
EVPFFTX: A First Look at FFTX Applications in
Material Science

Het Mankad∗, Andrea Rovinelli†, Miroslav Zecevic†, Peter McCorquodale‡, Franz Franchetti∗, Naifeng Zhang∗,
Sanil Rao∗, R. A. Lebensohn†, Laurent Capolungo†

∗Electrical and Computer Engineering Department Carnegie Mellon University, Pittsburgh, PA, USA
†Los Alamos National Laboratory, Los Alamos, NM, USA

‡Lawrence Berekely National Laboratory, Berkeley, CA, USA
∗{hmankad, franzf, naifengz, sanilr}@andrew.cmu.edu, †{arovinelli, miroslav, lebenso,laurent}@lanl.gov,

‡{PWMcCorquodale}@lbl.gov

Abstract—This work presents a first look of EVPFFTX. It is
an FFTX based library for the elasto-viscoplastic FFT (EVPFFT)
algorithm used in material science. FFTX is a high performance
library with a SPIRAL backend, build for running the fast
Fourier transform (FFT) based applications on the latest exascale
machines. SPIRAL is a code generation system that was devel-
oped for generating highly optimized code for different types of
linear transforms.The use of EVPFFT is to study polycrystalline
material which forms an integral part of the molten salt reactors.
The aim of this work is to provide a brief overview of the
procedure required to translate the EVPFFT algorithm into the
SPIRAL framework.

Index Terms—FFTX, molten salt reactor, code generation,
viscoplastic polycrystals, SPIRAL

I. INTRODUCTION

Molten salt reactors are a type of nuclear reactors that use
molten fluoride salts as the fuel and/or primary coolant. The
main advantage is that they are cheaper, safer and can generate
a huge amount of energy while producing less waste. However,
one of the challenges that is faced is that of the corrosivity of
the molten salt. This occurs due to the long time effect of salt
on the metals used to build the reactor. Hence, understanding
the properties of different materials at is an important factor
in producing safe energy but it is very difficult to do so in
a laboratory environment. This provides the opportunity to
use advanced scientific algorithms to perform simulations that
help in the understanding of these microstructures. One of
the algorithms used for this purpose is the elasto-viscoplastic
FFT (EVPFFT) algorithm [1]. It is FORTRAN based code
that studies polycrystals using FFTs. Some past work in this
area can be seen in [2]. In order to boost the performance
of this code on various computing architectures, we propose
EVPFFTX, a FFTX based [3] EVPFFT algorithm which also
has optimized code generated using SPIRAL [4]. [5] is another
example where efforts were made to improve the performance
of the existing stress-strain code on GPUs.

II. BACKGROUND

SPIRAL and FFTX. SPIRAL is a code generation system
that was initially developed to produce high performing opti-
mized code for various linear transforms [4], [6]. It initially
used the Signal Processing Language (SPL) to express the

computation described in the given problem specification. It
is now generalized into the Operator Language (OL). It is a
mathematical declarative language which helps translates the
given semantics of the problem specification into something
that helps SPIRAL generate the optimized code for. This is
then broken down into Σ−OL which translates this into a
loop based rule system that final provides the user with the
optimized code. FFTX [3] is a high performance library for
FFTs which has SPIRAL and Just -In Time compilation as
its backend and was mainly developed to run FFT based
applications on exascale machines.

EVPFFT. Elasto-viscoplatic FFT algorithm [1] was devel-
oped to predict the micromechanical fields in materials that
contain polycrystals. It is a FORTRAN based code which
consists of many complex computations including FFTs. A
code snippet of the EVPFFT FORTRAN code is shown in
Fig. 1. We can observe that there are multiple calls to perform
either the DFT or inverse DFT of the given quantities inside
the OuterLoopStep subroutine.

III. EVPFFTX
In this section we will introduce EVPFFTX which is the

SPIRAL generated and FFTX based EVPFFT code. The idea
is to recognize the current EVPFFT algorithm as a problem
specification in SPIRAL and then understand the data flow
and use OL to translate this data flow into a language that
SPIRAL understands.

In this work we will mainly focus on the OL representation
of the code snipped shown in Fig. 1. OL representation is
based on concepts from linear algebra and some other basic
mathematical concepts. Some of the notation used to formulate
an OL expression are shown in table I. For example using the
notations shown in the table I, the multidimensional DFT and
inverse DFT are defined in SPIRAL with the help of Kronecker
product and 1D DFTs.

DFTk×m×n = DFTk ⊗DFTm ⊗DFTn, (1)
iDFTk×m×n = iDFTk ⊗ iDFTm ⊗ iDFTn . (2)

Now using a combination of these notations helps us to
formulate an OL expression for the EVPFFT algorithm shown
in Fig. 1. Here we focus on the OuterLoopStep subroutine

only. The OL formulation for that is provided in (3) - (7).
PRDFT and iPRDFT are part of the FFTX function calls to
compute the forward and the inverse DFT of the given input
data.

Operation matrix
A ◦B : Rq → Rm matrix product, AB

A⊕B : Rn+q → Rm+p
[
A

B

]

A⊗B : Rnq → Rmp

A00B · · · A0,n−1B

...
. . .

...
Am−1,0B · · · Am−1,n−1B

A+B : Rn → Rm matrix sum, A+B

A ·B : Rn → Rm pointwise matrix product,
(A ·B)i,j = Ai,jBi,j

TABLE I: If A ∈ Rm×n and B ∈ Rp×q , then A and B can
be interpreted as operators, respectively A : Rn → Rm and
B : Rq → Rp.

