
Towards an End-to-End Processing-in-DRAM
Acceleration of Spectral Library Search

Tianyun Zhang, Franz Franchetti
Electrical and Computer Engineering Department Carnegie Mellon University, Pittsburgh, PA, USA

{tianyun2, franzf}@andrew.cmu.edu

Abstract—This work explores accelerating spectral library
searches, a key mass spectrometry (MS) workload, using
processing-in-memory (PIM) architectures through an end-to-
end, co-designed approach. We apply signal processing tech-
niques for pre-filtering MS data and implement a sum of absolute
differences (SAD) algorithm optimized for PIM to compare
spectral similarity. Our methodology is evaluated using a DRAM-
based PIM simulator and compared against traditional CPU
implementations. While initial results with small datasets favor
CPUs, our analysis indicates potential benefits for PIM with
larger, more realistic proteomics datasets. This work represents
an initial step towards investigating PIM acceleration for MS
applications.

I. INTRODUCTION

Mass spectrometry (MS)-based proteomics generates vast
amounts of data, with modern instruments producing millions
of spectra per experiment. Traditional compute-centric archi-
tectures struggle with data movement between memory and
processors during spectral library searches, a challenge that
grows with increasing dataset sizes. This work explores accel-
erating spectral library searches using processing-in-memory
(PIM) architectures through an end-to-end, co-designed ap-
proach that aims to minimize data movement and leverage
parallel processing capabilities within memory.

We apply signal processing techniques for pre-filtering MS
data, including discretization of mass-to-charge ratios into bins
and intensity value optimization. Our implementation features
a sum of absolute differences (SAD) algorithm adapted to
PIM architectures to compare spectral similarity. The approach
incorporates fixed-point arithmetic and reduced precision rep-
resentations that align with PIM hardware constraints while
maintaining acceptable mass accuracy within typical MS error
tolerances. We evaluate our methodology using a DRAM-
based PIM simulator.

This work represents an initial step towards investigating
PIM acceleration for MS applications. Future research will
focus on scaling to larger datasets, optimizing task distribution
between CPU and PIM components, and further exploring
low-precision techniques while maintaining acceptable accu-
racy for proteomics analysis. These efforts aim to establish the
viability of PIM architectures for accelerating data-intensive
MS workflows and broader bioinformatics applications.

This work was supported in part by the JUMP 2.0 PRISM center, a
Semiconductor Research Corporation (SRC) program sponsored by DARPA.

II. BACKGROUND

Processor

Core + Cache

Memory Controller

DRAM + PIM

Bank Bank. . .
Bank Bank

. . .

Memory Channel

ComputeCore + Cache
Rank. . .

Fig. 1: Processor and DRAM+PIM architecture alleviates data
movement bottleneck by adding compute units to DRAM.

DRAM and Processing-in-memory (PIM). Modern data-
intensive applications across fields like bioinformatics, large-
scale analytics, and machine learning increasingly process
immense volumes of data. This trend has exposed limitations
in traditional processor-centric architectures, where data must
frequently move between physically separated processor and
memory components.

In most contemporary computing systems, the processor and
the memory are separated. In order to perform computations
on the data stored in memory, the data must be transferred
between the memory and the processor over a narrow memory
channel (e.g. 64 to 128 bits wide for double data rate (DDR)
DRAM) [1], [2]. Because data movement consumes orders
of magnitude more energy and latency compared to on-
chip computation, frequent transfers between memory and
processor severely bottleneck overall system performance for
workloads with large volumes of data [3].

Dynamic random-access memory (DRAM) is the most
widely used main memory technology in modern computing
systems because of its relatively low cost and high density.
A typical DRAM-based main memory system is organized
hierarchically. At the top level, a memory system connects to
the processor through one or more memory channels, each
controlled by a DRAM memory controller. Each channel has
a dedicated, independent data, address, and command bus.
A channel can host multiple Dual Inline Memory Modules
(DIMMs). Within each DIMM, multiple DRAM chips are
grouped to form logical units called ranks, which operate in
lockstep, responding collectively to commands issued by the
controller. Each device in a rank contributes a subset of bits.

Each individual DRAM chip within a rank contains multiple
independently accessible data arrays called banks (16 banks in
DDR4, 32 banks in DDR5). A memory bank itself refers to an
independent array of DRAM cells with its own dedicated row
decode logic and sense amplifiers. The presence of multiple

independent banks within a DRAM device allows concurrent
operations on multiple arrays, enabling bank-level parallelism.
Commands such as read, write, activate, and refresh can thus
be pipelined and interleaved across different banks.

