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Abstract
The computation of convolution layers in deep
neural networks typically rely on high perfor-
mance routines that trade space for time by using
additional memory (either for packing purposes or
required as part of the algorithm) to improve per-
formance. The problems with such an approach
are two-fold. First, these routines incur additional
memory overhead which reduces the overall size
of the network that can fit on embedded devices
with limited memory capacity. Second, these high
performance routines were not optimized for per-
forming convolution, which means that the per-
formance obtained is usually less than conven-
tionally expected. In this paper, we demonstrate
that direct convolution, when implemented cor-
rectly, eliminates all memory overhead, and yields
performance that is between 10% to 400% times
better than existing high performance implemen-
tations of convolution layers on conventional and
embedded CPU architectures. We also show that
a high performance direct convolution exhibits
better scaling performance, i.e. suffers less per-
formance drop, when increasing the number of
threads.

1. Introduction
Conventional wisdom suggests that computing convolution
layers found in deep neural nets via direct convolution is
not efficient. As such, many existing methods for com-
puting convolution layers (Jia et al., 2014; Cho & Brand,
2017) in deep neural networks are based on highly opti-
mized routines (e.g. matrix-matrix multiplication) found
in computational libraries such as the Basic Linear Alge-
bra Subprograms (BLAS) (Dongarra et al., 1990). In order
to utilize the matrix-matrix multiplication routine, these
frameworks reshape and selectively duplicate parts of the
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Figure 1. High performance direct convolution implementation
achieves higher performance than a high performance matrix multi-
plication routine, whereas matrix-multiplication based convolution
implementations suffers from packing overheads and is limited by
the performance of the matrix multiplication routine

original input data (collectively known as packing); thereby
incurring additional memory space for performance.

There are two problems with this approach: First, the ad-
ditional work of reshaping and duplicating elements of the
input data is a bandwidth-bounded operation that incurs
an additional, and non-trivial time penalty on the overall
system performance. Second, and more importantly, matri-
ces arising from convolution layers often have dimensions
that are dissimilar from matrices arising from traditional
high performance computing (HPC) application. As such,
the matrix-matrix multiplication routine typically does not
achieve as good a performance on convolution matrices as
compared to HPC matrices.

To illustrate these drawbacks of existing methods, consider
the 4-thread performance attained on various convolution
layers in AlexNet using an AMD Piledriver architecture
shown in Figure 1. In this plot, we present performance
of 1) a traditional matrix-multiply based convolution imple-
mentation linked to OpenBLAS1 (OpenBLAS) (blue) and
2) our proposed high performance direct convolution imple-
mentation (yellow). Performance of both implementations
are normalized to the performance of only the matrix-matrix
multiplication routine (dashed line). This dashed line is

1OpenBLAS is an open-source implementation of the Goto-
BLAS algorithm, the de-facto algorithm for matrix multiplication
on CPUs (Goto & van de Geijn, 2008).
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the performance attained by matrix-matrix multiplication if
packing is free. Notice that the performance of OpenBLAS
+ Packing achieves less than 80% of the performance of
matrix multiplication itself. This implies that the packing
routine degrades the overall performance by more than 20%.
In contrast, our custom direct convolution implementation
yields performance that exceeds the expert-implemented
matrix-matrix multiplication routine, even if packing was
free. In addition, we attained the performance without any
additional memory overhead.

It is timely to revisit how convolution layers are computed
as machine learning tasks based on deep neural networks are
increasingly being placed on edge devices (Schuster, 2010;
Lee & Verma, 2013). These devices are often limited in
terms of compute capability and memory capacity (Gokhale
et al., 2014; Dundar et al.). This means that existing meth-
ods that trade memory capacity for performance are no
longer viable solutions for these devices. Improving per-
formance and reducing memory overheads also bring about
better energy efficiency (Zhang et al., 2014). While many
work have focused on reducing the memory footprint of the
convolution layer through the approximation (Kim et al.,
2015), quantilization(Gong et al., 2014), or sparsification
of the weights (Han et al., 2016), few work tackle the addi-
tional memory requirements required in order to use high
performance routines.

