS [138] specializer specializes kernels
to low level implementations. The Delite [139] framework
offers a set of optimized parallel patterns to DSLs that can
be implemented on top of it. Other approaches are based
on multi-staging frameworks such as Lightweight Modular
Staging (LMS) [140], [81], [139] and Terra [141].

Other examples of DSL-based approaches are query com-
pilers [142], [143] based on a stack of DSLs with progressive
lowering of abstractions. Stencil code generators include [73],
and Lift [144], which combines a high-level functional data
parallel language with a system of rewrite rules that encodes
algorithmic and hardware-specific optimization choices.

DSLs for HPC libraries. The Build to Order BLAS
(BTO) [145], [146] is a domain-specific compiler for matrix
computations. BTO focuses on memory bound computations
(BLAS 1 and 2 operations) and relies on a compiler for vec-
torization. Cllck [147], [148] implements the Formal Linear
Algebra Methods Environment (FLAME) [149] methodology
for automatically deriving algorithms for higher level linear
algebra functions [150] given as mathematical equations. The
supported functions are mostly those covered by the LAPACK
library and the generated algorithms rely on the availability of
a BLAS library. DxTer [151] transforms blocked algorithms
such as those generated by Click and applies transforma-
tions and refinements to output high-performance distributed-
memory implementations. The CLAK compiler [152] finds
efficient mappings of matrix equations onto building blocks
from high-performance libraries such as BLAS and LAPACK.

DSLs for matrix and stencil optimization. Another gen-
erative approach is adopted by Eigen [153], uBLAS [154],
the Matrix Template Library (MTL) [155], STELLA [156],
Halide [157], [158], and the Tensor Algebra Compiler
(TACO) [159], among others. They use C++ expression tem-
plates to optimize the code at compile time. Optimizations
include loop fusion, unrolling, and SIMD vectorization. The
Hierarchically Tiled Arrays (HTAs) [84], [85], which offer
data types with the ability to dynamically partition matrices
and vectors, automatically handle situations of overlapping
areas. HTA’s goal is to improve programmability by reducing
the amount of code required to handle tiling and data distri-
bution in parallel programs, leaving any optimization to the
programmer (or program generator).

Frameworks and computer algebra systems. Systems
like Sketch [160] and Paraglide [161] automatically synthesize
software according to a specification. Rewriting systems are
reviewed in [162]. Logic programming is discussed in [163].
An overview of functional programming can be found in [164].
SPIRAL does not employ SAT solvers but solves a specialized
constraint programming problem through term rewriting.

Python, R, Julia, MATLAB, Java, and C++, and frameworks
like Caffe [165], Theano [166], and TensorFlow [167] are
commonly used by data scientists to express graph analytics
and machine learning algorithms. Computer algebra systems
like Maple [168], YACAS [169] and Mathematica [170],

Model: common abstraction
= spaces of matching formulas

abstraction abstraction

rewriting

search
N

algorithm

space

(DFT2@ 1) T§ (12 @ (...

Kernel
problem size,
algorithm choice

Architectural parameter timizati
Vector length, optimization

#processors, ...

Fig. 1. SPIRAL’s approach: The architecture space (red circle, left), the
algorithm space (blue circle, right), and program transformations (shown as
space in between) are abstracted in a joint formal framework.

interactive numerical systems like Matlab [171], as well as
interactive theorem proving systems based on higher order
logic [172] and the R system for statistical computing [173]
provide interactive capabilities to solve complex problems in
engineering, mathematics, logic, and statistics. SPIRAL is built
on top of the computer algebra system GAP and uses many
of these concepts.

III. ALGORITHM AND HARDWARE ABSTRACTION

We now discuss the different OL abstractions within SPI-
RAL that we use to capture specifications, algorithms, algorith-
mic degrees of freedom, hardware capabilities, and program
transformations. The key idea is to capture this information
into a single formal system that combines multiple rewriting
systems with constraint solving and automatic performance
tuning. Algorithms are captured symbolically as data flow
graphs that are expanded recursively by identity rules. The
target hardware is modeled by the set of all data flow graph
fragments it can execute efficiently and a grammar that de-
scribes all programs that can be built from these fragments.
Rewriting rules are essentially program transformations that
map an algorithm to more efficient algorithms while preserv-
ing correctness.

The overall approach is shown in Figure 1. The architecture
space (red circle, left), the algorithm space (blue circle, right),
and program transformations (shown as space in between)
are abstracted in a joint formal framework. Abstracting the
three components in a compatible way allows SPIRAL to
impose architecture requirements on algorithms and utilize the
necessary program transformations.

In this section we first discuss the algorithm abstraction,
followed by the formalization of data layout and program
transformations, and finally the hardware abstraction. In the
next section (Section IV), we will discuss how these abstrac-
tions interact to implement rewriting, constraint solving, and
autotuning in SPIRAL’s code synthesis process.

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 6

A. Algorithm Abstraction

Specification. In SPIRAL, the top-level objects are spec-
ifications of computational kernels. A kernel is a function
that performs a mathematical operation on its input data to
produce its output. Kernels are modeled as parameterizable
mathematical operators that map vectors to vectors. SPIRAL
operators are stateless (any state would have to be an explicit
parameter and matching result value). Higher-dimensional data
is linearized and sparsity is abstracted as discussed below. In
general, operators can take multiple input vectors and produce
multiple output vectors. We allow a range of mathematical
base types for the vectors, including fields (R, C, GF(k)),
rings (Z, Z,, with n not prime), and semi-rings (e.g., min/sum
semiring etc. [174]). Operators act as problem specifications
in our formal system.

For instance, the scalar product/dot product is mathemati-
cally a bilinear operator and defined in SPIRAL as

<L > RPX R 5 Ry (x,y) — - y. (1

Note that we annotate the operator symbol by its vector length
n, which will allow us to more concisely describe algo-
rithms and transformations. A specification like (1) explains
unambiguously the input/output behavior of the operator (its
semantics) but does not describe how the operator application
is to be computed. Digital signal processing examples of
operators defined in SPIRAL are the discrete Fourier transform
(DFT),

DFT,, : C" — C";z [wmijx,)

with w,, = {/—1 a primitive n'" root of 1. SPIRAL defines
more than 50 linear digital signal processing transforms [1]
and a number of bilinear and non-linear transforms [55].

Beyond linear transforms, SPIRAL defines numerical linear
algebra operations like the circular convolution [55],

n—1

Conv,, : C"xC" — Cnv (Ivy) = I®Y = Z TiY(n—i) modn

i=0
3)
and matrix-matrix multiply [55],

MMMy 0 R™F x RFX™ — R (A, B) s AB, (4)

which are bilinear as the scalar product. In SPIRAL, we
implicitly use the isomorphism R™*™ = R™" to abstract away
tensor rank and convert all higher-rank objects to vectors.

Examples of nonlinear operators defined in SPIRAL include
polynomial evaluation and infinity norm,

P, : R xR = R; (a,2) = Y a;a,)
=0
2 R® = Rz ||2]|oo, (6)

and checking if a point x € R" is inside a polytope given by
a matrix A of polytope face normal vectors and a vector b of
polytope face displacements,

Inside , : R" = Zg;x + Ax — b < (0,...,0). (7)

Equation (7) can be used to implement geofencing for un-
manned aerial vehicles (UAVs) [76]. A more complicated non-
linear example is the statistical z-test, given by

2Test” i R" 5 Ryz s — P < 3711 —a/2), (8)

@)/ |
where p is the population mean, Z the sample mean, o(z)
the sample standard deviation, and &1 is the inverse error
function.

Beyond the kernels shown in (1)—(8) we have modeled
many more kernels as OL operators: the Viterbi decoder [59],
polar formatting synthetic aperture radar (SAR) [57], Eu-
ler integration, statistical tests [67], wavelet transforms and
JPEG2000 image compression [54], [58], the multigrid V
cycle [66], quantum chemistry kernels used in ONETEP [63],
the operations needed in the physical layer of software defined
radio [62], a range of dense linear algebra kernels [65], and
others.

Unambiguously declaring the input/output behavior of a
kernel as function of all parameters is the first step required
for program generation with SPIRAL, and developing the exact
specification of a kernel is often a hard research problem
in particular for higher-level operations like SAR imaging,
Viterbi decoders, and the multigrid V cycle, which require
many algorithm and implementation choices. Top level oper-
ators often require a number of helper operators to be defined
to express algorithms cleanly through breakdown rules, as
discussed next.

Algorithms. In SPIRAL, algorithms describe how an op-
eration given by a specification is turned into a computation
directly or through other operators. For instance, a fast Fourier
transform (FFT) is an algorithm to compute the DFT (which
is a specification), usually through smaller DFTs. Similarly,
computing a circular convolution via DFT and pointwise mul-
tiplication in the frequency domain or evaluating a polynomial
via the Horner scheme are considered algorithms.

More formally, algorithms break down operators into (usu-
ally smaller) other operators in the style of divide-and-conquer
or iterative algorithms. Such algorithmic decompositions are
modeled as breakdown rules in SPIRAL’s rewriting system
and may expose algorithmic degrees of freedom. Recursive
application of breakdown rules yields a fully specified al-
gorithm that is expressed as a rule tree. The rules explain
how a rule tree is translated into a flat data flow graph. The
domain specific language OL is used to capture these data
flow graphs. OL programs may contain iterators (similar to
map and reduce/fold in functional languages).

Operator language. SPIRAL uses the operator language
(OL) to represent algorithmic breakdown rules and data flow
graphs. We often refer to OL programs as OL as formulas. OL
consists of atomic operators like (1)—(7) and others including
auxiliary ones. Higher-order functions (operations) construct
operator expressions, i.e., new operators from others.

Linear operators play an important role in SPIRAL. Orig-
inally, SPIRAL’s language was called signal processing lan-
guage (SPL) [13] and focused on linear operators, composi-
tion, and the Kronecker product to describe linear signal trans-
forms and their algorithms (like the FFT) [1]. OL generalizes

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 7

SPL to allow for multiple inputs and operator nonlinearity.
In OL, matrices are interpreted as linear operators, and matrix
multiplication is interpreted as composition of linear operators.
Thus, OL is a generalization of SPL and any SPL expression
can be cast in OL.

Important linear operators in SPIRAL include the identity
matrix 1, and the stride permutation matrix L)'", which
permutes the elements of the input vector as in + j —
im+1, 0 <i<m, 0<j < n If the vector x is viewed
as an n X m matrix, stored in row-major order, then Lz”
performs a transposition of this matrix. Also important are
diagonal matrices, e.g., to describe the twiddle matrix T;'"
needed in the most commonly used FFTs.

Higher-order functions create new OL operators from exist-
ing OL operators. Important higher-order functions included
within SPIRAL includes function composition o, the Cartesian
product X, the direct sum @& and the Kronecker product or
tensor product ®,

(Ao B)(x) = A(B(x)), 9)

(A x B)(z,y) = A(z) x B(y), (10)
(A® B)(zoy) = A(z) ® B(y), and (11)
(A® B)(z ®@y) = A(z) @ B(y). (12)

The Kronecker product of matrices A and B is defined as
A® B = [ageB|, for A= |ayg. (13)

It replaces every entry a; ¢ of A by the matrix aj (B. The
Kronecker product binds weaker than matrix product but
stronger than matrix addition. For scalar operations like —+,
—, /s <, =, #, >, etc. we define the infix operations

(Ao B)(x) = A(x) o B(x) vy <, b

(14
In (9)—(14) we assume that the operators A and B are of arity
(1,1), i.e., that they have one input and one output vector. Gen-
eralization to higher arities (multiple input or output vectors)
is technically complex but conceptually straight-forward [55].
SPIRAL applies the isomorphism between R and the direct
sum and cartesian product of R™ and R",

R™ x R*" 2 R™ @ R" = R™™

for o€ {+,—

as needed in type unification to simplify handling of higher
arities.

More recently, an additional class of OL operators that
models functional programming constructs like map and
fold [67], [76] was introduced into SPIRAL in OL.:

n—1 n—1

Map?, () : R = R @ zi = @D fil:), (15)
=0 =0

9 =1
FOld?l()z R" = R;zo ® 2y — {f0($07z) n

fo(q;o,Fold;;i(w)’z(xr)).

(16)

This additional class of operators are introduced so that
SPIRAL-generated code can be formally verified using stan-
dard techniques common to proving the correctness of func-
tional lanugages.

\V4

DF'T'y

HEREE

/\

Rule (16)

(Fa @ 1y) TS (I ®(F2 ® I) T3(Is ®F2) L3) L

Fig. 2. Data flow graph, OL formula, and rule tree for DFTg as expanded
in (20).

Breakdown rules. Algorithms and their degrees of freedom
are expressed in SPIRAL as breakdown rules. A breakdown
rule is a rewriting rule that matches an OL operator (e.g., spec-
ifying a problem) and replaces the matched expression with
a more complicated expression made up of simplier/smaller
OL operators. The pattern matching performed by the rule
encodes possible constraints on the kernel (e.g., a subset of
input sizes to which it is applicable). For instance, the general
radix Cooley-Tukey FFT algorithm is expressed as breakdown
rule [7], [1]

DFT,,, — (DFT,, ® I,) T?""(1,, ®DFT,) L™ . (17)

In (17), DFT,,,, is the non-terminal and is translated into a
right-hand side that consists of an SPL/OL expression that
contains new non-terminals DFT,,, and DFT,,. The left-hand
side DFT,,,,, encodes the constraint that the size of the DFT
be a composite number and therefore can be factored into m
and n. Further, the new DFT non-terminals created by (17) are
of smaller size than the original non-terminal. Thus recursive
application of (17) will terminate and we need to provide a
terminal rule that translates DFT5 into an atomic SPL/OL
operator (the butterfly),

1 1

L)

k-dimensional DFTs are broken down into lower-dimensional
DFTs through tensor products. For instance, a complete de-
composition into one-dimensional DFTs is

DFT2 — F2 with F2 = |: (18)

DFTy, soxmp — DFTpy, ® ... @ DFT,,,. (19)

As an example, a DFTg operator can be fully expanded into
an SPL/OL formula by applying (17) twice and (18) thrice to
get

DFTs — (Fo ® 14) TS (L ®(F2 ® Ib) T5(Io ®F2) Ly) LS .

(20)
The first application of (17) allows for a choice of (m,n) =
(4,2) or (m,n) = (2,4), and for larger sizes requiring

multiple rule applications there is a considerable degree of
freedom to expand DFTy into a fully expanded SPL/OL
formula. The dataflow that is represented by the formula is
shown in Figure 2, left. Such algorithmic degrees of freedom
are one source of the optimization space that is leveraged by
SPIRAL. SPIRAL defines more than 50 linear transform non-
terminals like the DFT and more than 200 breakdown rules
like (17) [1].

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 8

TABLE 1
SPIRAL OL BREAKDOWN RULES FOR A MULTIGRID SOLVER MGSolvePDE, w r m FOR A n X n DISCRETIZED 2D POISSON EQUATION WITH
DIRICHLET BOUNDARY CONDITIONS AND PARAMETERS w, 1, AND m. THE SOLVER USES A RICHARDSON SMOOTHER WITH PARAMETER w AND 7
ITERATIONS AND INJECTION AS RESTRICTION OPERATOR. IT PERFORMS m MULTIGRID CYCLES [66].

m—1
0
MGSolvePDE,, o, r.m — [I,,20,,2] - (H Mchclemw) : {I"Q} @1
i=0 n?
MGCyclenwm — CGChn,w,r - Richardsony w,r (22)
CGCrarr — [CoarseErrornyw,T} 23)
0,2 | I,2
CoarseErrory o, — Interpolate,, - Scattery, - Solvey, ., - Gathery, - Residual,, 24)
Interpolate,, — Tridiag,, (V2/2,V2,v2/2) ® Tridiag,, (V2/2, V2, V?2/2) (25)
Scattern — S1.,,) 0T, im2i41 © SI,) o=l irs2it1 (26)
% I, n=1
Solven,w,r — 0/ _ 27)
"\ 7292 10y 2] - MGCyele 1y 2,00 [I‘(((:,_ll))/;’;} ;o on>1
Gathern — G,) =l im2i01 © G, gy 0 —Tp;ims2it1 (28)
Residual, — [(Tridiag, (1, —2,1) ® I,) + (I, ® Tridiag,, (1, —2,1))| 1,2] (29)
r—1 .
Richardsony w.r — H {ReSIdueLaplacen,w wIn2:| 30)
bl 0,,2 1,2
ResidueLaplace,, ,, — (Tridiag,, (w,1/2 — 2w, w) ® I) + (1, ® Tridiag,, (v, 1/2 — 2w, w)) @31)
TABLE II
OL BREAKDOWN RULES FOR POLAR FORMATTING SYNTHETIC APERTURE RADAR (SAR) [57], [52], [27], FORMALIZING ALGORITHMS FROM [175],
[176].
PDFT%; — DFTxNSo (32)
PDFT?®k™ _ (DFTy, ® Ii,,,) T LE™™ (PDFT{®* ® 1y, (33)
SARs,a — DF Ty xns 2D_1ntpmrfg:ﬁ§52 (34)
Xni—mg X — —
2D-Intp(y e = (I iy @) (I @iTR(02) 69
D) = (1 @5 Intp (i 25) (1o @7) (36)
Intp{} () = Gy ™ iDFThm S(0,k—1)@(m/2) DF T (37
iDF T S(0 4 1)@(m/2) — IPDFT(F=D@m/2) (38)
Tables I-II show breakdown rule sets for more complex an (..
(.
algorithms. Table I shows the set of OL breakdown rules for a
multigrid solver MGSolvePDE,, ,, . ,, for a n x n discretized Rule (39)
2D Poisson equation with Dirichlet boundary conditions and Il Map! ="
W y)y—a—y

parameters w, 7, and m. The solver uses a Richardson
smoother with parameter w and 7 iterations and injection as
restriction operator. It performs m multigrid cycles [66]. Note
the interconnected set of auxiliary operators needed.

Table II shows the OL breakdown rule set for polar-
formatting synthetic aperture radar (SAR [57], [52], formaliz-
ing the algorithms from [175], [176].

Non-linear OL breakdowns. The step from linear opera-
tors to non-linear operators requires the use of OL constructs
in breakdown rules. For instance, matrix-matrix multiplication
(MMM) as defined in (4) is a bilinear operator. Optimized
matrix-matrix multiplication implementations utilize multi-
level cache and register blocking [93], and blocking of MMM

Map

x|z

Fold{,

z,y)—max(z,y),0

nxn—n
(z.y)—z—y

F()ldE'

.y)—max(x,y)

Fig. 3. Data flow graph, OL formula, and rule tree for doo (., .) as expanded
in (43).

can be described as
MMMy imn — MMMy /4, m/bo,n/b; @ MMMy, 5, b, (39)

In (39) the multi-linear tensor product captures the recursive-
ness of MMM in the same fashion that (17) captures the
recursive-ness of the DFT and (19) captures the higher-
dimensional structure of the MDFT.

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 9

Functional programming-style operators are equally decom-
posed by rewrite rules that express them as parameterized OL
expressions. For instance, the Chebyshev distance (distance
induced by the infinity norm)

doo(u,) = || — V|| 0o, u,v € R™ (40)

is captured by the rules
d2 () = |5 o Map?xx,y")zzfy and (41)
115 = Fold{y o) smax(z,y),0 © MaPgsjz - (42)

Note that we annotated the OL definition of d.(u,v) with
dimensionality n, leading to the OL non-terminal d? (u,v)
for the Chebyshev distance. The non-terminal d°_(.,.) can be
fully expanded into a SPL/OL expression (a functional style
formula) by applying (41) followed by (42), leading to

ds(.,.) = Fold{, B8 8

—max(z,y),0 © Mapil—)\ﬂ o Map
Figure 3 shows the corresponding data flow graph and rule
tree.