Inside each bank, memory cells are arranged in arrays
comprising rows and columns. A row is a set of memory cells
activated simultaneously and sensed into an array of sense
amplifiers upon issuing an ACTIVATE command. Once acti-
vated, an entire row of DRAM cells is read into the associated
sense amplifiers. Subsequent read and write commands then
access portions of this activated row (page), avoiding repeated
activation overheads. In a rank of DRAM devices operating
in parallel, activating one row simultaneously activates corre-
sponding rows across all DRAM chips in that rank. Thus, from
the memory controller viewpoint, the total page size equals the
row width of an individual DRAM device multiplied by how
many devices exist within a rank.

Each DRAM array row further consists of multiple columns,
with each column representing the smallest addressable unit
of data within DRAM. During a memory access, data moves
from the activated row (now held in sense amplifiers) through
internal data paths onto the external bus. DDR DRAM trans-
fers data twice per clock cycle, effectively doubling bus
transfer frequency compared to single data rate SDRAM,
thus increasing achievable external bandwidth. However, the
narrow external data interface (e.g., typically 64 bits wide in
commodity DIMMs) fundamentally constrains the maximum
attainable bandwidth in conventional DDR-based memory
systems [2].

PIM Taxonomy. Processing-in-memory (PIM) architec-
tures (Fig. 1) leverage the high internal bandwidth and inher-
ent parallelism provided by memory architectures, including
DRAM and emerging memory technologies, to overcome
data movement bottlenecks. PIM approaches may be broadly
divided into two categories: processing-using-memory (PUM)
and processing-near-memory (PNM) [1], [3].

Processing-using-memory (PUM) architectures leverage in-
herent circuit-level properties of memory cells to perform
computation within memory arrays. Prior works have explored
PUM on SRAM, DRAM, NAND flash, and emerging NVMs
(e.g. RRAM, MRAM, FeRAM, PCRAM).

Processing-near-memory (PNM) architectures place com-
putation units close to memory arrays, leveraging emerging
integration technologies to enable vertically stacked DRAM
layers directly connected to a logic layer using vertical in-
terconnects called through-silicon vias (TSVs). Commercial
products exemplifying PNM include Hybrid Memory Cube
(HMC) and High-Bandwidth Memory (HBM), which provide
greater internal bandwidth than standard DDR modules [3].

In this work, we focus on DRAM-based PIM architec-
tures. Recent work has characterized three potential placement
locations for DRAM-based PIM: subarray-level bit-serial,
subarray-level bit-parallel, and bank-level.

Subarray-level bit-serial architectures place computation
units at the sense amplifier level. Consequently, each bit of a
row in a subarray can be processed simultaneously. Examples

Fig. 2: Subarray-level and bank-level processing elements
placements on DRAM-based PIM [1]

include DRISA [4], Micron’s digital In-Memory Intelligence
(IMI) [5], and DRAM-CAM [6]. These architectures often use
a vertical data layout to perform SIMD-like operations at each
bit position across a subarray.

Subarray-level bit-parallel architectures place processing
elements at the row buffer level, and are also an instance of
PNM. A representative example is Fulcrum [7], which shares
a 32-bit 167 MHz arithmetic logic unit (ALU) between two
consecutive subarrays.

Bank-level PIM architectures place processing elements at
the bank interface, and are an example of PNM. A notable
example is BLIMP [8], which embeds a 200 MHz RISC-V
processor at each memory bank, each capable of independently
executing instructions on data stored locally within that bank’s
arrays.

Mass Spectrometry (MS) and Spectral Library Search.
Mass spectrometry (MS) is a widely adopted method in
proteomics research to identify and quantify peptides and
proteins within complex biological samples [9]. Each MS
measurement generates a spectrum, characterized by a set
of peaks. Each peak is represented by a pair of values: the
mass-to-charge ratio (m/z) and its corresponding ion intensity.
The peaks represent fragment ions generated from peptides
during tandem MS (MS/MS) fragmentation. Additionally, each
MS/MS spectrum includes metadata, such as the precursor ion
m/z, indicative of the intact peptide ion prior to fragmentation.

Library spectraQuery spectrum

Fig. 3: Spectral library search identifies experimental spectrum
by querying it against library spectra.

Spectral library search (Fig. 3) identifies experimental spec-
tra by matching them to known reference spectra. The search
process involves calculating similarity scores between an ex-
perimental spectrum and each library spectrum. A common
limitation of traditional methods is their reliance on precursor
mass similarity constraints, limiting identification to unmodi-
fied peptides. Open Modification Searching (OMS) improves
identification by removing this constraint, thereby detecting
peptides with post-translational modifications (PTMs) [9].
However, OMS dramatically enlarges the search space and

increases computational demands. With modern MS experi-
ments generating massive data—millions of mass spectra—
which must then be matched against libraries of known spectra
to identify molecules, this comparison becomes expensive.