Contributions. Herein lies the contributions of this paper:

• High performance direct convolution. We show that a
high performance implementation of direct convolution
can out-perform a expert-implemented matrix-matrix
multiplication based convolution in terms of amount of
actual performance, parallelism, and reduced memory
overhead. This demonstrates that that direct convolu-
tion is a viable means of computing convolution layers.

• Data layouts for input/output feature maps and kernel
weights. We proposed new data layouts for storing the
input, output and kernel weights required for comput-
ing a convolution layer using our direct convolution
algorithm. The space required for these new data lay-
outs is identical to the existing data storage scheme for
storing the input, output and kernel weights prior to
any packing or duplication of elements.

2. Inefficiency of Non-direct Convolutions
In this section, we highlight the inefficiency of comput-
ing convolution with existing methods used in many deep
learning frameworks.

2.1. Fast Fourier Transform-based Implementations

Fast Fourier Transform (FFT)-based implementations (Vasi-
lache et al., 2014; Mathieu et al., 2013) of convolution were

proposed as a means of reducing the number of floating
point operations that are performed when computing con-
volution in the frequency domain. However, in order for
the computation to proceed, the kernel weights have to be
padded to the size of the input image, incurring significantly
more memory than necessary, specially when the kernels
themselves are small (e.g. 3× 3).

Alternative approaches have been proposed to subdivide the
image into smaller blocks or tiles (Dukhan). However, such
approaches also require additional padding of the kernel
weights to a convenient size (usually a power of two) in or-
der to attain performance. Even padding the kernel weights
to small multiples of the architecture register size (e.g. 8
or 16) will result in factors of 7 to 28 increase in memory
requirement. This additional padding and transforming the
kernel to the frequency domain can be minimized by per-
forming the FFT on-the-fly as part of the computation of
the convolution layer. This, however, incurs significant per-
formance overhead, especially on embedded devices, as we
will show in the performance section (Section 5).

2.2. Matrix Multiplication-based Implementations

Another common approach is to cast the inputs (both the im-
age and kernel weights) into matrices and leverage the high
performance matrix-matrix multiplication routine found in
the Level 3 Basic Linear Algebra Subprogram (BLAS) (Don-
garra et al., 1990) for computation. There are two major
inefficiencies with this approach:

• Additional memory requirements. In order to cast the
image into a matrix, a lowering operation is performed
to cast the three dimensional image into a two dimen-
sional matrix. Typically, this is performed via an op-
eration conventionally called im2col that copies the
Wi×Hi×Ci image into a (Hf×Wf×Ci)×(Ho×Wo)
matrix which is then used as an input to the matrix-
matrix multiplication call. During this lowering pro-
cess, appropriate elements are also duplicated. The
additional memory required grows quadratically with
the problem size (Cho & Brand, 2017).

Cho and Brand (Cho & Brand, 2017) proposed an al-
ternative lowering mechanism that is more memory ef-
ficient by reducing the amount of duplication required
during the packing process. In their lowering routine,
the memory footprint is reduced by an average factor of
3.2 times over im2col. This is achieved by eliminat-
ing the amount of duplication required at the expense of
additional matrix-matrix multiplication calls. Nonethe-
less, this is still an additional memory requirement,
and their computation still relies on a matrix-matrix
multiplication that is often sub-optimal for matrices
arising from convolution.

• Sub-optimal matrix matrix multiplication. In most
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Algorithm 1 Naive Convolution Algorithm
Input: Input I, Kernel Weights F , stride s;
Output: Output O
for i = 1 to Ci do

for j = 1 to Co do
for k = 1 to Wo do

for ` = 1 to Ho do
for m = 1 to Wf do

for n = 1 to Hf do
Oj,k,`+= Ii,k×s+m,`×s+n ×Fi,j,m,n

BLAS libraries (e.g. GotoBLAS (Goto & van de Geijn,
2008), OpenBLAS (OpenBLAS), BLIS (Van Zee &
van de Geijn, 2015)), the matrix-matrix multiplication
routine achieves the best performance when the inner
dimensions, i.e. the dimension that is common be-
tween the two input matrices, of the input matrices
are small compared to the overall dimensions of the
output matrix. This particular set of matrix shapes is
commonly found in scientific and engineering codes,
for which these libraries are optimized. However, this
particular set of shapes exercise only one out of six pos-
sible algorithms for matrix-matrix multiplication (Goto
& van de Geijn, 2008).