Similarly, polynomial evaluation (5) is expressed as the
breakdown rule
Po(.,.) < .. >p 0 <1n+1 x (Map"+1

i © [1
(44
P,(.,.) is an arity (2,1) operator. The cross product X
passes the first argument to the identity matrix and the
second argument to the Map construct. The linear operator
- 1]T takes the second input of P, (a,z) (the scalar
x) and replicates it for n + 1 times to form a vector. Then
Mapgi)lx,; computes all exponents of x from 0 to n, yielding
the vector (1, x, z2,...,2"). Note that the map function
fi(z) =2'i=0,...,n depends on the index of the mapped
element. Further, I,,; forwards the coefficient vector a =
(an,...,ap) (the first input of P, (.,.)) to the scalar product
< .,. >, which performs the pointwise multiplications a;z’
for i =0,...,n and then performs the final sum, yielding the
result P, (a,z) =Y 0 a;z".
The scalar product is a special case of MMM,

< . >p— MMM, ; 1, (45)

and thus can be decomposed via (39). The check for being
inside a polytope (7) [76] is expressed as OL breakdown rule
by

InSidez,b(') — FOld?w,y)O—)(w<0)/\y,true

© MapZn—HL‘—b OMMMTL,I,7L(A7) (46)

Inside (46) the matrix-vector product Axz required by
(7) is expressed as degenerate partially evaluated MMM
MMM, 1 (A, .). The operator Mapy, ,,_, subtracts the right-
hand side b from the result, and Fold(, ,y,,(»<0)ry,true Checks
that all entries of the resulting vector are negative. Finally. the
OL rule set for this z-test (8) for a sample size of n at «
confidence interval is shown in Table III.

Note that all breakdown rules are point-free: operators are
expressed through other operators but the input and output is
not part of the expression. This property is important for data
flow optimization (discussed next) and program generation.

(z,y)—>z—y -~
43)

M)

TABLE III
THE STATISTICAL 2-TEST REPRESENTED AS A SET OF OL BREAKDOWN
RULES [76].

“47)
(48)

Mean;,, — Mapalc»—m:/n ° FOld(na,b)H(a-Fb),O
Variance,, —>(Fold?a7b>H(a+b)’0 oMap” ,)
— (Mapin2 o Mean,,)

zTestn,o — (Mean, /MapiHﬁoVariancen /n) < @711 —a/2),
(49)

B. Program Transformations as Data Flows

In the previous section, we discussed how specifications are
expanded into fully expanded (terminated) OL expressions that
represent data flow graphs of the algorithm. In this section
we discuss how SPIRAL performs data flow optimizations that
change the geometry and thus locality and shape of parallelism
in the data flow graph.

Approach. A human developer typically starts from a given
algorithm/data flow graph, and then modifies it to better match
the underlying hardware. SPIRAL takes a different approach:
The data flow graph is made to fit the targeted hardware while
it is derived recursively. This is achieved by a two-pronged
approach: 1) program/data flow transformations are also cast
as breakdown rules and are treated equivalently to algorithmic
breakdown rules, and 2) hardware properties are encoded as
constraints on these breakdown rules.

In this section we discuss how program transformations
are encoded as breakdown rules. Section III-C discusses how
hardware is modeled through breakdown rules and constraints
on them, and Section IV discusses how the resulting constraint
problem is solved.

Memory abstraction. Many performance-relevant hard-
ware constraints translate into the requirement that certain
contiguous data blocks are held in a certain class of memory,
and that data is moved in contiguous blocks of certain sizes.
Recall that operators map vectors to vectors. Vectors impose
a natural neighborhood relation: for a vector « the component
x; is neighbor of components x;_; and xz;4;. A subvector
(zi,... ,ka,l)T of length k is contiguous and thus naturally
provides the concept of a block.

Therefore we impose the interpretation of vectors that OL
formulas operate on as being mapped to physical storage
contiguously, i.e., the memory for a vector is viewed as array
(in C notation) vector_t X[n], and x; is mapped to X [1].
Any different data layout needs to be made explicit through
permutation operators as part of the OL formula, not by
informally interpreting the vector data layout differently. For
example, block cyclic data distribution becomes an explicit
permutation in an OL formula.

Partitioning a vector into equally-sized blocks treats the
vector as vector of vectors. Blocking may happen recursively
(blocks of blocks). For constant block size at each recursion
level, this interpretation implies that data vectors are seen as
linearized tensors (high dimensional matrices), which explains
the importance of the tensor product and Kronecker product

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 10

in SPIRAL’s formal framework. This implies that blocking
higher-dimensional objects (e.g., matrices) introduces explicit
permutations, since subblocks of higher-dimensional blocks
contiguous in memory are themselves not contiguous any
more. We use this approach to model structural hardware fea-
tures that require data locality for performance or correctness
reasons, as discussed in Section III-C.

The role of permutations. SPIRAL’s memory abstraction
implies that data required to compute an operator A,,(.) is in
the local memory (if there are multiple address spaces) or in
the smallest level of the memory hierarchy (e.g., in the L1
cache for standard CPUs). If n is too large (i.e., the memory
is too small to hold the necessary data), then the operator
needs to be recursively decomposed until this condition holds.
In this respect, SPIRAL’s memory model is related to the idea
of cache oblivious algorithms [177]. SPIRAL implies that data
access that crosses memory regions that are contiguous needs
to be explicitly marked in the OL data flow abstraction.

Permutations are used to capture both data reordering and
communication. They are expressed as permutation matrices
that are parameterized by the actual permutation (function).
The most prominent example in SPIRAL is the stride permu-
tation L' introduced in Section III-A.

Data flow representation. With the above convention of
how vectors are mapped to memory we can now describe
locality enhancing optimizations as breakdown rules for OL
expressions.

First we discuss the meaning of tensor/Kronecker products
with identity matrices in the context of data flow graphs. For a
linear operator A, € R™*™ and B,, € R"*" the Kronecker
product A, ® B,, defined in (13) is a matrix of size mn x mn.
For A,, = I, the tensor product becomes a block-diagonal
matrix,

By,

I, ®B, = (50)
By,
The operator 1,, ®B,, applies the same operator I,, on con-
tiguous subvectors of length n, i.e.,

(I, @Bp) (o ® -+ @& Tp—1) = (Bpzo) ® - & (BnTm—1)

and can be seen as a “parallel operation.” The “flipped” tensor
product is a block matrix where each block is a constant-

diagonal matrix,
ao,o I ap,m—1 I,
A1, =

Am—1,0 In

61V
Am—1,m—1 In
(51) applies the operator A,, to subvectors of length n and
can be seen as a “vector operation.” A common interpretation
is that for a linearized m X n input matrix x € R™" the
operation (I,,, ® B,,)x applies the operator B,, to the “rows” of
x while (A, ®1,,)z applies the operator A,, to the “columns”
of z. The tensor product is separable: it can be factorized
into a “row pass” and “column pass” in two ways, written as
breakdown rule

(Am ®1n) (L, ®Bn)

52
(I ©B) (A © 1) 62

Am®Bn%{

For instance, (19) together with (52) captures a large class of
multidimensional FFT algorithms including the row-column
algorithm, as well as the slab and pencil decomposition.
Further, the identity matrix is the tensor product of identity
matrices,

which can be used to represent loop tiling. The following
breakdown rule describes the use of (53) to tile the mn
iterations of applying the operator A into m iterations of n
computations of A,

I ® A = I, ® (In X A)

A generalization that allows the blocks B,,, to be different
in the occuring entries (but not in size) is expressed by

m—1
I, @B = @ BY.
=0

(54)

The definitions in this section generalize to rectangular matri-
ces Apxe € RF*C and By, x, € R™X7,

Data layout transformations. The most important permuta-
tion operator in SPIRAL’s framework is the stride permutation
L™, As discussed in Section III-A, it can be viewed as
transposing a linearized matrix: it blocks a vector of length
mn into m vectors of length n, treats the vector-of-vectors
as a matrix of size m X n, transposes the matrix (new size
is n x m), reinterprets the matrix as n vectors of length m,
and finally linearizes the vector-of-vectors into a single vector
of length mn. Note that the reshaping steps are virtual: under
SPIRAL’s matrix/tensor linearization rules the data flow graph
of a matrix transposition and of a stride permutation are the
same.

The stride operation derives its importance from the fact
that it commutes the tensor product and thus enables formal
derivation of loop transformations like tiling, blocking, loop
interchange, and loop merging/fuison/fission. Written as break-
down rule

Ap ® By, = L™ (B, ® A) L™ . (55)

Further, matrix transposition can be blocked into a transposi-
tion of blocks followed by or preceded by a transposition of

the blocks [9],
L — (L @ LE) (LY @ Lpn) (ke @ LE" @ 1,,,). (56)

Stride permutations have multiplicative and transposition/in-
version properties, which yield the identities

(Lpm)" =Ly (57)
(L)~ e (58)
Lim" = LE™ Ly (59)
L™ = L™ L (60)
L = (LY @1,) (T, @ L") (61)
Lyt = (LoLp™) (L @1y,). (62)

Tensor products of stride permutations with identity matrices
can be seen as block transpositions, transposition of blocks,
or tensor rotations. For instance, I, ® L™ is a block diagonal

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 11

matrix of size kmn x kmn with blocks of size mn x mn.
Similarly, the operation L, ® I, is expressing the reordering
of packets of size k. Both tensor products can be seen as
rotations of a linearized rank 3 tensor in the xy or yz plane.
As an aside, the tensor product of two stride permutations is
rotating a linearized rank-4 tensor simultaneously in the xy
and zu plane that also can be seen as an operation for a block
matrix that simultaneously performs a transposition of blocks
and transposition within blocks.

Non-linear and higher-arity data flows. So far, we have
only discussed the tensor product of linear operators. The
generalization to multi-linear is standard in the field of multi-
linear algebra and tensor calculus, and we use the standard
definitions. For instance, (39) describes recursive blocking
of matrix-matrix multiplication as tensor decomposition of
the operator MMMy, ,, ,,. Generalizations of rules (52)—(62)
exist for the multi-linear tensor product and generalize to the
iterative sum (54).

SPIRAL also defines a generalization of (50) and (51)
for a tensor product of an identity matrix and a non-linear
operator [55]. For the simple case of B, : R® — R" the
generalization is straightforward: the operator (I, @B, (.))(.)
applies the operator B,,(.) on contiguous subvectors of length
n, i.e.,

(63)
Using (63) we can break down (15) and (16) to capture
program transformations for the Map and Fold operators:

Map’(y = I ®; Map} _(, and (64)
Foldf't) . — Fold}, (). o(Ln®;Fold} .. ().). (65

For more general situations and arities beyond (1,1) these
definitions and breakdown rules become unwieldy and for
brevity we will not introduce them in this paper.

The relatively small set of identities and breakdown rules
introduced in this section gives rise to a large possible space of
data layout and blocking transformations that can be exploited
in locality optimizations and work hand-in-hand with algo-
rithmic breakdown rules. Together with hardware parameters
(discussed next) they are powerful enough to enable SPIRAL to
derive efficient data flow graphs for a wide range of problems
and platforms.

C. Hardware Abstraction

We now discuss how hardware is abstracted in SPIRAL’S
formal framework.

Approach. The framework is designed to capture the ma-
jor current architectural and microarchitectural features that
require data flow optimizations for performance, including
1) SIMD vector instruction sets, SIMT, and VLIW architec-
tures [22], [25], 2) cache memories (multiple cache levels and
various topologies) [20], 3) scratch pads (explicitly managed
local storage) and multiple address spaces (CPU/device mem-
ory) [39], 4) shared memory parallelism (multicore, many-
core and hyper-threading) [19], [20], 5) distributed memory
parallelism (message passing) [48], [50], and 6) streaming

parallelism (processor arrays and field-programmable gate
arrays) [46], [47], [41]. We expect that also most future hard-
ware paradigms are composed from these features. SPIRAL’S
hardware model provides a formal way to enumerate “good
programs” for a the target platform. This is achieved by
modeling the hardware in SPIRAL’s rewrite system through
constrained terminal rules (the rule tree expansion stops), or
as constraints on OL breakdown rules. SPIRAL does not use
a detailed predictive model (as, e.g., [178] for MMM) but
captures structurally which kind of computations work or do
not work well. Further autotuning search (or learning) is then
used to select which program runs fastest.

Hardware or architecture features that do not require direct
changes to the data flow but may influence its parameters are
not modeled at the formal level but handled in the backend
compiler (see Section IV-B). These features include ISA
details like fused multiply-add instructions, special data type
support (floating-point, double-double, fixed-point, finite field
arithmetic), and microarchitectural features like the number of
physical and named registers, topology of execution pipelines,
and others.

Tags. A hardware constraint on an OL operator is captured
by a tag. Tags are symbolic annotations that are used in rewrite
rules to control pattern matching. Tags carry parameters that
provide high level structural information of the hardware
feature they describe. Operators or operator expression can
be tagged. For instance,

I, RA,, DFT, , and MMMkJn)n
—— —— —_————
vec(v) smp(2) vec(4) mpi(16) vec(avx-double)

specify a general operator expression I, ®A,, to be v-way
SIMD vectorized, a DFT,, to be 2-way parallelized for shared
memory and 4-way SIMD vectorized, and an MMMy, ., ,,
to be parallelized for 16 MPI processes and vectorized for
the double-precision AVX instruction set, respectively. These
examples show that an operator can be tagged with multiple
tags (order matters: e.g., smp(2) smp(4) captures a different
nested parallelization from smp(4) smp(2)), and that tags can
be generic (4-way SIMD vectorization) or specific (SIMD
vectorization for AVX double-precision). Specific tags imply
generic tags (AVX double precision implies 4-way SIMD
vectorization, and 16 MPI processes imply 16-way distributed
memory parallelism). Other hardware features are also cap-
tured by tags: for instance, a tag for v-way streaming on
FPGAs used below is given by fpga(v).

Tagged breakdown rules. Tagged breakdown rules propa-
gate tags and constrain algorithmic or data flow optimization
breakdown rules so that they become compatible with the
target hardware. For instance, the propagation rule

AoB — A o B for tag € {par(.), vec(.),...} (66)
tag tag tag

states that tagging and function composition commutes for
certain tags (to parallelize a sequence of operators, parallelize
each operator independently and have barriers at the end of
each parallel operator).

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 12

An example of a parallelization rule that expresses that the
outermost loop should be parallelized is given by
Ip ®An — Ip ®lagAn
——

tag

(67)
The rule states that a loop of p iterations with loop body A, (.)
can be perfectly parallelized across p processors by running
one instance of A,(.) on each processor. Similarly, on an
FPGA a block implementing A, (.) as a combinational data
path can be invoked every cycle with a new input vector. Thus,
I, ®A,, is executed over p cycles as a pipelined IP block of
streaming width n.

The symbol ®, is a tagged OL operation that carries the
information that the loop resulting from this tensor product is
parallel to the further stages in the rewriting system. Rule (67)
“drops” the tag, i.e., there is no tagged OL object left on in the
right-hand side of the rule—only a tagged OL operation. The
removal of the tags and replacing them with a specific tagged
OL operations restricts the applicable breakdown rules to a
smaller, possibly more optimized, subset of breakdown rules
that simplifies the implementation of the generator. Note that
rule (53) may need to be applied first to make (67) applicable.

An example of a vectorization or streaming rule is given
by

A, I, = A, ®ug I, for tag € {vec(v), fpga(r)}. (68)

tag

It states that for any A,, the construct A, ® I, can be
implemented using vector instructions by promoting any scalar
operations in A, to v-way vector operations. E.g., the scalar
operation a+b is replaced by vec_add (a, b) . SSE code for
F2 ®vec(4) 14 is given by the following code snippet:

void F2xI4_SSE4x32f(__ml128 Y, __ml128 xX) {

Y[0] = _mm_add_ps(X[0], X[1]);

y Y[1] = _mm_sub_ps(X[0], X[1]);
Similarly, on an FPGA for a pipelined block A,, of streaming
width w = 1 (i.e., which takes one input per cycle over n
cycles), A, ® I, can be implemented with streaming width
w = v (consuming v inputs per cycle) by replicating the logic
for A,, for v times.

Often, a tag is “pushed down” recursively,

I’VVL ®ATL % I’VVL ® ATL bl (69)
—— —~

vec(v) vec(v)

which states that if the kernel A,, can be vectorized then just
loop over it. A shclrthand notation for parallel tags is ®) and
for vector tags is ®.

Architecture-aware tiling. Rules (61) and (62) are stride
permutation factorizations that capture tilings of matrix trans-
position. They break the transposition into two passes: one
pass that transposes blocks and one pass that transposes within
blocks. To model the target platform, the size constraints of
the architecture are imposed on the factorizations. For instance,
the rule

LY = (L, LY) (L, &1,) (70)
N

vec(v) vec(v)

for tag € {smp(p), mpi(p), fpga(n)}.

describes how stride permutations are performed efficiently
on SIMD vector architectures like Intel’s SSE and AVX or
the AltiVec and VSX extensions supported by PowerPC and
POWER: it breaks the stride permutation into one stage that
is performed solely with vector operations (captured by the
tagged operation &) and one stage that performs small in-
register transpositions (explained below).

More involved vectorization data flow transformations are
captured by rules like (71)—(73) in Table IV, which all ensure
that data is accessed in SH\g[D vectors of size v and the only
intra-vector operation is L], , which will be handled below.

Parallelization for shared memory and message passing sys-
tems is captured by rules like (74)—(75). Rule (74) factorizes
a parallel transpose into local transposes and a big all-to-
all communication with maximum packet size, while (75)
performs a loop tiling transformation that ensures that packets
of size p are transferred between p processors, which avoids
false sharing.

While the above discussion focused on SIMD vectors and
parallelism on shared memory and message passing archi-
tectures, the underlying concepts can be generalized. Any
hardware that requires coalesced access at a packet level is
modeled similar to SIMD vectors, and any explicit or implicit
messaging is modeled similar to the MPI rules. The focus
in this section was on the stride permutation since it plays
a central role in reshaping linearized high-dimensional data
structures. However, other permutation families like permu-
tations that are linear on mixed-radix digits exhibit similar
internal structures and can be handled analogously.

Architecture specific templates. Rules like (68) and (75)
explain generically (for all operators A) how to vectorize or
parallelize the respective data flow pattern. Howeger, these
rules may introduce irreducible operators like L. in case
of (70) and L7°®1I, in case of (74). SPIRAL contains a
template library for such constructs that explains how to
implement them for each supported platform. Specifically, for
SIMD vector architectures, SPIRAL requires code fragments
that implement

Loy L wlten, Leelt) 06
for vectors of primitive data types like reals and integers. These
constructs are parameterized by the vector length v, abstract
the details of the particular architecture, and provide support
for data shuffling and complex arithmetic, e.g., required by
T;'"™. Code for (76) is stored in SPIRAL’s internal represen-
tation (icode, discussed in Section IV-B) and inserted upon
program generation. The code templates can be written by
hand but also, in certain cases, be generated automatically
from the ISA as explained below. Figure 4 shows a code
example for L}f implemented in Intel SSE 4-way float.