1 module evpfft_algorithm_mod
2 ...
3 subroutine outerLoopStep(dt, L0, L0_T4,L0_NEW,
4 vel_grad_correction)
5 ...
6 ! the fft related Variables
7 real(r64) :: K33(3,3), & ! frequency tensor
8 G33(3,3), G33_inv(3,3), &
9 Gamma3333(3,3,3,3), &

10 M0(6,6), M0_T4(3,3,3,3)
11 ...
12 complex(C_DOUBLE_COMPLEX) ::
13 lambda_fourier_space(3,3), &
14 vel_grad_fourier_space(3,3)
15 ...
16 ! perform forward DFT fo the stress field
17 call my_fft_data_container%executeForwardDFT()
18 ...
19 ! and finally the velocity gradient
20 ...
21 ! copy the velcoity gradient fluctuation
22 ! tensor into the FFT container
23 call my_fft_data_container%setPointFromComplexTensor
24 (ix,iy,iz, vel_grad_fourier_space)
25 ! perform backward DFT
26 call my_fft_data_container%executeBackwardDFT()
27 ! comnpute the updated velocity gradient
28 ...
29 vel_grad(:,:,ix,iy,iz) =
30 vel_grad(:,:,ix,iy,iz) + vel_grad_correction + &
31 my_fft_data_container%getPointDataReal(ix,iy,iz)
32 point_weight
33 ...
34 ! compute material constituive response
35 call elastic_response_augmented_lagrangian
36 (dims_rank, dt, L0, L0_NEW)
37 end subroutine
38 end module evpfft_algorithm_mod
39

Fig. 1: Sample code from EVPFFT. One can observe that at
various stages FFT or inverse FFT is being computed.

Γ̂i,j,k,ℓ
p,q,r ⊛ [̂.]

k,ℓ

p,q,r →
(
iPRDFTNz×Ny×Nx ⊗ I3×3

)
◦
(
Γi,j,k,ℓ
p,q,r : [.]k,ℓp,q,r

)
◦
(
PRDFTNz×Ny×Nx ⊗ I3×3

) (3)

Γi,j,k,ℓ
p,q,r : [.]k,ℓp,q,r → INz×Ny×Nx/2+1

⊗r,q,p

(
Γi,j,k,ℓ
p,q,r |p,q,r : [.]k,ℓp,q,r|p,q,r

) (4)

Γi,j,k,ℓ
p,q,r |p,q,r →

0 ∈ R3×3×3×3, if (p, q, r) = 0;

−M i,j,k,ℓ
0 , if p = Nx

2 or q =
Ny

2

or r = Nz
2 ;

Γi,j,k,ℓ(νup,q,r), else
(5)

Γi,j,k,ℓ(.) →
(
([.]⊤[.])⊗ I3×3

)
◦
(
[.]−1 ◦ (−Li,j,k,ℓ

0 : [.])[−](I3×3)
)
◦
(
[.]⊤[.]

)
(6)

νup,q,r =2π

p−Nxχp≥Nx/2

∆xNx
q−Nyχq≥Ny/2

∆yNy
r−Nzχr≥Nz/2

∆zNz

 (7)

IV. CONCLUSION

In this work we present a glimpse of our initial efforts
to generate an optimized code for the existing EVPFFT
algorithm. This is done by using the FFTX library and by
translating the existing code into an OL representation that
is used by SPIRAL to produce a high performing optimized
code for the study of polycrystals. It is an ongoing work and
the future work is to make an entire end-to-end representation
in SPIRAL for this problem along with testing on different
target platforms.

V. ACKNOWLEDGMENT

This project is supported by DOE ECP project 2.2.6.04 and
DOE SciDAC project DE-SC0023523.

REFERENCES

[1] R. A. Lebensohn, A. K. Kanjarla, and P. Eisenlohr, “An elasto-viscoplastic
formulation based on fast fourier transforms for the prediction of mi-
cromechanical fields in polycrystalline materials,” International Journal
of Plasticity, vol. 32-33, pp. 59–69, 2012.

[2] R. A. Lebensohn, “N-site modeling of a 3d viscoplastic polycrystal using
fast fourier transform,” Acta Materialia, vol. 49, no. 14, pp. 2723–2737,
2001.

[3] F. Franchetti, D. G. Spampinato, A. Kulkarni, D. Thom Popovici, T. M.
Low, M. Franusich, A. Canning, P. McCorquodale, B. V. Straalen, and
P. Colella, “Fftx and spectralpack: A first look,” in 2018 IEEE 25th
International Conference on High Performance Computing Workshops
(HiPCW), 2018, pp. 18–27.

[4] M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. Johnson, and
N. Rizzolo, “Spiral: Code generation for dsp transforms,” Proceedings of
the IEEE, vol. 93, no. 2, pp. 232–275, 2005.

[5] A. Kulkarni, J. Kovačević, and F. Franchetti, “Massive scaling of massif:
Algorithm development and analysis for simulation on gpus,” in Proceed-
ings of the Platform for Advanced Scientific Computing Conference, ser.
PASC ’20. New York, NY, USA: Association for Computing Machinery,
2020.

[6] F. Franchetti, Y. Voronenko, and M. Püschel, “Formal loop merging for
signal transforms,” SIGPLAN Not., vol. 40, no. 6, p. 315–326, jun 2005.