Recall that the im2col reshapes the input into a
(Hf ×Wf ×Ci)×(Ho×Wo) matrix. This means that
the inner dimensions of the input matrices are often
the larger of two dimensions (See Figure 2). As such,
the performance of matrix matrix multiplication on
this particular set of input shapes is often significantly
below the best achievable performance. It has been
shown that alternative algorithms for computing matrix
multiplications should be pursued for shapes similar
to that arising from convolution layers (Gunnels et al.,
2001).

Another reason that matrix-matrix multiplication is
inefficient for convolution layers is that parallelism in
existing BLAS libraries are obtained by partitioning
the rows and columns of the input matrices (Smith
et al., 2014). This partitioning of the matrices skews
the matrix shapes even farther away from the shapes
expected by the matrix-matrix multiplication routine.
As such, the efficiency of the routine suffers as the
number of threads increases.

3. High Performance Direct Convolution
A naive implementation of direct convolution (See Algo-
rithm 1) is essentially six perfectly-nested loops around
a multiply-and-accumulate computational statement that
computes a single output element. Any permutation of the
ordering of the loops will yield the correct result. However,
in order to obtain a high performance implementation of

direct convolution, it is essential that these loops and their
order are appropriately mapped to the given architecture.

3.1. Strategy for mapping loops to architecture

Our strategy for mapping the loops to a model architec-
ture is similar to the analytical model for high performance
matrix-matrix multiplication (Low et al., 2016). (1) We first
introduce the model architecture used by high performance
matrix-matrix multiplication. (2) Next, we identify loops
that utilize the available computational units efficiently. (3)
Finally, we identify the order of the outer loops in order to
improve data reuse, which in turn will reduce the amount
of performance-degrading stalls introduced into the compu-
tation. In this discussion, we use the index variables show
in Algorithm 1 (i, j, k, `,m, n) to differentiate between the
loops.

3.1.1. MODEL ARCHITECTURE

We use the model architecture used the analytical model for
high performance matrix-multiplication (Low et al., 2016).
The model architecture is assumed to have the following
features:

• Vector registers. We assume that our model archi-
tecture uses single instruction multiple data (SIMD)
instruction sets. This means that each operation simul-
taneously performs its operation on Nvec scalar output
elements. We also make the assumption that Nvec is
a power of two. When Nvec is one, this implies that
only scalar computations are available. In addition, a
total of Nreg logical registers are addressable.

• FMA instructions. We assume the presence of Nfma
units that can compute fused multiply-add instructions
(FMA). Each FMA instruction computes a multiplica-
tion and an addition. Each of these Nfma units can
compute one FMA instruction every cycle (i.e., the
units can be fully pipelined), but each FMA instruction
has a latency of Lfma cycles. This means that Lfma
cycles must pass since the issuance of the FMA instruc-
tion before a subsequent dependent FMA instruction
can be issued.

• Load/Store architecture. We assume that the archi-
tecture is a load/store architecture where data has to
be loaded into registers before operations can be per-
formed on the loaded data. On architectures with in-
structions that compute directly from memory, we as-
sume that those instructions are not used.

3.1.2. LOOPS TO SATURATE COMPUTATIONS

The maximum performance on our model architecture is
attained when all Nfma units are computing one FMA per
cycle. However, because each FMA instruction has a latency
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Figure 2. The 5× 5 input image with 3 different channels (denoted with different colors) is convolved with two separate kernels to obtain
a 3× 3 output with two output channels. Packing is performed to turn three dimensional input images (left) into a two dimensional matrix
(right) in order to utilize a high performance matrix multiplication routine. As Co and/or (Ho ×Wo) are often less than Hf ×Wf × Ci,
performance of standard matrix-matrix multiplication in many BLAS libraries are often sub-optimal.

of Lfma cycles, this means that there must at least be Lfma
independent FMA instructions issued to each computational
unit. As each FMA instruction can compute Nvec output
elements, this means that

E ≥ NvecNfmaLfma, (1)

where E is the minimum number of independent output
elements that has to be computed in each cycle in order to
reach the maximum attainable performance.