The rule system ensures that as long as constructs (76)
can be implemented efficiently, the whole data flow graph
will be implemented efficiently. Sometimes algorithms require
additional irreducible OL operators to be supported, and then
users need to supply the necessary templates for the targeted
architectures. Examples include the cyclic shift permutation
that rotates vector components and the reduction operator that

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 13

TABLE IV
ADVANCED VECTORIZATION AND PARALLELIZATION RULES [22], [20], [25], [19].

Lﬁn - (Lﬁn/y ®IV)(I77L’VL/V2 ®LZZ)((In/l/@LZLL/y) ®IV)7 v | m,n

7

~—~—
vec(v) vee(v)
(I @A™ LI = (1,,,/, @ (LI (A" @ 1,))) (L:Z;szy ®L), v|m (72)
R vee(v)
(10 (0470 1) 17 = (1 010) (0 (k4 147)) (L8 1), w1820 @
veo() vee(v)
it = (L) (1 @102) (1o O ©117), plmom %
mpi(p) mpi(p)
A ®1y = (LPP©1,,) (I, ®(Am ©1,,,)) (LIP ®1,,,), p|n/p (75)

smp(p, 1)

void L_16_4_SSE4x32f(__ml128 xY
__ml28 t3, t2, tl, t0;

mi28 *X) {

L J—

t0 = _mm_unpacklo_ps(X[0], X[1]);
t2 = _mm_unpacklo_ps(X[2], X[3]);
tl = _mm_unpackhi_ps(X[0], X[1]);
t3 = _mm_unpackhi_ps(X[2], X[3]);
Y[0] = _mm_movelh_ps(t0, t2);
Y[1] = _mm_movehl_ps(t2, t0);
Y([2] = _mm_movelh_ps(tl, t3);
Y[3] = _mm_movehl_ps(t3, tl);

}

Fig. 4. Code example for L}lG implemented in Intel SSE 4-way float.

sums up all vector components. Once such a new operator
template is provided, it is usable for any algorithm.

For distributed memory systems with message passing, the
construct

Pal, (77)

for an arbitrary permutation P needs to be implemented as an
explicit collective communication operation. The minimum is
to provide an efficient implementation for

LY ©1,
——
mpi(p)

(78)

but other specialized permutations (that for instance capture
MPI communicators) may be provided to obtain better perfor-
mance. Similarly, FPGA implementations of streaming per-
mutations or double buffering across multiple address spaces
as well as computation off-loading requires the definition of
irreducible operators and the supply of code templates for
them [44], [30].

Automatic derivation of code templates. For certain hard-
ware structures or instruction sets, it can be hard to derive
implementations for irreducible operators like (76) by hand.
For example, efficient implementations for SIMD vectorized
blocks can be hard to derive by hand as vector lengths
get longer and instruction set peculiarities prevent straight-
forward implementations. SPIRAL uses multiple approaches

smp(p, pt)

to automate the derivation of code snippets that implement
(76). A matrix factorization-based search method expresses the
semantics of SIMD shuffle operations as rectangular matrices
and searches for short sequences that implement the targeted
operations [26] by stacking and multiplying them. For AVX
and Larrabee with 256- and 512-bit vectors, the search space
becomes too large, and thus we developed a super-optimization
based approach [40].

For the efficient implementation of stride permutations (and
related so-called linear permutations) on FPGAs we developed
an automatic (and optimal) approach based on solving a par-
ticular matrix factorization problem [179], [180]. For general
permutations, a method based on decomposing Latin squares
is used [45].

IV. PROGRAM GENERATION

In this section we discuss SPIRAL’s approach to program
generation and autotuning. First, we discuss the approach to 1)
setting up and solving the constraint problem which produces
structurally optimized OL formulas for a given target platform,
and 2) autotuning to select from the identified OL formulas.
Next we explain the DSL compilation process that translates
the formulas into programs. Finally we discuss correctness
guarantees and formal correctness proofs.

A. Constraint Solving and Autotuning

Figure 5 introduces the overall approach, depicted for the
problem specification of DF'Tg and the hardware specification
“AVX 2-way _Complex double” (complex arithmetic ap-
plied to 4-way double). Hardware rules (left, red), algorithm
rules (right, blue) and program transformation rules (center,
grey) together define a search space (multi-colored oval). The
given problem specification and hardware target give rise to
the solution space (black line), which is a subspace of the
overall search space.

Each point in the solution space (black dot) represents a data
flow graph given as a rule tree encoding the sequence of rule
applications, translated into an OL formula. The rule tree/OL

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 14

DFTg

AVX 2-way —_—
AVX(2-way C)

_Complex double

DFT,

Base cases Transformation rules Breakdown rules
AR Ty I @AV ML (1, SLY (A" O 1)) DF T,y —(DF Ty @ L) T
U il &) (Im ® DET,,)LI"
vec(2) LYY (L} @ L) (L, OLY) DFT, —F»
%”_’1 AR Ty (AT QL) @1
vec(2) (67) and (75) (71), (60), and (52) (16) and (17)

4 45 8 4 5 4z
((P201) T3(1; ®F2)L3E 1) I3 (Lo L3 (F261)) (L33 1)
vec(2) vec(2)

Fig. 5. Program generation as a constraint problem. Hardware rules (left,
red), algorithm rules (right, blue) and program transformation rules (center,
grey) together define a search space (oval). A given problem specification
(DFTg) and hardware constraint (Intel AVX in 4-way double precision mode
implementing 2-way complex arithmetic) give rise to the solution space (black
line). Each point in the solution space is represented as sequence of rule
applications captured as ruletree that translates uniquely into a OL formula,
which is compiled to efficient code by SPIRAL’s rules-based DSL compiler.
Walking the solution space enables autotuning.

formula represents an algorithmic solution for the specified
problem, and is optimized for the given target architecture.
SPIRAL translates the OL formula via a multi-stage rewrite
system (see Section IV-B and Figure 6) into optimized code.
Automatic performance tuning is implemented by measuring
the performance of the candidate solutions so as to search
for a fast solution. Note that solving the constraint problem
dramatically reduces the search space (i.e., valid and optimized
OL formulas for a desired problem specification) to already
structurally optimized candidates. This ensures that the gen-
erated code can be computed efficiently on the target archi-
tecture. Applying autotuning then factors in more complicated
hardware/software interactions that cannot be easily modeled.

We now detail the components of our approach.

Hardware space. As discussed in Section III-C, SPIRAL
models hardware through the set of operators and OL formulas
that can be mapped efficiently on it. Different aspects of a
target platform (e.g., SIMD vector instructions, multiple cores,
deep memory hierarchy, and accelerators) are modeled via a
set of associated tags (one tag per hardware feature). Hardware
features are modeled as constraints on breakdown rules.

This setup implicitly defines a space of programs that can
be mapped efficiently on a given hardware platform, where
the tags constrain the applicable breakdown rules so that only
efficient expressions are enumerated. To enumerate this space
of efficient programs, we start with the set of all (small)
operators that we can directly implement through terminals,
e.g., A, in (67). We then build the expression on the right-
hand side of the rule for all A,,, and apply the rule in reverse,
deriving the un-tagged left-hand side from the right-hand side.
In the case of (67) this would be the set

{I, ®4, : A, € (R* - R"™)}.

The set of expressions now is substituted into all right-hand
sides of all rules where it matches, e.g., A and B in (66),

and the process is repeated. This procedure constructs the
exponentially growing set of all efficient expressions given
by a rule set, thus forming a space of parallel programs.

Formally, a rule set gives rise to a grammar of all efficient
formulas, which can be expressed in Backus-Naur Form
(BNF). For instance, (66) and (67) restricted to tag = mpi(p)
plus (78) give rise to the BNF for efficient MPI OL formulas
(mpiol),

(mpiol) ::= (mpiol) o (mpiol) | ng ®1, | I, ®(uol) (79)

(uol) ::= any untagged OL formula, (80)

parameterized by all untagged OL formulas (uol). The BNF
(79)—(80) guarantees that any formula
(mpiol)
——
mpi(p)
will be fully expanded by the rule set (66), (67), and (78). The
parameter p in (79) is a suitable MPI packet size.

In general, a target platform may have multiple hardware
features (e.g., MPI and a SIMD ISA). In this case the rule
sets are combined to yields a smaller, more constrained space
of OL formulas.

Algorithm space. Similarly, for a set of algorithmic break-
down rules, all OL formulas that implement the encoded
algorithms can be characterized through a BNF. For instance,
the set of all multi-dimensional two-power FFTs computable
via the Cooley Tukey FFT algorithm and the row-column
algorithm for higher-dimensional DFTs (rules (17), (18), and
(19)) is given by the BNF

(mdft) ::=(mdft) ® (mdft) | (dft) ® (mdft) | (81)
(mdft) ® (dft) | (dft) ® (dft)
(dft) ::=((dft) @ I,,) T (L, @(dft)) L>™ | Fa. (82)

Note that the size of the operands within an OL formula have
to be compatible. This compatibility requirement also extends
to the SPL/OL rules, where the size of the formulas on the
right-hand sides have to match that of those on their respective
left-hand sides.

As for the hardware formula space, the algorithm formula
space is parameterized by the set of rewrite rules used to
construct it. Different sets of rules can be used to break
down a given specification and may restrict the supported
problem sizes. For instance, a rule set to break down the
DFT can consist of a number of combinations of the base rule
(18) and recursive rules like the Cooley-Tukey FFT (17), the
Good Thomas Prime Factor Algorithm, Rader’s Algorithm,
Bluestein’s Algorithm, Partial Diagonalization, etc [1], [17].
The FFT rule set can be a subset of a rule set for the SAR
algorithm (see Table II) or convolution. Complex algorithms
require the union of multiple rule sets, and care needs to be
taken to ensure the rules are compatible.

Program transformations. Rules that encode program
transformations or data layout transformations (e.g., (52),
(57)-(62), and (71)—(75) in Table IV) define alternative but
equivalent data flows for OL formulas, and thus alternative
algorithms. Thus, when enumerating all OL formulas given

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 15

by a rule set, after expanding formulas using a rule, the set
of all equivalent data flows needs to be constructed. This is
done by applying the program transformation and data layout
transformation rules. For instance, using (55)—(58) in (82) and
the fact that DFT,, = DFTE, the BNF construct

((dft) @ L,) T3 (L, @(dft)) L;"

is expanded into a set of four equivalent formulas:

{({dfY) ® T,,) T (I,,, @(dft)) L™, (83)
L™ (L, @(dft)) L7 T (I, @(dft)) L7, (84)
((dft) @ L,,) T™™ L7 ((dft) @ I, (85)
L (L, @(dft)) T ((dft) @ L) }. (86)

This expresses the four variants of the general radix
Cooley-Tukey FFT algorithm: decimation-in-time (DIT) (83),
decimation-in-frequency (DIF) (86), four step (85), and six
step (84) as equivalency relation on OL formulas.
Characterizing the solution space. Now, we have formally
defined a space of programs running efficiently on a given
target platform as the set of all OL formulas that can be
constructed from a properly chosen rule set, and we have
defined the associated BNF. Further, we have defined a space
of OL formulas that implements a given problem specification
via a properly chosen rule set, and again we have defined the
associated BNF. Thus, we can state that all programs that are
solving the given specification and run efficiently on the given
target hardware are characterized by the intersection of the two
spaces. For instance, all 1D DFTs that can be implemented
well using MPI on p processors is given by the intersection
of the set of all formulas given by the MPI BNF (79)—(80)
with all formulas implementing a multi-dimensional DFT via
BNF (81)—(82) and alternative algorithms due to data flow
transformations and the DFT transposition property (83)—(86),

{(mpi-mdft) } = {(mpiol) } N {(mdft)}. (87)

While the architecture formula space ({(mpiol)}) and the
implementation formula space ({(mdft)}) are very large (ex-
ponentially growing with problem size, and possibly infinite
even for small problem sizes if no restrictions are placed on
formulas), the intersected space is usually not too large and
for all practical problems tractable.

Traversing the solution space. While (87) abstractly char-
acterizes the space of all solutions, it does not allow us to
construct solutions efficiently. However, any point in the
solution space is reachable by a sequence of rule applications,
starting with the initial specification, and ending when no
rule is applicable any longer. Algorithm and data layout
transformation rules expand the space, but only hardware
rules can terminate the expansion. This construction implicitly
intersects the algorithm space with the hardware space and
implies that backtracking and constraint solving needs to be
applied to find feasible solutions since not all expansions lead
to fully expanded (terminated) OL formulas. The sequence of
recursive rule application leading to a solution is encoded as
rule tree, and every rule tree can uniquely be translated into
an corresponding OL formula (see Fig. 2); the converse is not
true. Care needs to be taken to ensure that the rule system

contains no cycles leading to infinite loops when trying to
expand a specification. Currently, developers need to design
rule systems that ensure termination. Automatic checking is
left to future work.

There are a number of methods to traverse or explore the
search space that control the order of rule expansion and
candidate generation [1], [181], [69]: 1) full enumeration is
achieved by recursively applying all rules and parameteriza-
tions at each expansion, 2) random expansion picks a random
rule and random parameterization at each expansion, 3) dy-
namic programming picks the “best” rule and parameterization
according to some metric at each expansion, and 4) genetic
search maintains a population of expansions and performs
mutation and cross-breeding to derive a new population. While
these methods originally were defined for recursive search
spaces, SPIRAL uses them as constraint solvers by enforcing
backtracking if an expansion cannot terminate.

Controlling the solution space. The search space implicitly
defines a binary metric for OL formulas to be optimized for a
target platform: Either a formula is in the search space (then it
can be implemented efficiently), or it is not in the search space
(then it cannot be implemented efficiently on the hardware
w.r.t. our definition of efficiency). The metric can be made
more gradual by assigning a fitness score between 0 and 1
and by defining a partial order of rule sets that capture various
aspects and optimization methods for a target platform. For
instance, the “high efficiency” rule set only allows for a limited
number of very efficient constructs while a “lower efficiency”
rule set allows for more and less efficient constructs. We then
find the most stringent rule set that allows us to find solutions
for a given specification and target architecture, which is
equivalent to maximizing the fitness score of a formula.

Automatic performance tuning. The framework developed
in this section allows us to traverse the solution space and
evaluate each point of the solution space with a number
of metrics (runtime performance being the most important).
This can be used to perform automatic performance tuning
(also called autotuning): Any of the previously discussed
traversal/search algorithms produces candidate solutions in
the search space, which by construction are efficient on the
target platform. Then the candidates are measured (usually
runtime) to provide a numeric score. The score is used to
guide the search algorithm. Since we have a partial order
of search spaces and a number of metrics at various code
representation levels, faster (and less accurate) methods can be
used to quickly find good candidates, and then more aggressive
search can be used locally to find the very best solutions.
In practice, we often use a combination of genetic search,
dynamic programming, line search, and exhaustive search,
partitioning the parameters into system parameters that are
optimized once and specifying parameters that are optimized
for each specification.

SPIRAL allows defining arbitrary performance metrics as
long as it can evaluate arbitrary OL formulas to a scalar.
Example metrics we have used include runtime and power,
energy and energy-delay product, static analysis outputs like
instruction count or register pressure, and profiling information
and performance monitor counters. Metrics can be used at any

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 16

Constraint Solver Input: DFTg
-8

AVX(2-way C)
Output = Expa
Ruletree, expanded into

. expression
OL Expression: Recursive descent
4 4 = 8 4 3 4 =

((F201) TSI ©F2)LEG 2) 3(% : (e 3(;2)(F2®12))(L2®12)

vec vec
>-OL:

1

an2
(2 (SuomraF2Map? s, Crstia)
=

OL specification

niion bocracking

See Figure 5 Olldstanion)

2-OL (loop)
expression

Confluent term rewriting §,
1 Optimized -OL
. .) expression

3 (StraeaF2Cutns) 3. . "
j=0 Recursive descent

Abstract code
Confluent term rewmmg‘

Optimized abstract
code (icode)

Recursive descent }

Ccode

C Code:

void dft8(_Complex double *Y, _Complex double *X) {
__m256d s38, 39, s40, S41,...
“m2s6d *al7, *al8;
al7 = ((_m256d *) X);
538 = *(al?7);
s39 = *((al? + 2));
38 = _nm256_add_pd(s38, s39);
39 = _mm256_sub_pd(s38, s39);

52 = _m256_sub_pd(s45, s50);
*((al8 + 3)) = s52;

Fig. 6. SPIRAL’s DSL compiler translates the output of the constraint solver
(an OL expression) into high performance C code through a multi-level
rewriting system that intersperses multiple layers of recursive descent followed
by confluent term rewriting.

abstraction level in SPIRAL: some analyze OL formula prop-
erties while other metrics analyze intermediate representations
or profile the code (discussed in Section IV-B).

B. DSL Compiler

In Section IV-A we discussed SPIRAL’s approach to derive
OL formulas that represent efficient programs for a given
specification on a given target architecture. These OL formulas
can be viewed as flat or structured data flow graphs. Structure
is enforced by parentheses that require particular evaluation
order while associative operators allow arbitrary evaluation
order in the absence of parentheses. In this section we explain
how SPIRAL translates a data flow graph that guarantees an
efficient implementation relative to the simple hardware model
into the actual efficient implementation on the target machine.
This is done via a multi-level rewrite system and a stack
of domain specific languages. The rule sets of the rewrite
system are configurable and the DSLs are extensible to enable
encoding of human performance engineering knowledge.

Overall structure. Figure 6 shows the overall structure
of SPIRAL’s DSL compiler. It translates the output of the
constraint solver (an OL expression) into high performance C
code through a multi-level rewriting system that intersperses
multiple layers of recursive descent followed by confluent term
rewriting. The distinct abstraction layers are discussed below:

« Rule trees represent the solution of the constraint problem

given by problem specification and target architecture
as a sequence of rule applications (see previous section,
Section IV-A),

o OL formulas represent the data flow graphs derived from

applying the rules as prescribed by the rule tree,

o X-OL formulas make loop iterations and data gathering/s-

cattering explicit,

e icode is an internal abstract code representation that is

restricted and can be mapped to C or Verilog.

A rule tree and thus its associated OL formula is compiled
to code by applying two types of rule sets at every abstraction
level: first recursive descent is used to translate the higher level

abstraction to the next-lower level abstraction by recursively
walking the tree and locally translating the constructs via
context-free rewrite rules. Second, the translated expression
is reduced to normal form via a confluent term rewriting step.
Individual rule sets can be complex sequences of merged
basic rule sets, and developers need to exercise caution to
ensure confluence and avoid infinite loops. SPIRAL uses both
mathematical data types (R, C, intervals over reals, Galois
fields, etc.) and machine data types (double, float, int,
_ ml28d, etc), and rewrite rules are used to lower from
mathematical to machine data types.

Throughout the translation process the lower level repre-
sentations retain the properties ensured by the higher level
abstractions, such as locality and being implementable by cer-
tain instruction sets. It would be hard to prove these properties
directly on the lower level abstractions, but the properties hold
by construction. X-OL expressions are folded data flow graphs
that represent operator expressions constructed with iterative
higher-order operators that capture loops, folds, and maps.
icode programs that are derived from OL expressions can be
viewed as C programs, abstract syntax trees, pure functional
programs, lambda functions, or mathematical operators.

Finally, we present here the rewrite process as a procedure
consisting of well-separated stages. However, as implemented
by SPIRAL the stages may operate asynchronously on different
parts of the algorithm: some sub-expressions may already have
been lowered to X-OL or icode while other subexpressions
are still unexpanded non-terminals, rule trees, or OL formulas.
This flexibility allows SPIRAL to cache partial solutions or
store partially generated code that can be re-targeted to a
smaller set of target architectures with less code synthesis
time. In addition, rule trees have a unique translation to OL
expressions and thus are used above synonymously.