To address these performance challenges, HOMS-TC [9]
introduces Hyperdimensional Computing (HDC) for spectral
library search, encoding spectra into high-dimensional vectors
(hypervectors) and simplifying the spectral matching process
to cosine similarity search. The HDC algorithm is accelerated
on tensor core units of NVIDIA GPUs.

Because the spectral library search problem involves parallel
comparisons of query spectra with many library spectra, as
datasets continue to scale up, it becomes a suitable candi-
date workload for DRAM-based PIM architectures. However,
directly porting state-of-the-art OMS methods, like HOMS-
TC, to PIM is challenging: these algorithms perform irregular
memory access patterns and random database searches that
are poorly suited to PIM architectures, which typically require
regular, streaming data operations.

This work takes a fundamentally different approach, in-
spired by the unique strengths of bit-serial PIM architectures.
Rather than relying on irregular, random access patterns, we
restructure the comparison into regular, parallelizable, bit-level
operations.

III. METHODOLOGY AND IMPLEMENTATION

Library spectra

Query spectrum

Filtered library spectra

Fig. 4: Pre-filtered spectral matching decreases search space.

Pre-processing and Prefiltering. In the data pre-processing
and pre-filtering step (Fig. 4), we begin by discretizing the data
similarly to previous work [9], by dividing the m/z range of
spectra into bins and summing intensity values of m/z values
in the same bin. Specifically, we set the bin sizes as 0.05,
covering an m/z range from 101 to 1500. During this binning
process, low-intensity peaks, defined as having normalized
intensity below 0.01, are directly filtered out to reduce noise.
Up to 50 peaks per spectrum are retained (based on intensity),
establishing a final maximum row length of 50 intensity-bin
pairs per processed spectrum. The data can then be represented
by sequences of bin index and intensity pairs.

We extend this preprocessing further by exploring approx-
imation techniques inspired by signal processing. Given the
dataset resolution, bin size, and practical experimental toler-
ances, we can see that employing double-precision floating-
point arithmetic is excessively precise for such experimental
tasks.

Specifically, typical instrumentation used in our experiments
tolerates precursor mass errors around 2 ppm for exact search,
and up to 50 ppm for open modification search [10], [11]. At
typical protein-centric MS mass ranges, a ppm-level tolerance
means that a precision of less than 6 decimal digits of
accuracy is more than sufficient. Therefore, standard double-
precision floating-point representations, which provide around
15 decimal digit precision, considerably exceed our actual
experimental accuracy demands.

Therefore, we experiment with reducing the bit-precision
of floating point values and using fixed-point representation
for those values. Fixed-point representation simplifies the
hardware necessary to process the data and allows for the
application to be run on PIM hardware.

Minimum Sum of Absolute Differences (SAD). We use an
adapted minimum SAD algorithm optimized for execution on
PIM architectures. Variations of this algorithm are commonly
used in the signal processing domain to measure similarity
between images. We use SAD to calculate a similarity score
between the experimental spectrum S = (s1, s2, . . . , sn)
with each library spectrum Li = (ℓi1, ℓi2, . . . , ℓin) for i =
1, 2, . . . ,m. Assuming m library spectra and n elements in
each spectrum, the basic algorithm seeks Lk such that:

k = argmin
i

∑n
j=1 |sj − ℓij |

We implement minimum SAD using PIM API instruc-
tions from PIMeval, a performance and energy simulator
for diverse PIM architectures [1]. We model the algorithm
using a bit-serial PIM approach, because the vertical data
layout used by bit-serial architectures facilitates flexible bit-
precision operations. Each bit of a multi-bit number is stored
vertically along a column within a DRAM subarray, allowing
multiple operations to execute simultaneously across bit-slices.
To increase the algorithm’s noise tolerance, we also enable
SAD with shifted indices for inexact matching, implemented
using the rightward rotation (pimRotateElementsRight)
instruction:
for (int idx=0; idx < subvecLen; idx++) {
pimSub(obj1, obj2, obj3);
pimAbs(obj3, obj3);
for (int i=idx; i+subvecLen-1 < vecLen; i+=subvecLen) {
pimRedSumRanged(obj3, i, i+subvecLen-1, &sumAbsDiff);
...