Having determine that at least E output elements must be
computed in each cycle, the next step is to determine the
arrangement of these output elements within the overall
output of the convolution layer. Notice that the output has
three dimensions (Ho ×Wo × Co) where Ho and Wo are
primarily a function of the input sizes, while Co is a design
parameter of the convolution layer. Since E must be a multi-
ple of Nvec, i.e. a power-of-two, and Co can be chosen (and
is the case in practice) to be a power-of-two, the j loop is
chosen as the inner-most loop.

As the minimum number E is highly dependent on the num-
ber and capability of the FMA computation units, we want to
ensure that there are sufficient output elements to completely
saturate computation. As such, the k loop that iterates over
the elements in the same row of the output image is chosen
to be the loop around the j loop 2.

3.1.3. LOOPS TO OPTIMIZE DATA REUSE

The subsequent loops are ordered to bring data to the com-
putational units as efficiently as possible.

Recall that the inner two loops (j and k) iterate over mul-
tiple output elements to ensure that sufficient independent
FMA operations can be performed to avoid stalls in the
computation units. As our model architecture is a load/store
architecture, this means that these output elements are al-
ready in registers. Therefore, we want to bring in data that

2It should be noted that the choice of Wo over Ho is arbitrary
as the analysis is identical.

Algorithm 2 Reorder Convolution Algorithm
Input: Input I, Kernel Weights F , stride s;
Output: Output O
for ` = 1 to Ho do

for n = 1 to Hf do
for m = 1 to Wf do

for i = 1 to Ci do
for k = 1 to Wo do

for j = 1 to Co do
Oj,k,`+= Ii,k×s+m,`×s+n ×Fi,j,m,n

allows us to accumulate into these output elements.

Recall that to compute a single output element, all Hf ×
Wf × Ci weights are multiplied with the appropriate ele-
ment from the input image and accumulated into the output
element. This naturally means that the next three loops in
sequence from the inner-most to outer-most are the i,m, n
loops. This order of the loops is determined based on the
observation that the input of most convolution layers is the
output of another convolution layer. This means that it
would be advisable if data from both the input and output
are accessed in the same order. As such, we want to access
the input elements in the channels (i) before rows (n), which
gives us the i, n,m ordering of the loops.

Having decided on five of the original six loops, this means
that outermost loop has to be the l loop. This loop traverses
over the remaining through different rows of the output. The
original loop order as shown in Algorithm 1 (i, j, k, l,m, n)
is transformed to the (l, n,m, i, k, j) loop ordering as shown
in Algorithm 2.

3.1.4. BLOCKING FOR THE MEMORY HIERARCHY

Register Blocking.The astute reader will recognize that
we have conveniently ignored the fact that E , the number
of minimum output elements required to sustain peak per-
formance,is upper bounded by the number of registers as



High Performance Zero-Memory Overhead Direct Convolutions

described by the following inequality:

E ≤ NregNvec. (2)

This upper bound imposed by the number of available reg-
isters means that at most NregNvec elements can be kept
in the registers. This means that instead of iterating over all
Co ×Wo elements, loop blocking/tiling (Wolfe, 1989) with
block sizes of Co,b

3 and Wo,b has to be applied to the two
inner-most loops to avoid register-spilling that will degrade
performance.

Applying loop blocking to the original j and k loops decom-
poses a row from each of the output channel into smaller
output images, each of which having a row width and output
channel of Wo,b, and Co,b respectively. Since loop blocking
decomposes the overall convolution into smaller convolu-
tions, the loop ordering previously described remains appli-
cable. However, we now need to determine how to traverse
over the smaller convolutions.

The loops j′ and k′ iterate over the blocks in the channel
and row dimensions of the output, respectively. In addition,
loops jj and kk iterate with the respective blocks of chan-
nels and rows. We make the observation accessing input
elements in the same row will require us to also access ker-
nel weights in the same row. This suggest that the ordering
of the loop should be similar to the loops traversing across
the kernel weights. As such, the k′ loop is nested between
` and n loops. The j′ loop is set to be the outermost loop
since it is a parallel loop that facilitates parallelization.