We now discuss the 3¥-OL and icode abstraction levels
and the associated rewrite systems.

33-OL. In Section I'V-A data flow optimizations are encoded
as rewrite rules and together with algorithmic breakdown rules
allow SPIRAL to expand a specification into an optimized data
flow graph represented as an OL formula. The OL formula
encodes dependencies (encoded by o) and execution order
(encoded by nested parenthesis). It uses iterators like Map,
Fold and ® to encode repetitions in the data flow graph. We
now explain how these iterators are lowered to a representation
that makes iterations and iteration order explicit.

This is achieved in the next layer in SPIRAL’s formal
system, using a DSL called »-OL, which provides a repre-
sentation that is closer to the final imperative description of
the computation. Iterators are “broken” into a representation
that makes loops explicit and enables loop-level optimization
such as loop merging, software pipelining, and loop iteration
reordering. 3-OL is a superset of OL that introduces additional
constructs. All optimizations on X-OL are again expressed
as rewriting rules. However, there is one major difference
between OL rewriting and X-OL rewriting: OL rewriting
requires only relatively simpler pattern matching but needs
to handle alternatives and support search. X-OL rewriting
requires powerful pattern matching but no search. SPIRAL’S Xi-
OL rewriting system, which is described next, has an elaborate

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 17

mechanism to manage, combine, and stage rule sets.

To introduce X-OL, we first consider Map?@_(.). It applies
the function f;(.) to all input vector components to produce
its output vector. We define the n-dimensional standard basis
vector with a one at entry ¢ and zero everywhere else as

0, i#]
1, i=j

3

ej' = (0ij)j=0,..n—1 €R", 0;; = { (88)
In (88), d;; is the Kronecker delta. We view (88) as a linear
operator (and thus an OL operator) that is multiplied to an
input vector from the left to extract its "' component. Now

we can decompose (as a rewriting rule)

n—1

Map},) =+ > e()o fi()o ()" ().

=0

(89)

(89) captures the fact that Map?’i(.) can be implemented as a
loop that applies a function to each entry of the input vector by
translating Map?i(l) into an explicit loop that extracts vector
element x;, computes f;(x;) and then stores the result at
location ¢ of the output vector. Map can be easily expressed
as iterative sum since all operations are independent.

The reduction operation described by FOle,(.,.),z requires
a bit more formalism. As an example, we decompose

n—1
Foldf,) iy — || ()" () (90)
1=0

for an arbitrary associative binary operator U that has a neutral
. . . n—1

element z (returned for n = 0) and an iterative version | |; .

Practically relevant reduction operators Ll are min, max, -,

. T, .

or +. As in (89), ()" (.) in (90) extracts the element z;

from the input vector z, and the iterative operator reduces all

elements x; by its definition,

n—1
|_| SCi:I()U:ZZiu"'LlI’n_l.
=0

oD

Tensor products and 3-OL. The tensor product I,,, ® A,
and the direct sum EB?:_Ol A are generalizations of Map¥, (.
To lower tensor products to 2-OL we first define a gather and

scatter operator,

n—1

n T
Gr=> ef(ef;) and (92)
i=0
n—1 .
Sr=2>_(efly) ef" (93)
i=0
parameterized by an index mapping function
f I, = Iy.
where I, = {0,1,...,k — 1} is the integer interval from 0 to
k — 1. We define basic index mapping functions
1 L, = Lyt (94)
L =105 (95)
Oy = Ly i | 2] 4+ m(i modm) (96)

that have the properties
Gz" = I'ru (97)
S(j)n = €} (98)

Finally, we define the tensor product of index mapping func-
tions for functions f : I, — I; and ¢ : I,, — I,

f®g:Lnn = Iun i Nf(|[£]) + g(imodn). (100)

The definitions give rise to the key compatibility condition,

Greg = Gr @ Gy, (101)
Gfxg = Gy x Gy, (102)
Gfog = G,Gy, (103)

and the identity Sy = G?. We now can translate tensor
products to 3-OL expressions using
m—1
I @An — Z S(§)m@in AnG () @1
j=0
n—1

A @Iy =Y S0 6()m AnGr, () -
=0

(104)

(105)

As in Section III-A, generalizations to multi-arity operators
exist but are unwieldy.

Tagged >-OL. Tags used for OL operations and objects are
also supported at the 3-OL level to carry hardware information
down to the program generation system. For instance,

Gf@L/

will not be broken down further as it will be implemented
using vector operations. On Intel’s SSE for example, it will
be implemented eventually with _mm_movaps as a permu-
tation/gather of SIMD vectors of type ___m128. Similarly,
tagged parallel tensor products become tagged parallel iterative
sums which are eventually implemented using OpenMP or
MPI. For FPGAs, software pipelining is an annotation that
tags both OL and X-OL formulas appropriately. The tagging
does not interfere with the rewriting rules we present. It may
be explicitly utilized by rules and carries hardware information
through the system.

Loop merging. So far we have described the recursive
descent approach and rule set that converts OL formulas into
3-OL formulas. Next we discuss how these formulas are
optimized. OL constructs like Map, Fold, and tensor products
imply a traversal through their input data set. Thus merging
rules like

Mapy o Map; — Mapl,, (106)
FOldn,z o MapZ — FOldz;,y)Hf(g(T),y),z (107)

can be seen as loop merging rules. For instance, (107) is
used to optimize the expression derived from (41)-(42) for
the Chebyshev distance (40), and leads to the transformation
sequence

doo (u7 U) — FOId?m,y)»—)max(w,y),O © Ma‘p?zf:):nlx,y‘ (108)
— Fold}\ X% (109)

((w1,22),y)—max(|lz1—22[,y),0 -

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 18

Similarly, rules for Gy and S; exist and optimize away
copy/reorder loops:

(110)
(111)

Gy oMap, — Map,, oGy
Gr oGy — Ggos.

For (106)—(111) to be able to simplify the 3-OL formulas
fully, rules

n—1 n—1 n—1 n—1
(ZAz')OB%ZA,;oB, CO<ZA¢>%ZCOA7;
i=0 i=0 i=0 i=0

with B € {G,Map} and C € {S,Map} are needed to
propagate the gather, scatter, and map operations into the inner
sum/loop. Generalizations for reductions/Fold also exist.

Indexing simplification. The final set of rewrite rules that
is needed simplifies compositions of index mapping functions
and encodes complex integer equalities. An important exam-
ple [17] are

0 ((§)m @ tn) = 1 @ (§)m, (112)
()m ®1n) © fro = (})m ® fn, and (113)
(1t ® ()m) © fro = fr @ (§)m- (114)

These identities mirror OL identities like (55) at the »-OL
level. While tensor products can be broken into iterative
direct sums or sums of gather/compute/scatter kernels, stride
permutations and their identities cannot easily be handled by
decomposition into sums alone. The gather/scatter rewriting
rules together with the index simplification rules address this
problem and allow to merge stride permutations as indexing
patterns into gather/compute/scattter loops. They are used to
simplify the 3-OL expressions like

m—1

(I @AR) L™ = > ()00, AnGop (i)
=0

(115)

The gather and scatter functions in (115) capture the address-
ing pattern due to the loop implementing the tensor product,
and translate the data reorganization captured by the stride
permutation into re-indexing in the gather operation. The
index simplification rule set allows this simplification to be
performed across multiple recursion levels.

We now apply the ¥-OL optimization stage to our example,
DFTg. Applying the full 3-OL rule system to (20) yields the
expression (116) shown in Figure 7. Note that the resulting
expression is an imperfectly nested sum and all summands
are normalized to the shape

SfoAoGy

where A, f and g are parameterized by loop variables. The
gather and scatter functions capture all re-indexing due to
multiple levels of stride permutations, and all twiddle factor
scaling is pulled into the inner-most loop. This is an instance
of the normal form that SPIRAL achieves for well-optimized
OL formulas: the X-OL rewrite succeeds because the OL level
rewrites guarantee it by manual construction. Future work
will address theoretical guarantees and automation for rule set
management.

Termination. A final intermediate step before translating
>-OL to icode is the termination of all remaining gather,
scatter, map, and fold using (89)-(93). The resulting expres-
sions are composed of the minimal set of X-OL operators
and operations needed to express OL expressions: standard
basis vectors, scalar n-ary operators, and iterative operations
(sum/union and reductions). An example is the final expression
for (40) derived by terminating (109),

(@) = o —yl) o ()" x (7). (17

max
1=0,...,n—1
This enables the design of a small rule-based compiler for the
whole X-OL language, which we discuss next.

C. Backend Compiler

We now discuss the lowest abstraction level in SPIRAL,
the internal code representation called icode, the translation
form ¥-OL to icode, icode optimization, and unparsing
(pretty printing).

Code representation. SPIRAL utilizes a simple iterative
language to capture C code and language extensions. The
language represents 1) values and data types, 2) arithmetic
and logic operations, 3) constants, arrays and scalar variables,
and 4) assignments and control flow. While the language is
very general, the code generated inside the SPIRAL system
has strong properties. An icode program that was derived
by SPIRAL from an operator specification is at the same time
1) a program given as abstract syntax tree, 2) a program in a
restricted subset of C, 3) an OL operator over mathematical
numbers and machine numbers, 4) a pure functional program,
and 5) a lambda expression.

icode is arbitrarily extensible to represent instruction set
extensions like Intel’s SSE and AVX and the necessary data
types. Instructions are modeled as functions and a compiler
that implements an intrinsic function interface and the nec-
essary data types are assumed. icode represents C pragmas
needed for OpenMP, OpenACC and similar systems, as well
as library calls to math and communication libraries. Instruc-
tion set-specific strength reduction is implemented through
SPIRAL’s rewriting system. We have implemented higher-
level data types and the respective operations like complex
arithmetic, interval arithmetic, Galois fields, soft floating point
and fixed point arithmetic.

Program generation. Translation from terminated >-OL to
icode is done via a recursive descent pass. Applied to the
terminated normal form of >-OL, only a few rules are needed
for program generation. Figure 8 shows the simplified rule
set. We use an operator Code(.) to invoke the compilation
process, and provide a rule set to recursively translate >-OL
expressions to icode. The translation rules need to cover
the translation of 1) operator composition into a sequence
of operator implementations (118), 2) loop implementation of
iterative operations (119), 3) basis vector operations into reads
and assignments of array elements (120)—(121), and 4) scalar
operator evaluation into their icode implementation (122).

The full compilation rule system used by SPIRAL is highly
configurable and much more complex. It handles code gen-
eration for tagged operations and irreducible OL operators

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 19

3 1 1
2
(Z Se@)aF2 Mapw_wgiﬂ 128(])4) (Z (Z S @@ @) 2 Map wity G12®(i)2> (Z S<i)2®12F2G22®(i)2®(1)2>) (116)
j=0 —0 \i=0

i=0

Fig. 7. Fully expanded and optimized X-OL expression for DFTg as decomposed in (20). ws, is the primitive nth root of unity, used to compute the twiddle
factors. All factors in (116) are linear and thus matrices; therefore we drop the o operator.

Code (y = (Ao B)(z)) —{decl(t) (118)

Code (t = B(x))
Code (y = A(t)) }
n—1
Code <y = <|_| A,‘) (a:)) —{y:=24 (119)
=0 for(i =0..n—1)
Code (yLI = Al(x))}
Code (y = (e?)T(a:)) —y[0] := z[4] (120)
Code (y = e} (z)) —>{y:6,y[i] = xz[0]} (121)
Code (y = f(x)) —y[0] := Code(f)(=[0]) (122)

Fig. 8. Rule based translation from terminated 3-OL to icode. Zz|, is the
zero vector relative to the operator L.

into specially tagged icode instructions. For instance, a
tagged parallel iterative sum is translated into a tagged parallel
for loop. Users can supply templates for OL constructs that
require implementation “tricks,” and multiple implementations
per construct can be provided. For optimization, we may not
terminate constructs like gather, scatter, or small matrices but
translate these X-OL constructs directly to icode.

Backend optimization. After translation to icode, SPI-
RAL’s backend compiler optimizes the generated code and
transforms it into the correct shape for the target (C/For-
tran/Verilog) compiler. The core is a powerful and highly
configurable basic block compiler. No loop-level optimization
is required, since all higher level optimizations like paral-
lelization, vectorization, or streaming have been lifted to the
OL and X-OL level. The main basic block optimizations
are [13]: 1) loop unrolling, 2) array scalarization, 3) constant
folding, 4) copy propagation, and 5) common subexpression
elimination.

In addition, strong support for architecture-specific strength
reduction is provided to enable backend optimizations for
a wide range of complex instruction sets with idiosyncratic
behaviors. The compiler also implements an extensible type
system that supports both abstract types and machine types,
type unification and type-specific optimization. The production
compiler is implemented in GAP using both a complex rule
system and procedural components. A high assurance branch
developed for correctness guarantees [67] is implemented
solely using rewriting rules.

The same icode language is used for C compilers, C-
derived dialects like OpenCL and CUDA, and for combina-
tional logic (Verilog). The SPIRAL backend compiler can be
configured to utilize various equivalent C idioms (e.g., X [1]
vs. % (X+1i)) and optimizations like index recomputation
vs. induction to best match the capabilities of the target C
compiler. This is made necessary by the high variance in the

opts := CopyFields(

SpiralDefaults ,

IntelC99Mixin ,

breakdownRules := rec(

DFT := [DFT_CT, DFT_Base]));

rt := RandomRuleTree(rt, opts);
¢ := CodeRuleTree(rt, opts);
PrintCode (" dft8”, c, opts);

Fig. 9. SPIRAL script to generate C using C99 complex arithmetic (Intel
C++ compiler syntax) for DFTg using breakdown rules (17) and (18).

_Complex double xD3, xD4;

void dft8 (_Complex double xY,
_Complex double xX) {

static _Complex double TI[8], T2[4];
_Complex double s5, s6, s7, s8, s3, s4;
for (int i5=0; i5<=1; i5++) {
for (int i9=0; i9<=1; i9++) {
s5 = X[2*xi5+19];
s6 = X[2%i5+i9 +4];
T2[2%i9] = s5+s6;
T2[2%xi9+1] = s5—s6;
for (int i8=0; i8<=1; i8++) {
s7 = D4[i8]xT2[i8];
s8 = D4[i8+2]xT2[i8+2];
Tl[4*15+18] = s7+s8;
TI[4%i5+i8+2] = s7—s8;
}
for(int i4 = 0; i4 <= 3; id4++) {

s3 = D3[i4]xT1[i4];

s4 = D3[i4+4]xT1[i4 +4];
Y[14] (s3+s4);
Y[i4+4] = (s3—s4);

}

Fig. 10. Final C code for DFTg as expanded in (116), unparsed using C99
complex arithmetic. D3 [] and D4 [] have been initialized with the proper
complex values of wj'.

capabilities of C compilers we have observed, in particular
when targeting experimental hardware and early prototypes.
The SPIRAL backend compiler also is a valuable stand-alone
tool [182] as it can be used as an interactive and scriptable
backend code generation system.

double cheb_dist(double xx, double xy, int n) {
double r=0.0;
for (int i=0; i<n; i++)
r = max(abs(x[i]=y[i]), r);
return r;
}
Fig. 11. Final C code for d2 (.,.) as expanded in (117).

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 20

#include <smmintrin.h>
#include <float .h>
#define EPS (DBL_MIN+DBL_MIN)

__ml128d cheb_dist(double *x, double *y, int n) {
__ml28d r, xi, yi, nxx, mx, mn, absi;
// rounding mode: round to infinity
unsigned _xm = _mm_getcsr();

_mm_setcsr(_xm & Oxffff0000
// initialize r=[0.0, 0.0]
r = _mm_setl_pd(0.0);

| 0x0000dfc0);

for (int i=0; i<n; i++) {
// xi = roundup([—(x[i]—EPS), x[i]+EPS])
xi = _mm_addsub_pd(_mm_setl_pd(EPS),

_mm_setl_pd (x[i]));

// yi = roundup([—(y[i]—EPS), y[i]+EPS]

yi = _mm_addsub_pd(_mm_setl_pd(EPS),
_mm_setl_pd (y[il));

// xi_sub_yi = roundup(xi — yi)

xi_sub_yi = _mm_add_pd(x,

_mm_shuffle_pd(y, y, _MM_SHUFFLE2(0,1)));
// absi = roundup(abs(xi_sub_yi));
nxx = _mm_shuffle_pd(xx, xx MM_SHUFFLE2(0 ,1));

LR -

mx = _mm_max_pd(XX, nxx);

mn = _mm_min_pd(XX, nxx);

absi = _mm_shuffle_pd(mn, mx,
_MM_SHUFFLE2(1 ,0));

// r = roundup (max(absi, r))

_mm_shuffle_pd (_mm_min_pd(absi, r),
_mm_max_pd(absi, r), _MM_SHUFFLE2(1,0));
}

// restore rounding mode

_mm_setcsr(_xm);

// infinum supremum sign

r = _mm_xor_pd(_mm_set_pd(—0.0, 0.0), r);
// return interval containing d_inf(x[],y[])
return r;

Fig. 12. Final C SSE 4.1 code for d’ (., .) as expanded in (117), implemented
using interval arithmetic. [67]

Unparsing. The final icode needs to be unparsed (pretty-
printed) for the target compiler. Again, the SPIRAL unparsing
system is highly configurable to be easily adaptable to target
compiler idiosyncracies. There is a large variation across
compilers regarding pragmas, hardware-specific language ex-
tensions, implementation level of various C dialects (ANSI C,
C99, etc), support for C++ idioms in C, and built-in functions.
Traditionally, these variations are handled through the C pre-
processor. However, since SPIRAL has a fully programmable
unparsing system, most of these issues are handled in the
unparser, and C preprocessor macros are used sparingly, e.g.,
for productivity and experimental reasons.

As an example, see the code generated from (116) by the
SPIRAL script shown in Figure 9, shown in Figure 10. The
script specifies the kernel DFTg, the breakdown rules (17) and
(18), and C99 complex arithmetic (Intel C++ compiler syntax).
The final C code for (117) is shown in Figure 11. SPIRAL
implements a high performance interval arithmetic backend
that uses Intel’s SSE2 two-way double precision vectors to
encode intervals. The infimum is stored with changed sign, and
the rounding mode is set to round-to-infinity to avoid frequent
reconfiguration of the FPU. Denormal floating point numbers
are treated as zeroes as usual in the Intel SSE high performance
mode [67]. We show the resulting code in Figure 12.

Targeting FPGAs. When targeting FPGAs, SPIRAL can
be configured in two ways: In a first approach, an SPL/OL
program representing the data flow is outputted together with
basic block definitions using icode unparsed in Verilog.
Then a separate Java-based tool chain implemented outside of
SPIRAL is responsible for implementing the pre-shaped data
flow graphs efficiently in Verilog [183], [184], [185], [43],
[44], [45], [46], [47].

In a second approach currently under development [186],
icode is unparsed for high-level synthesis using the OpenCL
language or C/C++ annotations, e.g., as supported by Vivado
HLS. In this case SPIRAL performs lower-level optimiza-
tions using the standard tool pipeline including the >-OL
and icode abstraction layers and then relies on third-party
backend tools for the final implementation on the FPGA.
While in this case the FPGA design generation is using
the same infrastructure as software generation, the rules and
hardware abstractions are FPGA-specific instances and i code
is interpreted as a state machine, not as a sequential or parallel
program.

