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Introduction

* Overall objective: Explore processing-in-memory (PIM)
potential to accelerate spectral library searches by
integrating hardware and algorithm co-design across the
mass spectrometry (MS) data analysis pipeline

* Application motivation: Modern workloads (e.g. mass
spectrometry) are increasingly data-intensive
 Hardware motivation: Computer architectures are
designed for infrequent memory access
* Data transfers between the memory and the processor
over a narrow memory channel incur high energy and
latency costs

We make the following contributions:

 Adaptation of an approximate sum of absolute differences
algorithm for PIM-based spectral matching

* A preliminary approach to integrate PIM into mass
spectrometry workflows

* Early performance assessments via PIM simulation

e Evaluation of algorithm robustness under noise and low
precision representations

DRAM + Processing-in-memory (PIM)

* Processing-in-memory (PIM), a.k.a. near-data-processing
(NDP) reduces data movement by adding compute
capability to memory

PIM types

1. Processing-using-memory (PUM):

 Use inherent circuit-level properties of memory cells to
perform logic within memory arrays

2. Processing-near-memory (PNM):

 3D-stacked memory with a logic layer

* Take advantage of the high bandwidth communication over
vertical interconnects between layers

DRAM for PIM
e DRAM-based PIM can benefit from simultaneous access to

multiple DRAM arrays for parallel data processing
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Mass Spectrometry (MS) and Spectral

Library Search

 Mass spectrometry (MS) analyzes the proteome of protein
samples
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» Spectral library search is used to interpret MS/MS data
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Pre-processing and Pre-filtering

Discretization

* Divide the m/z range of spectra into bins and sum intensity
values in the same bin

Approximation

* Fixed-point for floating-point values with reduced bit-
precision enables program execution on PIM hardware

Key insights:

e Pre-filter using PIM to decrease the search space of spectral
library search

* Co-design application with hardware

* Low-precision approach alignhs with MS error tolerance
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Pre-processed and pre-filtered spectral matching decreases search space.

Algorithm Robustness Evaluation

Algorithm Robustness to Simulated Spectral Noise
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TABLE I: Algorithm Robustness under Varying Degradation

Degradation AUC AUC AUC
(Rem/Jit/Noise)  (32-bit)  (16-bit)  (8-bit)

Experiment
Condition

0% / 0 / 0% 1.0000 1.0000 1.0000
10% / £1 / 10% 0.9892 0.9681  0.9732
25% [ 2 [ 25% 0.7819 0.7583  0.7606

No-Noise Control

Moderate Noise
High-Noise Test

* Experiments show algorithm is robust in handling noise,
variations, and degradations inherent to real-world
bioinformatics workflows

» 8-bit precision delivers accuracy comparable to that of
higher bit-precisions
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Spectral library search identifies experimental
spectrum by querying it against library spectra.

Typical raw MGF format:
(m/z, intensity)

Minimum Sum of Absolute Differences

 DSP-inspired algorithm: sum of absolute differences

e Calculate a similarity score between the experimental
spectrum S =(sy, S2, . . ., Sn) and each library spectrum L, =
(€p1, €p2y - - -, Lpn) forp=1,2, ..., m.

 Assuming m library spectra and n elements in each
spectrum, the basic algorithm seeks Lx such that:

k — arg mpin S:;L_l |Sj — gpj|

PIM Simulation

for (int idx=0; idx < subveclen; idx++) {
pimSub (objl, obj2, obj3);
pimAbs (obj3, o0bij3);
for (int i=idx; i+subvecLen-1 < veclLen; i+=subvecLen) {
pimRedSumRanged (obj3, i, it+subvecLen-1, &sumAbsDiff);

}
pimRotateElementsRight (obj2);
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 PIMeval is a performance and energy simulation framework
for various DRAM-based PIM architectures: subarray-level
bit-serial, subarray-level bit-parallel, bank-level

* We model subarray-level bit-serial PIM with single/dual
rank DIMM with 8 chips, 16 banks per chip, and 32
subarrays per bank of 8192 x 8192 cells

Key insights:

 PIM performance benefits scale with increasing problem
size; small datasets favor CPU due to lower overhead

Conclusion and Next Steps

* Proof of concept for hardware-algorithm co-designed
pipeline for DRAM-based PIM architecture acceleration of
spectral library search

* Next steps are to estimate analytical scaling results, observe
performance on larger workloads in simulation, and use
larger datasets.
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