Cache Blocking. On architecture with more levels in the
memory hierarchy, i.e. architectures with caches, we can
further partition the input dataset into smaller partitions such
that they fit into the appropriate levels of the cache. Recall
that the loops around jj and kk accumulates Hf ×Wf ×Ci

intermediate results into the output stored in the register.
Since Hf and Wf , i.e. the size of the kernel weights, are
typically smaller than Ci, we choose to partition the i loop
which iterates over Ci input channels for the next level in
the memory hierarchy.

The final algorithm for high performance direct convolution
is shown in Algorithm 3.

3.2. Parallelism

In order to identify possible parallel algorithms, we first
make the observation that all output elements can be com-
puted in parallel. Since the output is a three dimensional
object (Ho ×Wo × Co), this means that parallelism can be
extracted in at least three different dimensions.

Our direct convolution implementation extracts parallelism
in the output channel (Co) dimension. Each thread is as-

3Co,b is chosen to be a multiple of the vector length Nvec so
that SIMD instructions can be better used for computation.

Algorithm 3 Parallelized Direct Convolution Algorithm
Input: Input I, Kernel Weights F , stride s;
Output: Output O
for j′ = 1 to Co/Co,b in Parallel do

for i′ = 1 to Ci/Ci,b do
for ` = 1 to Ho do

for k′ = 1 to Wo/Wo,b do
for n = 1 to Hf do

for m = 1 to Wf do
for ii = 1 to Ci,b do

for kk = 1 to Wo,b do
for jj = 1 to Co,b do
Oj′Co,b+jj,k′Wo,b+kk,` +=
Ii′Ci,b+ii,sk′Wo,b+kk+m,`s+n ×
Fi′Ci,b+ii,j′×Co,b+jj,m,n

signed a block of output elements to compute, where each
block of output elements is of size Ho×Wo×Co/p, where
p is the number of threads used.

4. Convolution-Friendly Data Layout
We proposed new data layouts for the input and kernel data
so that data is accessed in unit stride as much as possible.
This improves data access and avoids costly stalls when
accessing data from lower levels of the memory hierarchy.
A key criteria in revising the layout is that the output and
the input image should have the same data layout. This is
because the input of most convolution layers is the output of
another convolution layer. Keeping them in the same data
layout will avoid costly data reshape between convolution
layers. However, to ensure compatibility with original input
images, we do not impose the proposed layout on the inputs
to the first convolution layer.

4.1. Input/Output Layout

We want to access the output data in unit stride. Therefore,
we determine the output data layout by considering how
the elements are accessed using the loop ordering shown
in Algorithm 3. Data accessed in the inner loops should be
arranged closer together in memory than data accessed in
the outer loops.

Five loops (j, k, `, kk, jj) iterate over the output data, which
suggests a five-dimensional data layout. However, this is
sub-optimal if we were to use it for the input data. This is
because Wf elements in an input row is required to compute
one output element. With the five-dimensional layout, a row
of the input is blocked into blocks of Wo,b elements. This
means that output elements that require input elements from
two separate Wo,b blocks will incur a large penalty as these
input elements are separated over a large distance in memory.
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As such we do not layout the data according to the kk loop.

The proposed input/output layout is shown in Figure 3 (left).
The output data is organized into sequential blocks of Ho ×
Wo × Co,b, where in each block, elements are first laid out
in the channel dimension, before being organized into a
Ho ×Wo row-major-order matrix of pencils of length Co,b.

4.2. Kernel Layout

Similar to the input/output layout, we use the loop ordering
to determine how to order the kernel weights into sequential
memory. Notice that the `, k′, kk loops in Algorithm 3
iterates over the height and width of the output in a single
output channel. As all output elements in the same output
channel share the same kernel weights, these loops provide
no information as to how the kernel weights should be stored.
As such, we only consider the remaining six loops.