Profiling. The autotuning component of SPIRAL requires
profiling of the generated code. The standard approach is to
time the generated code on the target architecture and use the
execution time as a metric. However, more general profiling
may be required. Across SPIRAL related projects, we have
used measured power and energy, accuracy of the computation,
code size, statistics derived from the generated assembly, and
many other metrics. This is enabled by SPIRAL’s configurable
and extensible profiling system.

Optimization performance. The offline optimization time
for SPIRAL to generate code can range from less than a second
for small code fragments to a day or more of search. The
tuning time depends on the size and type of the problem, the
performance of the backend compiler, potential job submission
systems, and the desired optimization and autotuning level.
The implementation on SPIRAL in the computer algebra
system GAP is not optimized but favors productivity over
performance.

Correctness. The SPIRAL system provides strong correct-
ness guarantees for the generated code. For linear and multi-
linear operators, any internal representation can be converted
to the equivalent matrix that specifies the operation, and the
matrices can be compared. SPIRAL supports exact arithmetic
for a range of special cases that cover signal processing algo-
rithms. For problem sizes for which the matrix representation
is too large to be constructed, the matrix can be constructed
by evaluating the program representation for all basis vectors.
Finally, probabilistic checks that evaluate multiple random
algorithms on random inputs can be used.

For non-linear operators, establishing correctness is a hard
problem. Problem-specific test procedures that check invari-
ants or can compute the output exactly can be used [59]. A
formal approach used for high-assurance code generation is to
show that the final code is derived by a chain of semantics-
preserving rewrites [67]. In this case, it needs to be established
that all rewriting rules are correct, either by formal methods
or probabilistic approaches.

In practice, correctness is achieved without full formal

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 21

methods guarantees. During the code generation process
100,000s to millions of rule applications happen, and it is very
rare that a rule is buggy without introducing easily observable
erroneous behavior. Finally, SPIRAL uses unit testing of rules
and automatic recursive counterexample production (SPIRAL
automatically finds the smallest expression that results in an
observed bug) to aid debugging of the rule system. This
is implemented using the full power of the GAP computer
algebra system, and allows for locally applying correctness
checks during rule application to verify that the left-hand side
and right-hand side are equivalent at every step.

D. SPIRAL-based Approach to Small-scale Linear Algebra

So far in this section, we have provided evidence of the
expressiveness of OL and how it could be used to describe
well-defined linear and non-linear mathematical expressions.
However, the point free nature of OL, meaning that input
and output quantities are not explicitly represented within
an expression, yields a more complex and less conventional
representation of linear algebra computations. Consider for
instance the symmetric rank-k update

S=ATA+ S, A e RFX" G e RV (123)

where S is a symmetric matrix. In OL, the expression above
would be formulated assuming implicit, linearized input and
output matrices and the information that matrix .S and the one
obtained by computing A7 A are symmetric would have to be
embedded in the computation rather then being considered a
feature of input and output quantities. In the remainder of this
section, we will introduce LGen, a code generator for small-
scale linear algebra designed after SPIRAL, and we will show
how the approach proposed with this paper is not limited by
the choice of the input mathematical abstraction. Small-scale
linear algebra computations are common in various domains
including computer vision (e.g., stereo vision algorithms),
graphics (e.g., geometric transformations), and control systems
(e.g., optimization algorithms and Kalman filters).

Beyond a point free notation. The LGen code gener-
ator [28], [64] translates basic linear algebra computations
(BLACs) such as (123) into C code, optionally vectorized
with intrinsics. Differently from SPIRAL, the highest level of
abstraction adopts a MATLAB-like notation where a compu-
tation is defined using addition, multiplication, scalar multipli-
cation, and transposition over scalars, vectors, and (possibly
structured) matrices of small, fixed sizes.

LGen is designed after SPIRAL as it generates code using
two intermediate compilation phases. During the first phase,
the input expression is optimized at the mathematical level.
These optimizations include multi-level tiling, loop merging
and exchange, and matrix structure propagation. During the
second phase, the mathematical expression obtained from
the first phase is translated into a C-intermediate represen-
tation where additional code-level optimizations such as loop
unrolling and scalar replacement are applied. Finally, since
different tiling decisions lead to different code versions of the
same computation, LGen uses autotuning to select the fastest
version for the target microarchitecture.

| I:| I |:I:I

Fig. 13. The five v-BLACsS used to vectorize matrix multiplication. Matrices
are v X v and vectors v X 1 or 1 X v.

Tiling. LGen allows for multiple levels of tiling. Tiling is
expressed by left- and right-multiplying a matrix by gather
matrices as defined in (92). For instance, assuming A is 3 x 3,
then the top left 2 x 2 submatrix can be extracted using gather
matrices as

A(0:1,0:1)=GAGT, G=(}99).

Note that in OL this operation would be equivalent to the
application of G ® GT to matrix A linearized.
More formally, in LGen we define the gather operator as

gZ[f,p]: Rmxnékaé)
Avs Ag = Alf.p] = G AGT
=A(fl0:k—1],p.[0: £ —1]).

where f : [, — I, and p : I, — [, are index mapping
functions and f.a is a pointwise application of function f to
the elements of array a. Similarly, LGen’s input language also
defines the scatter operator as the dual of the gather with the
purpose of inserting submatrices into larger matrices.

Vectorization. If vectorization is enabled, the innermost
level of tiling decomposes an expression into so-called v-
BLACs, a concept close in spirit to the one of architecture
specific templates discussed in Section III-C. v-BLACs are
basic operations on v X v matrices and vectors of length v,
where v is the target SIMD vector length. The four basic
operations define 18 of them [28] and they only need to be
pre-implemented once for a given vector ISA together with
vectorized data access building blocks for handling leftovers
and structured matrices [64]. For example, Figure 13 shows
the five v-BLACs for matrix multiplication.

Matrix structure representation. The cost of computing
a BLAC can be significantly reduced if the matrices have
structure. For example, multiplying a lower triangular matrix
by an upper triangular one requires only half of the total
amount of instructions necessary to multiply two general
matrices, as shown in Figure 14. Further, the storage scheme
of a structured matrix must be taken into account to ensure
correct access to the data. For example, adding a symmetric
matrix to a general one may require different access patterns
for the two matrices.

LGen uses tools from the polyhedral framework [115] to
mathematically describe every input and output matrix of
an input BLAC, including those produced by intermediate
operations. This information is later used to synthetize the it-
eration space for the entire expression. For instance, Figure 14
shows how the synthetized iteration space for a multiplication
between a lower and an upper triangular matrix (Figure 14(b))
differs from the one obtained when no structural assumptions
on the inputs are made (Figure 14(a)). The approach is flexible
and can be extended to describe a variety of structures.

Small-scale linear algebra programs. Finally, LGen and
the Cllck algorithm generator [147], [148] were combined

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 22

(@ (b)

Fig. 14. Iteration spaces of a matrix multiplication between a lower and un
upper triangular matrix with redundant zero computations (a) and without
(b). Variables ¢, j, and k are induction variables and every dot in the two
tridimensional spaces represents a single multiply-add operation required to
compute the whole expression.

and extended into SLinGen, a program generator for linear
algebra applications such as the Kalman filter [65]. SLinGen’s
input can contain a sequence of BLACs and higher level
operations including linear systems solvers and the Cholesky
factorization. Algorithms for computing the latter kind of
operations are automatically synthetized using formal methods
techniques while ensuring their correctness [150]. Similarly to
LGen, SLinGen generates single-source C functions optionally
vectorized for a target ISA.

E. Beyond Software Synthesis

The main focus of the paper so far has been to discuss
the end-to-end pipeline SPIRAL uses to generate and autotune
highly efficient code across a wide range of platforms for a
class of computational kernels. We now discuss applications
of SPIRAL beyond this core capability.

High assurance code generation. Our focus in work
related to the DARPA HACMS program was to leverage
SPIRAL’s correctness guarantees to enable the generation of
high assurance code for vehicles and robots [67]. We cast a
number of self-consistency algorithms based on statistics [187]
and functional redundancy as OL operators and used SPI-
RAL to generate correct-by-construction high performance
implementations for these algorithms. We enabled SPIRAL to
synthesize high performance interval arithmetic using SIMD
vector extensions to provide guarantees for floating point code,
and enabled SPIRAL as a code generation backend for the
KeYmaera hybrid theorem prover [188].

HW/SW co-optimization. We targeted hardware/software
co-optimization and co-synthesis in the DARPA DESA and
PERFECT programs. Since SPIRAL is able to quickly and
automatically produce software for a wide range of target
platforms, this enables us to pursue hardware/software co-
optimization [42]. First, we define a parameterized hardware
template that gives rise to a hardware space. Then we run
nested optimization, where the outer loop varies the hardware

template parameters while the inner loop invokes SPIRAL for
the current instance. A number of metrics can be used (area,
power, performance).

Hardware microcode. In the DARPA PERFECT program
we used SPIRAL to synthesize the microcode to program
the memory controllers of 3D stacked memory [75]. SPIRAL
was used to derive efficient data flows for in-memory data
reorganization, and then to derive the configuration data for
multiple state machines implementing permutation networks
in the base layer of a 3D memory chip.

Backend tool. SPIRAL can be used as a low-level backend
code generation tool, kernel generator, and iterative compiler.
The lower layers of the SPIRAL infrastructure serve as a
stand-alone tool that enables a wide range of code generation
and program transformation techniques in an interactive and
scriptable environment. We have demonstrated the use of the
backend as a kernel generator for polyhedral compiler infras-
tructures [73], [74] and as a code generator for kernels used
in power grid Monte Carlo simulations [189] and Boolean
satisfiability [190].

V. RESULTS

We now discuss a selection of representative results. We

organize the results along three dimensions:

e Machine size: We show SPIRAL’s capability to generate
efficient code from small, embedded machines through
desktop/server class machines up to the largest HPC/su-
percomputing systems.

e Machine type: We show SPIRAL’s capability to target
CPUs, GPUs, manycores, and FPGAs.

o Kernel and application type: We show SPIRAL’s capabil-
ity to generate code for FFTs, material science kernels,
image reconstruction, and software defined radio.

Unless noted otherwise, FFT performance results are given
in Pseudo Gflop/s, where an operation count of 5nlogy n is
assumed for DFT,,. This is the standard metric used by the
community [119].

A. Machine Size

We show performance results for the small/embedded form
factor (ARM CPU), desktop/server-class form factor (single
Intel CPU), and large scale supercomputer (128k cores on
ANL’s BlueGene/Q).

Embedded CPU. In the embedded form factor we present
results on the ARM Juno Board R1 implementing ARM’s
big. LITTLE architecture. We run the code on a single big
1.1 GHz ARM A57 core. Figure 15 shows performance results
for small 2-power complex FFT kernels, and compares our
results to FFTW. SPIRAL’s FFT kernels reach up to 2 Gflop/s
and are slightly faster than FFTW.

Desktop/server CPU. Figure 16 shows performance of
large 3D FFTs on an Intel Kaby Lake 7700K single socket
systems [30]. We compare our implementation to MKL 2017.0
and FFTW 3.3.6. All libraries are compiled with OpenMP,
AVX and SSE enabled. On the Intel architectures, we use
MKL_DYNAMIC, MKL_NUM_THREADS and KMP_AFFINITY
to control the number of threads and the placement of the

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 23

FFT Performance on 1.1 GHz ARM A57

performance [Gflop/s]

25
M SPIRAL FFT ® FFTW

2.0

0.0 II |I II II

DFT16 DFT32 DFT64 DFT128

-
=}

o
w

Fig. 15. FFT kernels (codelets) on 1.1 GHz ARM A57.

3D FFT Performance on Intel Kaby Lake 7700K
4.5 GHz, 4/8 cores/threads, double-precision, AVX

[% of achievable peak performance given STREAM bandwidth]

100% = MKL FFTW

m Spiral

80%

60%

40%

20%

0%

[9,9,91 [9,9,10] [9,10,9] [10,9,9] [9,10,10]

Size 2K x 21 x 2™

[10,9,10] [10,10,9] [10,10,10]

Fig. 16. Large FFT on Intel [30]. SPIRAL implements a scratchpad-style
double-buffering scheme for better memory performance.

threads within the MKL library. We compiled all code with
the Intel C/C++ compiler version 2017.0 with the —03 flag.
We show performance for 3D FFTs of size 5123 to 1,0243,
which have a memory requirement of 32 GB to 64 GB. Our
implementation runs at 49 Gflop/s to 56 Gflop/s and achieves
80% to 90% of practical peak (the limit imposed by memory
bandwidth), whereas MKL and FFTW achieve at most 47%.
Our approach uses the bandwidth and the cache hierarchy
more efficiently and therefore outperforms MKL and FFTW
by almost 3x.

HPC/supercomputing. To show large scale results, we run
the HPCC Global FFT benchmark on ANL’s BlueGene/P
supercomputer [50]. We used BlueGene/P configurations from
one node card (32 quadcore nodes or 128 cores) up to 32
racks (32k quadcore nodes or 128k cores), with one process
per node. We used the IBM UPC and IBM’s XL C compiler
with options —03 —garch=440d. Figure 17 summarizes the
performance results. We run a UPC+ESSL baseline benchmark
on the IBM T.J. Watson BlueGene/P system for up to eight
racks. We run our SPIRAL-generated library from one node
card to 2 racks on the T.J. Watson machine and on ANL’s
“Intrepid” from 4 racks to 32 racks. The SPIRAL-generated

HPC Challenge Global FFT on BlueGene/P
[Gflop/s]
10000

theoretical peak
1000
Spiral-generated

100
UPC coalesced transpose
10
’I L L L L L L L J
1NC 4NC 16NC 2R 4R B8R 16R 32R

BlueGene/P node cards and racks

Fig. 17. FFT results on the BlueGene/P supercomputer “Intrepid” at Argonne
National Laboratory [50]. 32 racks (32R) are 128k cores.

Global FFT generally outperforms the UPC+ESSL baseline
which shows that 1) SPIRAL’s automatically generated node
libraries offer performance competitive with ESSL, and 2) the
memory traffic savings obtained by merging data scrambling
with the node-libraries improves performance. Finally, the
SPIRAL-generated Global FFT reaches 6.4 Tflop/s on 32
racks of “Intrepid”. The winning 2008 ANL HPC Challenge
Class I [191] submission reported 5 Tflop/s Global FFT
performance on the same machine. Thus, the combination of
algorithmic optimization and library generation improved the
Global FFT on “Intrepid” by 1.4 Tflop/s or 28%.

B. Machine Type

Next we show results across machine types. We show
representative examples for CPUs, accelerators, and FPGAs.

Multicore CPU. In the previous section we showed CPU
results from the embedded form factor to server class and
HPC multicore CPUs. The results span multiple architectures
(ARM, POWER, and x86) and multicore parallelism (single
core to 16 cores).

Manycore/GPU. We show performance results for the
NVIDIA 480GTX Fermi architecture with 480 cores grouped
into 15 multiprocessors, 1.5 GB of GPU DRAM main memory
and memory peak bandwidth of 177 GB/s. Each core’s clock
is 1.4 GHz, and each core can perform 1 fused multiply-
add operation per cycle, leading to 1.3 TFlop/s peak per-
formance [36]. Figure 18 shows performance of batched 1D
power of two single precision floating point FFTs of the
corresponding size. SPIRAL’s performance is comparable to
the well-optimized batch FFT library function of CUFFT that
is part of CUDA 4.0 for most of the points in the plot.

FPGA. We show a summary of FPGA results obtained
on Xilinx Virtex-6 XC6VLX760 from [47], [45], [179]. We
utilize SPIRAL’s framework together with a Verilog backend
written in Java that takes as input a hardware formula and
outputs synthesizable register-transfer level Verilog. All FPGA

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 24

1D Multiple - DFT Single Precision
Performance [GFlop/s]

520

cuFFT 4.0

390

260

Log2 (Size)

Fig. 18. Batch 1D FFT on NVIDIA 480GTX Fermi GPU: SPIRAL vs. CUDA
4.0 CUFFT [36].

DFT 256 (16 bit fixed point) on Xilinx Virtex-6 FPGA
throughput [billion samples per second] performance [Gop/s]
12 480
er=2,d=1
¢r=4,d=1
or=16, d=1
Ar=2,d=2
Ar=2, d=4
Ar=4, d=2
8 or=2,d=8
or=4, d=4
or=8, d=2 No iterative
reuse

Full iterative
reuse

10

Partial iterative
reuse

320
32 BRAM, 128 DSP

6 Wr=16, d=2 32, 120

Wr=32,d=2

240

160

80

<
A & A

0
9,000

0 1,000

2,000 3,000 4,000 5,000

area [slices]

6,000 7,000 8,000

Fig. 19. Streaming 1D DFT256 on Xilinx Virtex-6 XC6VLX760 FPGA:
SPIRAL vs. Xilinx LogiCore IP library 12.0 [47].

synthesis is performed using Xilinx ISE version 12.0, and the
area and timing data shown in the results are extracted after
the final place and route are complete.

We evaluate trade-offs and compare our FPGA FFT results
with implementations from the Xilinx LogiCore IP library.
Figure 19 shows generated designs for DFT954, fixed point,
FPGA, throughput versus slices. The Pareto optimal designs
are connected with a line. Various implementation choices
(radix, reuse type) are coded using shading and bullet shape.
Data labels in the plot indicate the number of block RAMs
and DSP48E1 slices required. SPIRAL generated designs are
competitive with Xilinx LogiCore for design points supported
by LogiCore, but span a much larger design space.

C. Kernel and Application Type

Next we show results for a number of applications and
kernel types. We start with FFTs, extend to FFI-based signal
processing and computational science kernels, and conclude
with a software defined radio (SDR) kernel.

Performance of 2x2x2 Upsampling on Haswell
3.5 GHz, AVX, double precision, interleaved input, single core

Performance [Pseudo Gflop/s]

20 FFTW 3.3.4
18 H Intel MKL 14.0.3

M SPIRAL generated

‘ | |)

7 15 23 31 39 47 55 63 71 79 87

95 103 111 119

Input data cube edge length

Fig. 20. ONETEP 2x2x2 upsampling kernel with small odd-sized 3D
batch FFTs on 3.5 GHz Intel Haswell 4770K: SPIRAL vs. FFTW and Intel
MKL [63].

FFTs. FFT results have already been presented extensively
in the previous section. We show results at a range of sizes
from kernel to large 1D and multi-dimensional sizes. SPIRAL
supports a wide range of FFT corner cases, some of which
will be discussed as building blocks below.

Upsampling/convolutions. Upsampling of a multi-
dimensional data-set is an operation with wide application
in image processing and quantum mechanical calculations
using density functional theory. For small upsampling factors
as seen in the quantum chemistry code ONETEP [192], a
time-shift based implementation that shifts samples by a
fraction of the original grid spacing to fill in the intermediate
values using a frequency domain Fourier property can be a
good choice [193]. This kernel requires multiple stages of
3D FFT-based convolution and interleaving. Figure 20 shows
the performance of the central 2x2x2 upsampling kernel on
a 3.5 GHz Intel Haswell 4770K. Note that the original data
cube is small (edge length between 7 to 119), odd, and may
be rectangular. These unusual requirements render standard
FFT libraries (Intel MKL and FFTW) suboptimal and allow
SPIRAL-generated end-to-end kernels to be 3 times faster.

