
SPIRAL

Generating Number Theoretic Transforms for Multi-Word Integer Data Types
Naifeng Zhang, Franz Franchetti; Carnegie Mellon University

IEEE/ACM International Symposium on Code Generation and Optimization (CGO) 2023

SPIRAL-generated radix-2 2,048-point MP CUDA NTT code, with a batch size of 2.

Timings of a single SPIRAL-generated NTT on GPU and its comparison with other works.

• We benchmarked SPIRAL-generated batch NTTs’ performance on Bridges-2 GPU
nodes at Pittsburgh Supercomputing Center.

• The runtime of a single NTT is calculated as the overall kernel runtime of batch NTTs
divided by the batch size.

• Although operating on integers of higher bit-lengths, SPIRAL-generated MP CUDA NTT
achieves a 3,679x speedup against [2] and a 22x speedup against [11].

This material is based upon work funded and supported by Department of Defense under Contract No. HR0011-21-9-0003 with Carnegie Mellon University.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy,
or decision, unless designated by other documentation.

[2] Pedro Alves and Diego Aranha. 2016. Efficient GPGPU implementation of the leveled fully homomorphic encryption scheme YASHE. Ph. D Dissertation.
Master’s thesis, Institute of Computing, University of Campinas, Brazil
[11] Özgün Özerk, Can Elgezen, Ahmet Can Mert, Erdinç Öztürk, and Erkay Savaş. 2022. Efficient number theoretic transform implementation on GPU for
homomorphic encryption. The Journal of Supercomputing 78, 2 (2022), 2840–2872.

• The Barrett reduction algorithm is applied to
compute modulo faster using multiplication,
shifting, and subtraction rather than division.

• We employ the Karatsuba algorithm to reduce the
multiplication of two 𝑛-digit numbers to three
multiplications of 𝑛/2-digit numbers.

• Combining CUDA NTT with multi-word
integer arithmetic, the SPIRAL NTTX
package produces highly optimized
multi-word CUDA NTT code.

• NTTs’ correctness is verified against
OpenFHE data.

• Constrained by the shared memory size of GPUs, the largest NTT for 64-bit integers
that fits in one GPU thread block is of size 2,048 (i.e., 2,048-point 64-bit NTT).

• As the dataflow of NTT is sequential across stages, we allocate one thread block per
NTT and compute batch NTTs using multiple thread blocks.

• SPIRAL is a code generation system that takes in high-level
mathematical abstractions and synthesizes highly-optimized
implementations.

NTTX C/C++ API.

• Using native integer data types, we implement multi-word/precision
(MP) methods for three operations that NTT contains, namely (i) add,
(ii) multiply, and (iii) modulo.

Fully Homomorphic Encryption

• Fully Homomorphic Encryption (FHE) serves as a cryptographic
approach that allows cloud platforms to manipulate encrypted data.

• Yet, a significant amount of computing power and time is required by
FHE, where the bottleneck resides in polynomial multiplication.

• Number Theoretic Transform (NTT) is a popular 𝑂(𝑛 𝑙𝑜𝑔 𝑛) approach
compared to the naive 𝑂(𝑛!) implementation, where 𝑛 is the
maximum degree among the polynomials.

FHE Scheme. Credit: Duality Technologies.

• Leveraging SPIRAL's capability of autonomous code generation and
platform-based autotuning, we expand SPIRAL to the NTT domain.

• NTTX offers FFTW-style C/C++ API for FFTX-style code generation.

• As FHE requires large integers (e.g., 64-bit) for security, we focus on
generating NTTs for multi-word integer data types on GPU.

Number Theoretic Transform

Multi-Word Arithmetic

SPIRAL NTTX Package CUDA NTT

SPIRAL-Generated Multi-Word CUDA NTT

Results

SPIRAL as an AI system.

Platform-Aware Formal Program Synthesis by SPIRAL.

NTTs of size 𝑟! in SPIRAL’s Operator Language.

• Both the Korn-Lambiotte FFT algorithm and the Pease FFT algorithm
are included as breakdown rules in SPIRAL to support general radix
NTTs and simple parallelism.

NTTX powered by SPIRAL.

Barrett reduction algorithm.

Karatsuba algorithm.