The kernel layout proposed by the remaining six loops is
shown in Figure 3 (right). The fastest dimension in the
kernel layout is the blocked output channel (Co,b) dimen-
sion, and is dictated by the inner-most loop. The remaining
dimensions from fastest to slowest are the blocked input
channel (Ci,b), followed by the columns (Wf ) and rows
(Hf ) of the kernel, the input channels (Ci/Ci,b) and finally
the output channels (Co/Co,b).

4.3. Backward compatibility

Given the successful deployment of convolution neural nets
(CNN)in the field, the proposed change in data layout will
mean that trained networks are unable to directly benefit
from our proposed direct convolution implementation. How-
ever, in order for a trained network to use our proposed
algorith, there is only a one-time cost of rearranging the
kernel weights into the proposed data layout. Other network
layers such as skip layers (He et al., 2015), and activation
layers are point-wise operations that should not require any
significant change in the implementation. Nonetheless, re-
ordering the loops used to compute these layers will likely
yield better performance.

5. Results
In this section, we present performance results of our di-
rect CNN implementation against existing convolution ap-
proaches on a variety of architecture. A mix of traditional
CPU architectures (Intel and AMD) and embedded proces-
sor (ARM) found on embedded devices are chosen.

5.1. Experimental Setup

Platform We run our experiments on Intel Core i7-4770K,
AMD FX(tm)-8350, ARM Cortex-A57 architectures. The
architecture details of those platforms are shown in Table .

Table 1. Details of specific architectures used
Intel AMD ARM

i7-4770K FX(tm)-8350 Cortex-A57

Architecture Haswell Piledriver ARMv8
Frequency 3.5GHz 4GHz 1.1GHz
Cores 4 4 2
Nvec 8 8 4

Software. We implement our direct convolution using
techniques from the HPC community (Veras et al., 2016).
We compare performance our direct convolution imple-
mentation against matrix-multiplication based convolution
linked to high performance BLAS libraries. For matrix-
multiplication based convolution, the input data is first
packed into the appropriate matrix using Caffe’s im2col
routine before a high performance single-precision matrix-
multiplication (SGEMM) routine is called. The SGEMM rou-
tine used is dependent on the architecture. On Intel architec-
ture, we linked to Intel’s Math Kernel Library (MKL) (Intel,
2015), while OpenBLAS (OpenBLAS) is used on the other
two architectures. We also provide comparison against
the FFT-based convolution implementation provided by
NNPACK (Dukhan), a software library that underlies the
FFT-based convolutions in Caffe 2 (caffe2). As NNPACK
provides multiple FFT-based (inclusive of Winograd) imple-
mentations, we only report performance attained by the best
(fastest) implementation. We use the benchmark program
supplied by NNPACK to perform our tests.

Benchmarks. All implementations were ran against all con-
volution layers found in AlexNet (Krizhevsky et al., 2012),
GoogLeNet (Szegedy et al., 2015) and VGG (Simonyan &
Zisserman, 2014). The different convolution layers in these
three CNNs span a wide range of sizes of input, output and
kernel weights. They are also commonly used as bench-
marks for demonstrating the performance of convolution
implementations.

5.2. Performance

The relative performance of the different implementations
normalized to the SGEMM+ packing method are shown in
Figure 4. Our direct convolution implementations out-
performs all SGEMM-based convolutions on all architectures
by at least 10% and up to 400%. Our direct convolution
out-performs SGEMM even when the BLAS library (MKL)
optimizes for the appropriate matrix shapes arising from
convolution. Against a BLAS library (OpenBLAS) that
only optimizes for HPC matrices, we see a minimum of 1.5
times performance gain on 4 threads.

In comparison with the FFT-based implementations pro-
vided by NNPack, the direct convolution implementation
significantly out-performs FFT-based implementations for
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Figure 3. Convolution-friendly layout for input/output (left) and kernel weights (right). The output data is organized into sequential blocks
of Ho ×Wo × Co,b, where in each block, the fastest dimension is in the channel dimension, followed by the column and row dimension
of the output. The kernel weights are organized into blocks of Ho ×Wo × Co,b × Ci,b. The fastest dimension is the blocked output
channel, followed by the blocked input channels, kernel width and height, input channels and then the output channels.

all layers on the ARM. As FFTs are known to be memory-
bandwidth bound, we suspect that the FFT may be the bot-
tleneck on a smaller architecture such as the ARM where
available bandwidth may be limited. On the Intel archi-
tecture, the results are similar with direct convolution out-
performing FFT-based implementations. However, in this
case the FFT-based implementations are able to out-peform
the SGEMM-based approach only when the dataset is “suf-
ficiently large” to amortize the cost of performing the FFT
itself. The AMD architecture is not supported by NNPACK.