Image reconstruction. Polar Formatting Synthetic Aperture
Radar (SAR) [176] is an FFT-based image reconstruction algo-
rithm. We generated SAR kernels for a 4k x4k (16 Megapixel)
and 10kx 10k (100 Megapixel) following [194] with SPIRAL.
Both scenarios have longer slant ranges (24 km and 200 km re-
spectively), fine resolution (.1 m and .3 m) and small coherent
integration angles (approx. 4 ° and 7 °). In Figure 21, we show
performance results on the Intel Quad Core CPUs: the 3.0 GHz
5160, the 3.0 GHz X9560, and the 2.66 GHz Core i7 920,
using Intel’s C compiler 11.0.074 with —03. The code uses the
SSE2 instruction set and the POSIX threading interface. The
SPIRAL-generated SAR kernels achieve between 23 Gflop/s
and 44 Gflop/s. The fastest measurements are comparable to
the performance obtained by [194] on a Cell BE server blade.

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 25

16 Megapixel
2 x Core 2,3.0 GHz (65 nm) 235
2 x Core 2,3.0 GHz (45 nm) 35
Corei7,2.66 GHz 39
Corei7,3.0GHz 44

100 Megapixel
2 x Core 2,3.0 GHz (65 nm) 23
2 x Core 2,3.0 GHz (45 nm) 34
Corei7,2.66 GHz

Corei7,3.0 GHz 43
0 10 20 30 40

385

Fig. 21. Performance of SPIRAL-generated polar formatting SAR image
formation on 3.0 GHz Intel 5160, the 3.0 GHz Intel X9560, and the 2.66 GHz
Intel Core i7 920 for 16 and 100 megapixel [57].

Decoder comparison for rate 1/2 K=7
Performance (kbit/s)

B Karn

Decoder comparison for rate 1/2 K=9

Performance (kbit/s)
70,000
60,000 ® Karn
50,000
40,000
30,000
20,000
10,000

H Generated H Generated

scalar 4-way 8-way 16-way scalar 4-way 8-way 16-way

Decoder comparison for rate 1/3 K=9

Performance (kbit/s)

20,000 150
M Karn

Decoder comparison for rate 1/6 K=15
Performance (kbit/s)

B Karn

15,000

™ Generated 100 ™ Generated

10,000
5,000

scalar 4-way

8-way 16-way scalar

4-way 8-way

16-way

Fig. 22. Software Viterbi decoder on a 3 GHz Intel Core 2 Extreme X9650
for a range of codes: SPIRAL vs. Karn’s library [59].

Software defined radio (SDR). SPIRAL demonstrated the
end-to-end generation of physical layer software required by
SDR [62], and the Viterbi decoder is a key component that
needs to be well-optimized and is the focus of our evaluation
here. The Viterbi algorithm is a maximum likelihood sequence
decoder introduced by Andrew Viterbi in 1973 [195], and finds
wide usage in communications, speech recognition, and statis-
tical parsing. As a decoder for convolutional codes, it is used in
a broad range of everyday applications and telecommunication
standards including wireless communication (e.g., cell phones
and satellites) and high-definition television [196].

Figure 22 shows SPIRAL-generated Viterbi decoders com-
pared to state-of-the-art hand-tuned decoders by Karn [197].
We use SPIRAL to generate the forward pass of Viterbi
decoders and use a generic infrastructure to implement the
rest of the algorithm [59]. We show performance results
on a 3 GHz Intel Core 2 Extreme X9650. All code is
compiled using the Intel C/C++ Compiler Version 10.1
with performance flags ~-fast —-fomit-frame-pointer
-fno-alias. We see that SPIRAL-generated Viterbi de-
coders are competitive with Karn’s implementation, and we

Performance PTile + SPIRAL Kernel vs. PTile, AVX 8-Way
Performance [GFLOP/s]

60
m Ptile + SPIRAL

50 H PTile

40

30

20

i In In

Jac. 2D Lap. 2D Pois. 2D Jac. 3D Lap. 3D Corr. Cov. Doitgen

Fig. 23. End-to-end stencil performance on a 3.4 GHz Intel Core i7-2600K
for a range of stencil kernels: PLuTo/PTile [100] together with the SPIRAL
backend vs. PTile plus Intel C/C++ compiler. [73].

Performance [f/c] vs n [double] Performance [f/c] vs n [double]

4 4

3 e 3 SLinGen

2 Lgen w/o structures 2

| i icc ;j |

MKL

0 0

16 48 80 112 144 4 12 20 28 36 44 52
(@) (b)

Fig. 24. Performance of: (a) a rank-4 update generated with LGen [64] vs.
MKL, Intel C compiler (icc) compiled code, and LGen disabling structure
support; (b) a single iteration of the Kalman filter generated with SLinGen [65]
vs. MKL, Eigen, and Intel C compiler (icc) compiled code. Code tested on
an Intel Core i7-2600K (Sandy Bridge microarchitecture).

provide some kernels that are missing in Karn’s library.

Performance results of SPIRAL-based approaches. In
Section IV-D we have discussed the SPIRAL-related LGen
compiler for small-scale linear algebra computations and its
extension into the SLinGen program generator for small-scale
linear algebra applications. In Figure 24 we show performance
results for code generated using both systems. All results are
obtained running on an Intel Sandy Bridge (AVX, 32 kB L1-
D cache, 256 kB L2 cache) with Ubuntu 14.04 (Linux 3.13).
All code is in double precision and the working set fits in the
first two levels of cache. Figure 24(a) shows performance for
a rank-4 update (S = AAT + 5, A € R"*4, § € R**" and
symmetric). We compare LGen-generated code with: 1) Intel
MKL 11.2, 2) straightforward code compiled with Intel C/C++
compiler 15, and 3) code generated by LGen without struc-
ture support. The straightforward code is scalar, handwritten,
loop-based code with hardcoded sizes of the matrices. For
this we use flags —~03 —-xHost -fargument-noalias
-fno-alias -no-ipo -no-ip. LGen is between 1.6x
and 2.5x faster than MKL, while in general 1.6x faster than
Intel C/C++ compiler compiled code.

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 26

Figure 24(b) shows performance for a single iteration of
the Kalman filter with state size varying between 4 and 52
(linear algebra program provided in [65]). In this case we
compare SLinGen generated code against 1) straightforward
code compiled the Intel C/C++ compiler 16 and library-
based implementations using 2) MKL 11.3 and 3) Eigen
v3.3.4 [153]. In Eigen we used fixed-size Map interfaces to
existing arrays, no-alias assignments, in-place computations of
solvers, and enabled AVX code generation. SLinGen generates
code which is on average 1.4x, 3x, and 4x faster than MKL,
Eigen, and the Intel C/C++ compiler.

SPIRAL as backend tool. Lastly, we demonstrate that
SPIRAL’s backend compiler is a valuable stand-alone code
generation tool. We use SPIRAL’s infrastructure from icode
downwards as a code generator for stencil kernels in the
context of the polyhedral PTile system [73]. Figure 23 shows
the performance of the end-to-end stencil code on a 3.4 GHz
Intel Core 17-2600K by PLuTo/PTile [100] together with
the SPIRAL backend vs. the kernels generated by PTile and
directly sent to the C compiler. We see that the utilization of
SPIRAL as kernel generator leads to substantial performance
improvement (typically 2 to 3 times) across a range of stencil
kernels.

VI. CURRENT WORK

The SPIRAL system is available as open source software
under a permissive license from www.spiral.net. We now
discuss current and experimental work aimed at extending
SPIRAL’s capabilities.

Targeting of new architectures. SPIRAL is designed to
be quickly retargeted to new and novel architectures. We are
continually looking for new instruction sets and new processor
generations to add to the library of supported platforms. This
is done at various stages of the development cycle, depending
on the level of access the SPIRAL team has: pre-silicon with
functional or cycle-accurate simulators, early prototypes with
limited compiler and OS support, or just-released production
models.

FPGAs. Targeting FPGAs for the full suite of kernels/
applications supported by SPIRAL is an open problem and
a target of current research. This builds on previous work
targeting FFTs [44] and aims at current generation FPGAs
with OpenCL and HLS (high level synthesis) support [186].

Cross library-call optimization. We are extending SPI-
RAL’s capabilities beyond the current set of applications
where SPIRAL can optimize across the traditional boundaries
of library calls. We have demonstrated this for convolution
operations [63] and image processing kernels that combine
spectral and numerical linear algebra functionality [198] and
are developing this capability further in the ExaScale FFT
system FFTX [87]

SPIRAL as JIT. This paper focuses on code generation for
fixed-size kernels (the size is known at code synthesis time). A
branch of SPIRAL called Autolib [18] is able to automatically
generate full autotuning libraries for signal processing kernels
and matrix multiplication [199]. We are currently developing
a just-in-time (JIT) code synthesis approach for SPIRAL that

aims at bringing this beyond linear signal processing kernels
and matrix multiplication.

Matlab frontend. To ease the adoption of SPIRAL and
its mathematical notation to describe algorithms (OL and -
OL as used in this paper), we have developed a prototype
Matlab front-end that exposes a subset of OL as Matlab tensors
and operations on tensors (map, rotate, fold, reshape). This is
ongoing research that builds on the idea of hierarchically tiled
arrays (HTA) [84].

Graph algorithms. We are currently extending SPIRAL
to support graph algorithms. The approach to view graph
algorithms as linear algebra operations [174] and the resulting
GraphBLAS standard [200] enables us to apply SPIRAL’S
formal framework. The key insight is that the function param-
eter in OL’s gather operators can be used to abstract sparse
matrix data formats. This combined with SPIRAL’S general
size support opens the way to abstract graph algorithms [201].

Formal correctness proofs. With OL and »-OL SPIRAL
defines a mathematical framework that provides mathematical
correctness guarantees and a variety of testing approaches.
SPIRAL is implemented in the computer algebra system GAP,
which enables symbolic arithmetic, and SPIRAL supports fast
interval arithmetic. Together, this allows us to provide strong
end-to-end correctness guarantees for SPIRAL-synthesized
code [67], [76]. We are currently working on developing a
formal methods framework in the proof assistant Coq [202]
that proves that the synthesized code is a refinement of the
original specification [203], [204].

VII. CONCLUSION

In this paper, we presented an overview of the SPIRAL
system, a sampling of results, and an indication of current and
future directions. This paper summarizes research conducted
over the last 13 years and builds on the previous overview
paper [1]. Due to space limitations, we leave out details
that can be found in the references. The paper focuses on
a coherent end-to-end discussion of SPIRAL’s formal system
and the concepts used. For details on how specific algorithms
and hardware are handled in SPIRAL, we refer the reader to
the literature covering the specifics.

The key message of this paper (and the SPIRAL system
and approach in general) is that it is possible to design and
build a system that provides performance portability across a
wide range of (past, current, and future) architectures for a
set of algorithms. The system is necessarily complex but very
powerful. This paper should give interested readers who want
to try the SPIRAL system for themselves a starting point.

ACKNOWLEDGMENT

This material is based on research sponsored by DARPA
under agreements FA8750-12-2-0291, FA8750-16-2-0033,
HRO0011-13- 2-0007, DOI grant NBCH1050009, ARO grant
WOI11NF0710416, and was supported by NSF through awards
0325687, 0702386 and 0931987, by ONR through grant
NO000141110112, and by Intel, Nvidia, and Mercury. Part of
the work was funded and supported by the Department of
Defense under Contract No. FA8702-15-D-0002 with Carnegie

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 27

Mellon University for the operation of the Software Engi-
neering Institute, a federally funded research and development
center [DM17-0413]. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of DARPA or the U.S. Government.

We would like to acknowledge the many discussions with
colleagues David Padua and Manuela Veloso and the sup-
port provided in the last 10 to SPIRAL by NSF, ONR, and
DARPA (in particular, the HACMS, PERFECT, and BRASS
programs), the CMU Software Engineering Institute, and the
DOE ExaScale program. A full list of supporting agencies
and companies as well as involved individuals can be found
at www.spiral.net.

(1]

(2]
[3]

(4]
[3]
(6]

[7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

M. Piischel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen,
R. W. Johnson, and N. Rizzolo, “SPIRAL: Code generation for DSP
transforms,” Proc. of the IEEE, special issue on ”Program Generation,
Optimization, and Adaptation”, vol. 93, no. 2, pp. 232— 275, 2005.
Euclid, Elements, c. 300 BC.

“Fangcheng,” in The Nine Chapters on the Mathematical Art, c. 179,
ch. 8.

1. Newton, Philosophice Naturalis Principia Mathematica, 1687.

M. Heideman, D. Johnson, and C. Burrus, “Gauss and the history of
the fast fourier transform,” C.S. Arch. Hist. Exact Sci., vol. 34, pp.
265-277, 1985.

J. W. Cooley and J. W. Tukey, “An algorithm for the machine
calculation of complex Fourier series,” Math. of Computation, vol. 19,
pp. 297-301, 1965.

C. Van Loan, Computational Framework of the Fast Fourier Transform.
SIAM, 1992.

Intel, “Product specification:
ark.intel.com/#Processors

J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, “A
methodology for designing, modifying, and implementing FFT algo-
rithms on various architectures,” Circuits Systems Signal Processing,
vol. 9, pp. 449-500, 1990.

C. H. R. W. Johnson and J. R. Johnson, “Multilinear algebra and
parallel programming,” Journal of Supercomputing, vol. 5, pp. 189-
217, 1991.

J. R. Johnson and A. F. Breitzman, “Automatic derivation and imple-
mentation of convolution algorithms,” Journal of Symbolic Computa-
tion, vol. 37, no. 2, pp. 261-293, 1997.

J. M. F. Moura, J. Johnson, R. W. Johnson, D. Padua, V. K. Prasanna,
M. Piischel, and M. Veloso, “SPIRAL: Automatic implementation of
signal processing algorithms,” in High Performance Extreme Comput-
ing (HPEC), 2000.

J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL: A language
and compiler for DSP algorithms,” in Proc. Programming Language
Design and Implementation (PLDI), 2001, pp. 298-308.

M. Piischel, B. Singer, M. Veloso, and J. M. F. Moura, “Fast automatic
generation of DSP algorithms,” in Proc. Int’l Conf. Computational
Science (ICCS), ser. LNCS, vol. 2073. Springer, 2001, pp. 97-106.
M. Piischel, F. Franchetti, and Y. Voronenko, Encyclopedia of Parallel
Computing. Springer, 2011, ch. Spiral.

K. Asanovi, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, “The landscape of parallel computing research:
A view from berkeley,” EECS Department, University of California,
Berkeley, Tech. Rep., 2006.

F. Franchetti, Y. Voronenko, and M. Piischel, “Loop merging for signal
transforms,” in Proc. Programming Language Design and Implemen-
tation (PLDI), 2005, pp. 315-326.

Y. Voronenko, F. de Mesmay, and M. Piischel, “Computer Generation
of General Size Linear Transform Libraries,” in Intl. Symposium on
Code Generation and Optimization (CGO), 2009.

Processors.” [Online]. Available:

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

F. Franchetti, Y. Voronenko, and M. Piischel, “FFT Program Generation
for Shared Memory: SMP and Multicore,” in Proc. Supercomputing,
2006.

F. Franchetti, M. Piischel, Y. Voronenko, S. Chellappa, and J. M. F.
Moura, “Discrete Fourier Transform on Multicore,” IEEE Signal Pro-
cessing Magazine, special issue on “Signal Processing on Platforms
with Multiple Cores”, vol. 26, no. 6, pp. 90-102, 2009.

F. Franchetti and M. Piischel, “A SIMD vectorizing compiler for
digital signal processing algorithms,” in Intl. Parallel and Distributed
Processing Symposium (IPDPS), 2002, pp. 20-26.

——, “Short vector code generation for the Discrete Fourier Trans-
form,” in Parallel and Distributed Processing Symposium, 2003. Pro-
ceedings. International. 1EEE, 2003, pp. 10—pp.

——, “Short vector code generation and adaptation for DSP algo-
rithms,” in International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), vol. 2, 2003, pp. 537-540.

F. Franchetti, S. Kral, J. Lorenz, and C. Ueberhuber, “Efficient utiliza-
tion of SIMD extensions,” Proc. of the IEEE, vol. 93, no. 2, 2005,
special issue on “Program Generation, Optimization, and Adaptation”.
F. Franchetti, Y. Voronenko, and M. Piischel, “A rewriting system
for the vectorization of signal transforms,” in High Performance
Computing for Computational Science (VECPAR), ser. Lecture Notes
in Computer Science, vol. 4395. Springer, 2006, pp. 363-377.

F. Franchetti and M. Piischel, “Generating SIMD vectorized permuta-
tions,” in Intl. Conference on Compiler Construction (CC), 2008.
——, “Generating high-performance pruned FFT implementations,” in
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2009.

D. G. Spampinato and M. Piischel, “A basic linear algebra compiler,”
in International Symposium on Code Generation and Optimization
(CGO), 2014, pp. 117-127.

T. Popovici, F. Franchetti, and T.-M. Low, “Mixed data layout kernels
for vectorized complex arithmetic,” in High Performance Extreme
Computing (HPEC). IEEE, 2017, pp. 1-7.

T. Popovici, T.-M. Low, and F. Franchetti, “Large bandwidth-efficient
FFTs on multicore and multi-socket systems,” in [EEE International
Parallel and Distributed Processing Symposium (IPDPS). 1EEE, 2018.
L. J. Chang, I. Hong, Y. Voronenko, and M. Piischel, “Adaptive map-
ping of linear DSP algorithms to fixed-point arithmetic,” in Proc. High
Performance Embedded Computing (HPEC), 2004.

Y. Voronenko and M. Piischel, “Mechanical Derivation of Fused
Multiply-Add Algorithms for Linear Transforms,” IEEE Transactions
on Signal Processing, vol. 55, no. 9, pp. 4458-4473, 2007.

L. Meng, J. Johnson, F. Franchetti, Y. Voronenko, M. M. Maza,
and Y. Xie, “Spiral-generated modular FFT algorithms,” in Parallel
Symbolic Computation (PASCO), 2010, pp. 169-170.

F. Franchetti, Y. Voronenko, P. A. Milder, S. Chellappa, M. Telgarsky,
H. Shen, P. D’ Alberto, F. de Mesmay, J. C. Hoe, J. M. F. Moura, and
M. Piischel, “Domain-specific library generation for parallel software
and hardware platforms,” in NSF Next Generation Software Program
workshop (NSFNGS), 2008.

F. Franchetti, D. McFarlin, F. de Mesmay, H. Shen, T. W. Wlodarczyk,
S. Chellappa, M. Telgarsky, P. A. Milder, Y. Voronenko, Q. Yu,
J. C. Hoe, J. M. F. Moura, and M. Piischel, “Program generation
with Spiral: Beyond transforms,” in High Performance Embedded
Computing (HPEC), 2008.

C. Angelopoulos, F. Franchetti, and M. Piischel, “Automatic Generation
of FFT Libraries for GPUs,” NVIDIA Research Summit at the GPU
Technology Conference, 2012.

P. D’Alberto, M. Piischel, and F. Franchetti, “Performance/energy
optimization of DSP transforms on the xscale processor,” in Interna-
tional Conference on High Performance Embedded Architectures &
Compilers (HiPEAC), 2007.

S. Chellappa, F. Franchetti, and M. Piischel, “How to write fast nu-
merical code: A small introduction,” in Summer School on Generative
and Transformational Techniques in Software Engineering (GTTSE),
ser. Lecture Notes in Computer Science, vol. 5235. Springer, 2008,
pp. 196-259.