5.3. Parallel Performance

In Figure 5, we compare the scalability of our convolu-
tion performance by parallelizing the implementation with
increasing number of threads. On all architecture, we re-
port performance per core for multi-threaded implementa-
tions normalized to the performance attained on one thread.
Notice that the performance per core for existing matrix-
multiplication based convolutions decrease significantly as
we increase the number of threads. This is an indication that
as we increase the number of threads, the processors are
utilized less efficiently by the existing matrix-multiplication
based implementations. Our direct CNN implementation
demonstrates minimal drop in performance per core as we
increase the number of threads. It is only when the num-
ber of threads is twice as much as the number of physical
cores does the performance per core of our implementation
drops significantly. This is expected and important as it
indicates that our implementation utilizes the compute units
effectively and increasing the number of threads beyond the
number of physical compute units creates excessive con-
tention for the compute resources, thereby resulting in a
sharp drop in performance per core.

6. Conclusions
In this paper, we demonstrate that direct convolution, a
computational technique largely ignored for computing con-
volution layers, is competitive with existing state of the

art convolution layer computation. We show that a high
performance direct convolution implementation not only
eliminates all additional memory overhead, but also attains
higher performance than the expert-implemented matrix-
matrix-multiplication based convolution. We also show that
our implementation scales to larger number of processors
without degradation in performance as our implementation
exploits the dimension of the kernel that has the highest
amount of parallelism. In contrast, current high perfor-
mance matrix-multiply based implementations do not scale
as well to a larger number of processors.

Our direct convolution implementation currently attains
87.5%, 58.2% and 88.9% of the theoretical peak of the Intel,
AMD, and ARM architecture, where as the SGEMM on HPC
matrices attains peaks of 89% 54% and 92% the same archi-
tecture. While we have shown that our direct convolution
implementation is competitive (within 3% of peak SGEMM
performance), we believe that the performance gap between
our direct convolution, and SGEMM on HPC matrices can
be closed by taking an auto-tuning (Bilmes et al., 1997;
Whaley & Dongarra, 1998) or analytical approach (Yotov
et al., 2005; Low et al., 2016) to identifying the blocking
parameters of the different loops. These approaches will
also allow the exploration of different combinations of par-
allelism to determine suitable parallelism strategies. This is
something we intend to pursue in the near future.

Another possible direction arising from this work is to use
similar design techniques to optimize the backward process
to update both in image and kernel. Given the similarity
of the forward and backward process, we believe that only
minor changes to the loop ordering are required.

Finally, we believe that our direct convolution algorithm can
be ported to the GPU. Our proposed data layouts are simi-
lar to the layout required for the StridedBatchedGemm
operation (Shi et al., 2016). As this operation and data lay-
out is currently supported on Nvidia GPUs using cuBLAS
8.0 (Nvidia, 2017), this lends support to our belief that our
algorithm can be easily ported to the GPU.
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Figure 4. Performance of direct convolution against existing high performance FFT-based and SGEMM-based convolution implementations.
Performances of all implementations are normalized to the performance of SGEMM +im2col routine. Direct convolution is highly
competitive against all other implementations achieving between 10% and 400% improvement in performance even against a BLAS
library (Intel MKL) that optimizes for matrix shapes arising from convolution layers.
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Figure 5. Scaling behavior with increasing number of threads. Our direct convolution implementation retains high GFLOPs per core
performance as we increase the number of threads from 1 to the number of available cores. This is indicative of an efficient parallelized
algorithm. When the number of threads exceeds the number of cores, excessive contention results in a significant drop in performance per
core. In contrast, SGEMM has poor scalability even when the number of threads is low (e.g. 2).
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