——, “Computer Generation of Fast Fourier Transforms for the Cell
Broadband Engine,” in International Conference on Supercomputing
(ICS), 2009.

D. McFarlin, V. Arbatov, F. Franchetti, and M. Piischel, “Automatic
SIMD Vectorization of Fast Fourier Transforms for the Larrabee and
AVX Instruction Sets,” in International Conference on Supercomputing
(ICS), 2011.

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 28

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

G. Nordin, P. A. Milder, J. C. Hoe, and M. Piischel, “Automatic
generation of customized discrete Fourier transform IPs,” in Design
Automation Conference (DAC), 2005, pp. 471-474.

P. D’Alberto, P. A. Milder, A. Sandryhaila, F. Franchetti, J. C. Hoe,
J. M. F. Moura, M. Piischel, and J. Johnson, “Generating FPGA Ac-
celerated DFT Libraries,” in IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), 2007.

P. A. Milder, F. Franchetti, J. C. Hoe, and M. Piischel, “Formal datapath
representation and manipulation for implementing DSP transforms,” in
Design Automation Conference, 2008.

——, “Linear transforms: From math to efficient hardware,” in Work-
shop on High-Level Synthesis colocated with DAC, 2008.

P. A. Milder, J. C. Hoe, and M. Piischel, “Automatic generation
of streaming datapaths for arbitrary fixed permutations,” in Design,
Automation and Test in Europe (DATE), 2009.

P. A. Milder, F. Franchetti, J. C. Hoe, and M. Piischel, “Hardware
Implementation of the Discrete Fourier Transform with Non-Power-of-
Two Problem Size,” in International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 2010.

——, “Computer Generation of Hardware for Linear Digital Signal
Processing Transforms,” ACM Transactions on Design Automation of
Electronic Systems, vol. 17, no. 2, 2012.

A. Bonelli, F. Franchetti, J. Lorenz, M. Piischel, and C. W. Ueberhuber,
“Automatic performance optimization of the discrete Fourier transform
on distributed memory computers,” in International Symposium on Par-
allel and Distributed Processing and Application (ISPA), ser. Lecture
Notes In Computer Science, vol. 4330. Springer, 2006, pp. 818-832.
F. Gygi, E. W. Draeger, M. Schulz, B. R. de Supinski, J. A. Gunnels,
V. Austel, J. C. Sexton, F. Franchetti, S. Kral, C. W. Ueberhuber,
and J. Lorenz, “Large-scale electronic structure calculations of high-
Z metals on the bluegene/L platform,” in SC "06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing. —New York, NY,
USA: ACM, 2006, p. 45.

F. Franchetti, Y. Voronenko, and G. Almasi, “Automatic generation of
the HPC Challenge’s Global FFT Benchmark for BlueGene/P,” in High
Performance Computing for Computational Science (VECPAR), 2012.
B. Duff, J. Larkin, M. Franusich, and F. Franchetti, “Automatic
Generation of 3-D FFTs,” submitted for publication.

F. Franchetti and M. Piischel, “SIMD vectorization of Non-Two-Power
Sized FFTs,” in International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), vol. 2, 2007, pp. 1I-17.

A. Gaci¢, M. Piischel, and J. M. FE. Moura, “Fast Automatic Implemen-
tations of FIR Filters,” in Proc. IEEE Int’l Conf. Acoustics, Speech, and
Signal Processing (ICASSP), vol. 2, 2003, pp. 541-544.

A. Gacic, “Automatic implementation and platform adaptation of
discrete filtering and wavelet algorithms,” Ph.D. dissertation, Electrical
and Computer Engineering, Carnegie Mellon University, 2004.

F. Franchetti, F. de Mesmay, D. McFarlin, and M. Piischel, “Operator
Language: A Program Generation Framework for Fast Kernels,” in /FIP
Working Conference on Domain Specific Languages (DSL WC), 2009.
Y. Voronenko, F. Franchetti, F. de Mesmay, and M. Piischel, “System
demonstration of Spiral: Generator for high-performance linear trans-
form libraries,” in Algebraic Methodology and Software Technology
(AMAST), 2008.

D. McFarlin, F. Franchetti, J. M. F. Moura, and M. Piischel, “High Per-
formance Synthetic Aperture Radar Image Formation On Commodity
Architectures,” in SPIE Conference on Defense, Security, and Sensing,
2009.

H. Shen, “Generation of a fast JPEG 2000 encoder using Spiral,”
Master’s thesis, Technical University of Denmark, Department of
Informatics and Mathematical Modeling, Language-Based Technology,
2008.

F. de Mesmay, S. Chellappa, F. Franchetti, and M. Piischel, “Computer
Generation of Efficient Software Viterbi Decoders,” in International
Conference on High Performance Embedded Architectures and Com-
pilers (HIiPEAC), ser. Lecture Notes in Computer Science, vol. 5952.
Springer, 2010, pp. 353-368.

Y. Voronenko, V. Arbatov, C. Berger, R. Peng, M. Piischel, and
F. Franchetti, “Computer Generation of Platform-Adapted Physical
Layer Software,” in Software Defined Radio (SDR), 2010.

C. Berger, V. Arbatov, Y. Voronenko, F. Franchetti, and M. Piischel,
“Real-time software implementation of an ieee 802.11a baseband
receiver on Intel multicore,” submitted for publication.

——, “Real-time software implementation of an ieee 802.11a baseband
receiver on intel multicore,” in International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2011, pp. 1693-1696.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

[78]

[79]

[80]

[81]

T. Popovici, F. Russell, K. Wilkinson, C.-K. Skylaris, P. H. J. Kelly,
and F. Franchetti, “Generating optimized Fourier interpolation routines
for density functional theory using SPIRAL,” in [EEE International
Parallel and Distributed Processing Symposium (IPDPS), 2015.

D. G. Spampinato and M. Piischel, “A basic linear algebra compiler for
structured matrices,” in International Symposium on Code Generation
and Optimization (CGO), 2016, pp. 117-1217.

D. G. Spampinato, D. Fabregat-Traver, P. Bientinesi, and M. Piischel,
“Program generation for small-scale linear algebra applications,” in /n-
ternational Symposium on Code Generation and Optimization (CGO),
2018, pp. 117-127.

M. Bolten, F. Franchetti, P. H. J. Kelly, C. Lengauer, and M. Mobhr,
“Algebraic description and automatic generation of multigrid methods
in SPIRAL,” Concurrency and Computation: Practice and Experience,
2017.

F. Franchetti, T. M. Low, S. Mitsch, J. P. Mendoza, L. Gui, A. Phao-
sawasdi, D. Padua, S. Kar, J. M. F. Moura, M. Franusich, J. Johnson,
A. Platzer, and M. Veloso, “High-assurance SPIRAL: End-to-end
guarantees for robot and car control,” IEEE Control Systems, vol. 37,
no. 2, pp. 82-103, 2017.

B. B. Fraguela, Y. Voronenko, and M. Piischel, “Automatic tuning of
discrete Fourier transforms driven by analytical modeling,” in Parallel
Architectures and Compilation Techniques (PACT), 2009, pp. 271-280.
B. Singer and M. M. Veloso, “Automating the modeling and opti-
mization of the performance of signal transforms,” IEEE Trans. Signal
Processing, vol. 50, no. 8, pp. 2003-2014, 2002.

B. Singer and M. Veloso, “Learning to construct fast signal processing
implementations,” Journal of Machine Learning Research, vol. 3, pp.
887-919, 2002.

F. de Mesmay, A. Rimmel, Y. Voronenko, and M. Piischel, “Bandit-
based optimization on graphs with application to library performance
tuning,” in International Conference on Machine Learning (ICML),
2009, pp. 729-736.

F. de Mesmay, Y. Voronenko, and M. Piischel, “Offline library adap-
tation using automatically generated heuristics,” in IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2010, pp.
1-10.

T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet, J. Ramanujam,
and P. Sadayappan, “A stencil compiler for short-vector SIMD
architectures,” in Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing, ser.
ICS ’13. New York, NY, USA: ACM, 2013, pp. 13-24. [Online].
Available: http://doi.acm.org/10.1145/2464996.2467268

M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and
P. Sadayappan, “When polyhedral transformations meet SIMD code
generation,” in Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI *13.
New York, NY, USA: ACM, 2013, pp. 127-138. [Online]. Available:
http://doi.acm.org/10.1145/2491956.2462187

B. Akin, J. C. Hoe, and F. Franchetti, “HAMLeT: Hardware accelerated
memory layout transform within 3D-stacked DRAM,” in IEEE High
Performance Extreme Computing (HPEC), 2014.

T.-M. Low and F. Franchetti, “High assurance code generation for
cyber-physical systems,” in IEEE International Symposium on High
Assurance Systems Engineering (HASE), 2017.

Intel, “Developer Guide for Intel Math Kernel Library 2018 .”

, “Developer Guide for Intel Integrated Performance Primitives
(Intel IPP) 2018

J. Moreira, V. Salapura, G. Almasi, C. Archer, R. Bellofatto,
P. Bergner, R. Bickford, M. Blumrich, J. Brunheroto, A. Bright,
M. Brutman, J. Castafios, D. Chen, P. Coteus, P. Crumley, S. Ellis,
T. Engelsiepen, A. Gara, M. Giampapa, T. Gooding, S. Hall,
R. Haring, R. Haskin, P. Heidelberger, D. Hoenicke, T. Inglett,
G. Kopcsay, D. Lieber, D. Limpert, P. McCarthy, M. Megerian,
M. Mundy, M. Ohmacht, J. Parker, R. Rand, D. Reed, R. Sahoo,
A
B.

. Sanomiya, R. Shok, B. Smith, G. Stewart, T. Takken, P. Vranas,
Wallenfelt, M. Blocksome, and J. Ratterman, “The Blue Gene/L
supercomputer: A hardware and software story,” International Journal
of Parallel Programming, vol. 35, no. 3, pp. 181-206, June 2007.
[Online]. Available: http://dx.doi.org/10.1007/s10766-007-0037-2
Mercury Computing, “Opensal.” [Online]. Available:
https://sourceforge.net/projects/opensal/
G. Ofenbeck, T. Rompf, A. Stojanov, M. Odersky, and M. Piischel,
“Spiral in Scala: Towards the Systematic Construction of Generators
for Performance Libraries,” in International Conference on Generative
Programming: Concepts & Experiences (GPCE), 2013, pp. 125-134.

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 29

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

G. Ofenbeck, T. Rompf, and M. Piischel, “Staging for generic program-
ming in space and time,” in International Conference on Generative
Programming: Concepts & Experiences (GPCE), 2017, pp. 15-28.

G. Mainland and J. Johnson, “A Haskell compiler for signal trans-
forms,” in International Conference on Generative Programming:
Concepts and Experiences (GPCE), 2017, pp. 219-232.

G. Almasi, L. DeRose, B. Fraguela, J. Moreira, and D. Padua, “Pro-
gramming for locality and parallelism with hierarchically tiled arrays,”
in Proceedings of the Sixteenth International Workshop on Languages
and Compilers for Parallel Computing (LCPC), 2003, pp. 162-176.
G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B. Fraguela,
M. J. Garzardn, D. Padua, and C. von Praun, “Programming for
parallelism and locality with hierarchically tiled arrays,” in Symposium
on Principles and Practice of Parallel Programming (PPoPP), 2006,
pp. 48-57.

GAP—Groups, Algorithms, and Programming, The GAP Team, Univer-
sity of St. Andrews, Scotland, 1997, www-gap.dcs.st-and.ac.uk/ gap/.
F. Franchetti, D. G. Spampinato, A. Kulkarni, D. T. Popovici, T. M.
Low, M. Franusich, A. Canning, P. McCorquodale, B. V. Straalen, and
P. Colella, “FFTX and SpectralPack: A first look,” in Proceedings of
PFFT Workshop at HiPC 2018, 2018, to appear.

Advanced Micro Devices (AMD), “AMD Core Math Library,
http://developer.amd.com/cpu/libraries/acml/pages/default.aspx,” 2009.
Cray Inc., “Cray Scientific Libraries, http://www.cray.com,” 2009.
IBM, Engineering and Scientific Subroutine Library for AIX, Version
4 Release 2, 2003.

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic
linear algebra subprograms for Fortran usage,” vol. 5, no. 3, pp. 308—
323, Sep. 1979.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, “An
extended set of FORTRAN basic linear algebra subprograms,” vol. 14,
no. 1, pp. 1-17, Mar. 1988.

J. J. Dongarra, J. D. Croz, S. Hammarling, and I. S. Duff, “A set of
level 3 basic linear algebra subprograms,” ACM Trans. Math. Softw.,
vol. 16, no. 1, pp. 1-17, 1990.

K. Goto, “GotoBLAS 1.26,
http://www.tacc.utexas.edu/resources/software/#blas,” 2008.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ Guide, 3rd ed. Philadelphia, PA: Society
for Industrial and Applied Mathematics, 1999.

F. G. Van Zee and R. A. van de Geijn, “BLIS: A framework for
rapidly instantiating BLAS functionality,” ACM Trans. Math. Softw.,
vol. 41, no. 3, pp. 14:1-14:33, Jun. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2764454

J. Ansel and C. Chan, ‘“Petabricks:
and more efficient programs for the
Crossroads, The ACM Magazine for Students (XRDS),
vol. 17, no. 1, pp. 32-37, Sep 2010. [Online]. Available:
http://groups.csail.mit.edu/commit/papers/2010/ansel-xrds.pdf

C. Chen, J. Chame, and M. Hall, “Chill: A framework for composing
high-level loop transformations,” USC Computer Science Technical
Report, Tech. Rep. 08-897, 2008.

B. Meister, N. Vasilache, D. Wohlford, M. M. Baskaran, A. Leung,
and R. Lethin, Encyclopedia of Parallel Computing. Springer, 2011,
ch. R-Stream Compiler.

U. Bondhugula and J. Ramanujam, “Pluto: A practical and fully
automatic polyhedral program optimization system,” in In: Proceedings
of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation (PLDI 08, 2008.

T. Grosser, A. Groesslinger, and C. Lengauer, “Polly — performing
polyhedral optimizations on a low-level intermediate representation,”
Parallel Processing Letters, vol. 22, no. 04, p. 1250010, 2012.

T. Grosser and T. Hoefler, “Polly-ACC Transparent Compilation to
Heterogeneous Hardware,” in Proceedings of the 2016 International
Conference on Supercomputing, 2016, pp. 1:1-1:13.

S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gdémez,
C. Tenllado, and F. Catthoor, “Polyhedral parallel code generation for
CUDA,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 9, no. 4, pp. 54:1-54:23, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2400682.2400713

S. Z. Guyer and C. Lin, “An annotation language for optimizing
software libraries,” SIGPLAN Not., vol. 35, no. 1, pp. 39-52, Dec.
1999. [Online]. Available: http://doi.acm.org/10.1145/331963.331970
A. Chauhan, C. McCosh, K. Kennedy, and R. Hanson, “Automatic
type-driven library generation for telescoping languages,” in
Proceedings of the 2003 ACM/IEEE conference on Supercomputing,

Building adaptable
multi-core era,”

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

ser. SC ’03. ACM, 2003, pp. 51-. [Online]. Available:
http://doi.acm.org/10.1145/1048935.1050201

S. Benkner and H. Zima, “Compiling high performance Fortran for
distributed-memory architectures,” Parallel Comput., vol. 25, no. 13-
14, pp. 1785-1825, 1999.

K. Kennedy, C. Koelbel, and H. Zima, “The rise and fall of High Perfor-
mance Fortran: an historical object lesson,” in HOPL III: Proceedings
of the third ACM SIGPLAN conference on History of programming
languages. New York, NY, USA: ACM, 2007, pp. 7-1-7-22.

B. L. Chamberlain, D. Callahan, and H. P. Zima, ‘“Parallel Pro-
grammability and the Chapel Language,” International Journal of High
Performance Computing Applications, vol. 21, no. 3, pp. 291-312,
2007.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in OOPSLA ’'05: Pro-
ceedings of the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications. New
York, NY, USA: ACM, 2005, pp. 519-538.

U. Consortium, “UPC language specifications, v1.2,” 2005, lawrence
Berkeley National Lab Tech Report LBNL-59208.

R. W. Numrich and J. Reid, “Co-array Fortran for parallel program-
ming,” SIGPLAN Fortran Forum, vol. 17, no. 2, pp. 1-31, 1998.

Z. Pan and R. Eigenmann, “Peak—a fast and effective performance
tuning system via compiler optimization orchestration,” ACM Trans.
Program. Lang. Syst., vol. 30, no. 3, pp. 1-43, 2008. [Online]. Avail-
able: http://www.ecn.purdue.edu/ParaMount/publications/PaEi08.pdf
K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston,
J. Y. Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and
P. Hanrahan, “Sequoia: programming the memory hierarchy,” in
Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
ser. SC 06. New York, NY, USA: ACM, 2006. [Online]. Available:
http://doi.acm.org/10.1145/1188455.1188543

A. Hartono, M. M. Baskaran, C. Bastoul, A. Cohen, S. Krishnamoorthy,
B. Norris, J. Ramanujam, and P. Sadayappan, “Parametric multi-level
tiling of imperfectly nested loops,” in ICS ’09: Proceedings of the 23rd
international conference on Supercomputing. New York, NY, USA:
ACM, 2009, pp. 147-157.

C. Bastoul, “Code generation in the polyhedral model is easier than you
think,” in PACT’13 IEEE International Conference on Parallel Archi-
tecture and Compilation Techniques, Juan-les-Pins, France, September
2004, pp. 7-16.

G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks,
B. Mendelson, E. Bonilla, J. Thomson, H. Leather, C. Williams, and
M. O. Boyle, “MILEPOST GCC: machine learning based research
compiler,” in GCC Summit ’08, 2008, pp. 1-13.

R. S. Nikhil and Arvind, “What is Bluespec?” SIGDA Newsl.,
vol. 39, no. 1, . 1-1, Jan. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1862876.1862877
M. Frigo, “A fast Fourier transform compiler,” in Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 1999, pp. 169-180.

M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proc. of the IEEE, special issue on ”Program Generation,
Optimization, and Adaptation”, vol. 93, no. 2, pp. 216-231, 2005.

R. C. Whaley and J. Dongarra, “Automatically Tuned Linear Al-
gebra Software (ATLAS),” in Proc. Supercomputing, 1998, math-
atlas.sourceforge.net.

R. C. Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical
optimization of software and the ATLAS project,” Parallel Computing,
vol. 27, no. 1-2, pp. 3-35, 2001.

E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization framework
for sparse matrix kernels,” Int’l J. High Performance Computing
Applications, vol. 18, no. 1, 2004.

J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc,
C. Whaley, and K. Yelick, “Self adapting linear algebra algorithms and
software,” Proc. of the IEEE, vol. 93, no. 2, pp. 293-312, 2005, special
issue on “Program Generation, Optimization, and Adaptation”.

G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, V. Choppella,
D. Cociorva, X. Gao, R. J. Harrison, S. Hirata, S. Krishanmoorthy,
S. Krishnan, C.-C. Lam, Q. Lu, M. Nooijen, R. M. Pitzer, J. Ramanu-
jam, P. Sadayappan, and A. Sibiryakov, “Synthesis of high-performance
parallel programs for a class of ab initio quantum chemistry models,”
Proc. of the IEEE, vol. 93, no. 2, 2005, special issue on “Program
Generation, Optimization, and Adaptation”.

C. Tapus, I.-H. Chung, and J. K. Hollingsworth, “Active harmony:
Towards automated performance tuning,” in Proceedings of the

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 30

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]
[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

2002 ACM/IEEE Conference on Supercomputing, ser. SC ’02. Los
Alamitos, CA, USA: IEEE Computer Society Press, 2002, pp. 1-11.
[Online]. Available: http://dl.acm.org/citation.cfm?id=762761.762771
A. Hartono, B. Norris, and P. Sadayappan, “Annotation-based empirical
performance tuning using Orio,” in International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2009, pp. 1-11.

M. Takahiro Katagiri and D. Takahashi.

GPCE, “ACM conference on generative programming and component
engineering.”

K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

D. Batory, C. Johnson, B. MacDonald, and D. von Heeder, “Achieving
extensibility through product-lines and domain-specific languages: A
case study,” ACM Transactions on Software Engineering and Method-
ology (TOSEM), vol. 11, no. 2, pp. 191-214, 2002.

D. Batory, R. Lopez-Herrejon, and J.-P. Martin, “Generating product-
lines of product-families,” in Proc. Automated Software Engineering
Conference (ASE), 2002.

D. R. Smith, “Mechanizing the development of software,” in Cal-
culational System Design, Proc. of the International Summer School
Marktoberdorf, M. Broy, Ed. NATO ASI Series, I0S Press, 1999,
kestrel Institute Technical Report KES.U.99.1.

K. J. Gough, “Little language processing, an alternative to courses on
compiler construction,” SIGCSE Bulletin, vol. 13, no. 3, pp. 31-34,
1981.

J. Bentley, “Programming pearls: little languages,” Communications of

the ACM, vol. 29, no. 8, pp. 711-721, 1986.

P. Hudak, “Domain specific languages,” 1997, available from author
on request.

W. Taha, “Domain-specific languages,” in Proceedings of International
Conference on Computer Engineering and Systems (ICCES) 2008,
2008.

K. Czarnecki, J. O’Donnell, J. Striegnitz, and W. Taha, “DSL imple-
mentation in MetaOCaml, Template Haskell, and C++,” in Dagstuhl
Workshop on Domain-specific Program Generation, ser. LNCS, Batory,
Consel, Lengauer, and Odersky, Eds. LNCS, 2004.

B. Catanzaro, S. A. Kamil, Y. Lee, K. Asanovi, J. Demmel,
K. Keutzer, J. Shalf, K. A. Yelick, and A. Fox, “SEIJITS:
Getting Productivity and Performance With Selective Embedded
JIT Specialization,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2010-23, Mar 2010. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-
2010-23.html

A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky,
and K. Olukotun, “Delite: A compiler architecture for performance-
oriented embedded domain-specific languages,” ACM Trans. Embed.
Comput. Syst., vol. 13, no. 4s, pp. 134:1-134:25, 2014.

T. Rompf and M. Odersky, “Lightweight modular staging: a
pragmatic approach to runtime code generation and compiled DSLs,”
Communications of the ACM, vol. 55, no. 6, pp. 121-130, 2012.
[Online]. Available: http://doi.acm.org/10.1145/2184319.2184345

Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek, “Terra: A
Multi-stage Language for High-performance Computing,” in Program-
ming Language Design and Implementation (PLDI), 2013, pp. 105—
116. [Online]. Available: http://doi.acm.org/10.1145/2491956.2462166
A. Shaikhha, Y. Klonatos, L. Parreaux, L. Brown, M. Dashti,
and C. Koch, “How to architect a query compiler,” in International
Conference on Management of Data (SIGMOD), 2016, pp. 1907-1922.
[Online]. Available: http://doi.acm.org/10.1145/2882903.2915244

R. Y. Tahboub, G. M. Essertel, and T. Rompf, “How to architect a
query compiler, revisited,” in International Conference on Management
of Data (SIGMOD), 2018, pp. 307-322.

B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch, and C. Dubach,
“High performance stencil code generation with lift,” in International
Symposium on Code Generation and Optimization (CGO), 2018, pp.
100-112.

J. Siek, I. Karlin, and E. Jessup, “Build to order linear algebra
kernels,” in International Parallel & Distributed Processing Symposium
(IPDPS), 2008, pp. 1-8.

T. Nelson, G. Belter, J. G. Siek, E. Jessup, and B. Norris, “Reliable
generation of high-performance matrix algebra,” ACM Trans. Math.
Softw., vol. 41, no. 3, pp. 18:1-18:27, 2015.

D. Fabregat-Traver and P. Bientinesi, “Knowledge-based automatic
generation of partitioned matrix expressions,” in Computer Algebra
in Scientific Computing, 2011, pp. 144-157.

[148]

[149]

[150]

[151]

[152]

[153]

[154]
[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]
[164]

[165]

[166]

[167]

——, “Automatic generation of loop-invariants for matrix operations,”
in International Conference on Computational Science and its Appli-
cations (ICCSA), 2011, pp. 82-92.

J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn,
“FLAME: Formal linear algebra methods environment,” TOMS, vol. 27,
no. 4, pp. 422455, December 2001.

P. Bientinesi, J. A. Gunnels, M. E. Myers, E. Quintana-Orti, and
R. van de Geijn, “The science of deriving dense linear algebra
algorithms,” TOMS, vol. 31, no. 1, pp. 1-26, March 2005.

B. Marker, J. Poulson, D. Batory, and R. van de Geijn, “Designing
linear algebra algorithms by transformation: Mechanizing the expert
developer,” in High Performance Computing for Computational Science
(VECPAR 2012), ser. Lecture Notes in Computer Science (LNCS).
Springer, 2013, vol. 7851, pp. 362-378.

D. Fabregat-Traver and P. Bientinesi, “A domain-specific compiler for
linear algebra operations,” in High Performance Computing for Com-
putational Science (VECPAR 2012), ser. Lecture Notes in Computer
Science (LNCS), vol. 7851. Springer, 2013, pp. 346-361.

G. Guennebaud, B. Jacob er al., “Eigen,” http://eigen.tuxfamily.org,
2017.

J. Walter, M. Koch et al., “uBLAS,” www.boost.org/libs/numeric.

P. Gottschling, D. S. Wise, and A. Joshi, “Generic support of algorith-
mic and structural recursion for scientific computing,” International
Journal of Parallel, Emergent and Distributed Systems (IJPEDS),
vol. 24, no. 6, pp. 479-503, 2009.

T. Gysi, C. Osuna, O. Fuhrer, M. Bianco, and T. C. Schulthess,
“STELLA: A domain-specific tool for structured grid methods in
weather and climate models,” in High Performance Computing,
Networking, Storage and Analysis (SC), 2015, pp. 1-12. [Online].
Available: http://doi.acm.org/10.1145/2807591.2807627

J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe, “Halide: A language and compiler for
optimizing parallelism, locality, and recomputation in image processing
pipelines,” in Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI *13.
New York, NY, USA: ACM, 2013, pp. 519-530. [Online]. Available:
http://doi.acm.org/10.1145/2491956.2462176

——, “Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines,” SIGPLAN
Not., vol. 48, no. 6, pp. 519-530, Jun. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2499370.2462176

F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe,
“The tensor algebra compiler,” Proc. ACM Program. Lang., vol. 1,
no. OOPSLA, pp. 77:1-77:29, 2017.

A. Solar-Lezama, R. Rabbah, R. Bodik, and K. Ebcioglu, “Program-
ming by sketching for bit-streaming programs,” SIGPLAN Not., vol. 40,
no. 6, pp. 281-294, Jun. 2005.

M. Vecheyv, E. Yahav, and G. Yorsh, “Inferring synchronization under
limited observability,” in Proceedings of the 15th International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems: Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2009,, ser. TACAS 09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 139-154.

N. Dershowitz and D. A. Plaisted, “Rewriting,” in Handbook of
Automated Reasoning, A. Robinson and A. Voronkov, Eds. Elsevier,
2001, vol. 1, ch. 9, pp. 535-610.

U. Nilsson and J. Maluszynski, Logic, Programming and Prolog,
2nd ed. John Wiley & Sons Inc, 1995.

A. J. Field and P. G. Harrison, Functional Programming.
Wesley, 1988.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” arXiv preprint arXiv:1408.5093, 2014.

Addison-

Theano Development Team, “Theano: A Python framework
for fast computation of mathematical expressions,” arXiv e-
prints, vol. abs/1605.02688, May 2016. [Online]. Available:

http://arxiv.org/abs/1605.02688

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems,” 2015, software available from tensorflow.org. [Online].
Available: https://www.tensorflow.org/

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 31

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M.
Vorkoetter, J. McCarron, and P. DeMarco, Maple 10 Programming
Guide. Waterloo ON, Canada: Maplesoft, 2005.

A. Z. Pinkus and S. Winitzki, “YACAS: A Do-It-
Yourself Symbolic Algebra Environment,” in Proceedings of
the Joint International Conferences on Artificial Intelligence,
Automated Reasoning, and Symbolic Computation. — London,
UK: Springer-Verlag, 2002, pp. 332-336. [Online]. Available:
http://portal.acm.org/citation.cfm?id=648168.750655

S. Wolfram, The Mathematica Book, Fifth Edition,
5th ed. Wolfram Media, August 2003. [Online]. Avail-
able: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/1579550223

C. B. Moler, Numerical Computing with Matlab. Society
for Industrial Mathematics, January 2004. [Online]. Avail-
able: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/0898715601

M. Gordon, From LCF to HOL: a short history. Cambridge,
MA, USA: MIT Press, 2000, pp. 169-185. [Online]. Available:
http://portal.acm.org/citation.cfm?id=345868.345890

R. Kabacoff, R in Action. Manning, 2010. [Online]. Available:
http://www.manning.com/kabacoff

J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear
Algebra. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2011.

J. A. Rudin, “Implementation of polar format SAR image formation on
the IBM cell broadband engine,” in Proc. High Performance Embedded
Computing (HPEC), 2007.

W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight
Synthetic Aperture Radar: Signal Processing Algorithms. Artech
House, 1995.

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran,
“Cache-oblivious algorithms,” in Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, ser. FOCS ’99.
Washington, DC, USA: IEEE Computer Society, 1999, pp. 285-.
[Online]. Available: http://dl.acm.org/citation.cfm?id=795665.796479
K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and
P. Stodghill, “A comparison of empirical and model-driven optimiza-
tion,” Proc. of the IEEE, vol. 93, no. 2, 2005, special issue on “Program
Generation, Optimization, and Adaptation”.

M. Piischel, P. A. Milder, and J. C. Hoe, “Permuting Streaming Data
Using RAMS,” Journal of the ACM, vol. 56, no. 2, pp. 10:1-10:34,
2009.

F. Serre, T. Holenstein, and M. Piischel, “Optimal Circuits for Streamed
Linear Permutations Using RAM,” in Proc. International Symposium
on Field-Programmable Gate Arrays (FPGA), 2016, pp. 215-223.

B. Singer and M. M. Veloso, “Learning to Construct Fast Signal
Processing Implementations,” Journal of Machine Learning Research,
vol. 3, pp. 887-919, 2002.

T. Cui and F. Franchetti, “Random walk SAT solver: Program gen-
eration and autotuning,” in Proceedings of The Sixth International
Workshop on Automatic Performance Tuning (iWAPT), 2010.

P. A. Milder, M. Ahmad, J. C. Hoe, and M. Piischel, “Fast and accurate
resource estimation of automatically generated custom DFT IP cores,”
in FPGA, 2006, pp. 211-220.

P. A. Milder, F. Franchetti, J. C. Hoe, and M. Piischel, “Discrete
Fourier transform compiler: From mathematical representation to effi-
cient hardware,” CSSI Technical Report #CSSI-07-01, Carnegie Mellon
University, 2007.

——, “FFT compiler: From math to efficient hardware,” in IEEE Inter-
national High Level Design Validation and Test Workshop (HLDVT),
2007.

G. Xu, T. M. Low, J. Hoe, and F. Franchetti, “Optimizing fft resource
efficiency on fpga using high-level synthesis,” IEEE HPEC, 2017,
poster (Abstract reviewed).

J. P. Mendoza, M. Veloso, and R. Simmons, “Focused optimization
for online detection of anomalous regions,” in Proceedings of the
International Conference on Robotics and Automation (ICRA), Hong
Kong, China, June 2014.

A. Platzer and J.-D. Quesel, “KeYmaera: A hybrid theorem prover for
hybrid systems.” in IJCAR, ser. LNCS, A. Armando, P. Baumgartner,
and G. Dowek, Eds., vol. 5195. Springer, 2008, pp. 171-178.

T. Cui and F. Franchetti, “Optimized parallel distribution load flow
solver on commodity multi-core cpu,” in IEEE High Performance
Extreme Computing (HPEC), 2012.

[190]

[191]

[192]

[193]

[194]

[195]

[196]
[197]

[198]

[199]

[200]

[201]

[202]
[203]

[204]

1.4

——, “Autotuning a random walk boolean satisfiability solver,” in
International Workshop on Automatic Performance Tuning (iWAPT),
2011.

P. Luszczek, D. Bailey, J. Dongarra, J. Kepner, R. Lucas, R. Raben-
seifner, and D. Takahashi, “The HPC Challenge (HPCC) benchmark
suite,” in SCO06 Conference Tutorial, 2006.

C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne,
“Introducing ONETEP: Linear-scaling density functional simulations
on parallel computers,” J. Chem. Phys., vol. 122, no. 8, p. 084119,
2005.

F. P. Russell, K. Wilkinson, P. H. J. Kelly, and C.-K. Skylaris,
“Optimised three-dimensional fourier interpolation: An analysis of
techniques and application to a linear-scaling density functional theory
code,” Computer Physics Communications, vol. 187, pp. 8-19, 2015.
J. Rudin, “Implementation of polar format SAR image formation on
the IBM cell broadband engine,” in High Performance Embedded
Computing (HPEC), 2007.

A. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” Information Theory, IEEE Transactions
on, vol. 13, no. 2, pp. 260-269, Apr 1967.

, “A personal history of the Viterbi algorithm,” Signal Processing
Magazine, IEEE, vol. 23, no. 4, pp. 120-142, July 2006.

P. Karn, “FEC library version 3.0.1, http://www.ka9q.net/code/fec/,”
Aug 2007.

T.-M. Low, Q. Guo, and F. Franchetti, “Optimizing space time adaptive
processing through accelerating memory-bounded operations,” in High
Performance Extreme Computing (HPEC), 2015.

F. de Mesmay, F. Franchetti, Y. Voronenko, and M. Piischel, “Automatic
generation of adaptive libraries for matrix-multiplication,” Parallel
Matrix Algorithms and Applications (PMAA), 2008, presentation (Ab-
stract reviewed).

J. Kepner, P. Aaltonen, D. Bader, A. Buluc, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
J. Moreira, J. D. Owens, C. Yang, M. Zalewski, and T. Mattson,
“Mathematical foundations of the graphblas,” in High Performance
Extreme Computing (HPEC), 2016.

T.-M. Low, V. Rao, M. Lee, T. Popovici, F. Franchetti, and S. McMil-
lan, “First look: Linear algebra-based triangle counting without matrix
multiplication,” in High Performance Extreme Computing (HPEC).
IEEE, 2017, pp. 1-6.

“The Coq Proof Assistant Reference Manual,” 2009.

V. Zaliva and F. Franchetti, “Reasoning about sparse vectors for loops
code generation,” ICFP 2017 Student Research Competition, 2017,
poster (Abstract reviewed).

——, “Helix: A case study of a formal verification of high perfor-
mance program generation,” in Proceedings of the 6th ACM SIGPLAN
International Workshop on Functional High-Performance Computing
(FHPC). ACM, 2018, to appear.

Franz Franchetti is a Professor at the Depart-
\ ment of Electrical and Computer Engineering at

Carnegie Mellon University. He received the Dipl.-
Ing. (M.Sc.) degree in Technical Mathematics and
the Dr. techn. (Ph.D.) degree in Computational
Mathematics from the Vienna University of Tech-
nology in 2000 and 2003, respectively. His research
focuses on automatic performance tuning, program
synthesis of mathematical kernels, and hardware/al-
gorithm co-design. More information can be found
athttp://www.ece.cmu.edu/ franzf/.He

can be contacted at Hamerschlag Hall A312, 5000 Forbes Ave, Pittsburgh, PA,

15213.

PROCEEDINGS OF THE IEEE, SPECIAL ISSUE ON FROM HIGH LEVEL SPECIFICATION TO HIGH PERFORMANCE CODE 32

Tze Meng Low is an Assistant Research Professor Markus Piischel is a Professor of Computer Sci-
at the Department of Electrical and Computer Engi- 3 ence at ETH Zurich, Switzerland, where he was
neering at Carnegie Mellon University. He received the head of the department from 2013 to 2016.
the B.S. degree in computer science and B.S degree Before joining ETH in 2010, he was a Professor
in economics in 2003 and the Ph.D degree in com- of Electrical and Computer Engineering at Carnegie
puter science in 2013 from UT Austin. His research Mellon University (CMU), where he still has an
focuses on high performance (hardware/software) adjunct status. He received his Diploma (M.Sc.) in
implementations using analytical techniques and for- Mathematics and his Doctorate (Ph.D.) in Computer
mal methods. Science, in 1995 and 1998, respectively, both from
the University of Karlsruhe, Germany. He received
the Outstanding Research Award of the College of
Engineering at Carnegie Mellon and the main teaching awards from student
organizations of both institutions CMU and ETH. More information is

available at www.acl.inf.ethz.ch.

Doru Thom Popovici received his Ph.D in Electrical
and Computer Engineering from Carnegie Mellon

University in 2018. James C. Hoe is a Professor of Electrical and Com-

puter Engineering at Carnegie Mellon University.
His research interests include computer architecture,
reconfigurable computing and high-level hardware
description and synthesis. He received his Ph.D. in
EECS from MIT in 2000 (S.M., 1994). He received
his B.S. in EECS from UC Berkeley in 1992. He is
an IEEE Fellow.

Richard M. Veras received his Ph.D in Electrical
and Computer Engineering from Carnegie Mellon
University in 2017. He is Computer Systems Re-
search Scientist at Louisiana State University.

José M. F. Moura is the Philip L. and Marsha Dowd
University Professor at Carnegie Mellon Univer-
sity, with the Electrical and Computer Engineering.
Moura’s research interests are in statistical signal
and image processing. He received his D.Sc. in
Electrical Engineering and Computer Science from
MIT where he also received his MSc. in Electrical
Engineering and the Electrical Engineering degree.
His research interests are in signal processing and
data science. He is the 2018 President Elect of IEEE,
a Fellow from IEEE and AAAS, corresponding
member of the Academia das Ciéncias of Portugal, and member of the
US National Academy of Engineering. More information can be found at
http://www.ece.cmu.edu/ moura/.

Daniele G. Spampinato received his Ph.D in Com-
puter Science from the Eidgendssische Technische
Hochschule (ETH) Ziirich in 2017. He is postdoc-
toral researcher with the Department of Electrical
and Computer Engineering at Carnegie Mellon Uni-
versity.

Jeremy R. Johnson is a Professor of Computer
Science and Electrical and Computer Engineering
at Drexel University. He received a B.A. in Mathe-
matics from the University of Wisconsin-Madison in
1985, a M.S. in Computer Science from the Univer-
sity of Delaware in 1988, and a Ph.D. in Computer
Science from The Ohio State University in 1991.
His research focuses on computer algebra, algebraic
algorithms, program synthesis and verification, and
high-performance computing and automated perfor-
mance tuning. More information can be found at
https://www.cs.drexel.edu/” jjohnson/.