}
pimRotateElementsRight(obj2);

}

IV. EVALUATION

Architectural Simulation. We modeled subarray-level bit-
serial PIM for the application on the simulator and conducted
initial experiments comparing our PIM-based approach with
a traditional CPU implementation for SAD, using our pre-
processed data. The parameters used for the PIM device were
a single rank DIMM with 8 chips, 16 banks per chip, and 32
subarrays per bank of 8192×8192 cells.

For the current small-scale problem of 11 MB, the CPU
implementation completed execution in 175 ms, while the PIM
implementation took 1368 ms for the core computation tasks.

Our experiments with a 2-rank DIMM configuration for the
same problem size revealed that, at this scale, the workload
underutilized the available parallelism of the additional hard-
ware resources. These preliminary results highlight an impor-
tant aspect of PIM architectures: their performance benefits
are expected to scale with problem size. While the current
small dataset favors the CPU, we anticipate that for larger,
more realistic proteomics problem sizes, PIM acceleration
will demonstrate advantages in scalability, memory bandwidth
utilization, and energy efficiency, being able to benefit from
parallel processing and decreases in data movement. Ongoing
work will quantify these projected improvements by simulat-
ing much larger datasets reflective of real-world proteomics
experiments.

Algorithm Robustness and Discussion of ROC Results.
To thoroughly evaluate the robustness of our minimum SAD-
based approach, we designed an experiment to evaluate ro-
bustness under degradation that simulates spectral variations.
We conducted experiments where we systematically varied
parameters, introducing random peak removal, intensity noise,
and mass-to-charge (m/z) bin jitter. Our goal was to assess
to what extent the SAD metric can discriminate the correct,
original version of a spectrum from a set of other unrelated
spectra under these challenging conditions.

The results, shown in the receiver operating characteristic
(ROC) curve in Figure 5, demonstrate reliable performance,
with Area Under the Curve (AUC) greater than 0.96 under
moderate noise.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

Algorithm Robustness to Simulated Spectral Noise

Precision
Random Chance
32-bit Precision (AUC = 0.9892)
16-bit Precision (AUC = 0.9681)
8-bit Precision (AUC = 0.9732)

Fig. 5: ROC curves demonstrating the robustness of minimum
SAD variant algorithm under moderate simulated noise. The
plot shows the trade-off between identifying true matches
(TPR) and incorrectly identifying false matches (FPR) at
different precisions.

To test whether this pattern holds outside moderate-noise,
we repeated the experiment across a wider range of degrada-
tion levels. The resulting AUCs are summarized in Table I.
As expected, the “No-Noise” control shows that all precisions
perform perfectly (AUC=1.0) in the absence of noise. Under
High-Noise conditions, the AUC decreases to the upper 0.7
range. These results indicate that 8-bit can deliver comparable
accuracy to higher precisions in the scenarios tested, though
the impact of precision may grow for more rigorous conditions
and different datasets, and merits further study.

TABLE I: Algorithm Robustness under Varying Degradation

Experiment Degradation AUC AUC AUC
Condition (Rem/Jit/Noise) (32-bit) (16-bit) (8-bit)

No-Noise Control 0% / ±0 / 0% 1.0000 1.0000 1.0000
Moderate Noise 10% / ±1 / 10% 0.9892 0.9681 0.9732
High-Noise Test 25% / ±2 / 25% 0.7819 0.7583 0.7606

Discussion on Scaling. Finally, we note the limitations in
the scope of our current simulation-based experiments. Due to
restrictions in the hardware simulation tools, our evaluations
have only examined limited problem sizes and architectural
configurations. Furthermore, the effective problem size for
our analysis is significantly impacted by the preprocessing
pipeline. The standard practice of retaining only the top 50
peaks results in a data reduction of up to 91.9%, which while
helpful for analysis, means that the final datasets do not yet
represent the challenge of large-scale data movement that
PIM aims to overcome. The next step is to estimate, through
analytical calculations or extended simulator experiments, the
data set size and the required DRAM capacity at which clear
performance gains from the bit-serial PIM architecture will
become evident.

Ultimately, the performance benefits of our proposed bit-
serial PIM algorithm are expected to scale and become sig-
nificant primarily in large-scale deployments with broader
parallelism and much larger datasets. The current evaluations
represent initial steps toward validating the feasibility, cor-
rectness, and robustness of our algorithm rather than offering
a complete, large-scale performance analysis. Nevertheless,
these preliminary validations confirm robust behavior and
correctness, laying the groundwork for subsequent large-scale
evaluations.

CONCLUSION AND FUTURE WORK

We have demonstrated a proof of concept for an end-to-end,
hardware-algorithm co-designed pipeline for DRAM-based
PIM architecture acceleration of spectral library search, a key
workload for mass spectrometry. The next step is to observe
the performance from taking better advantage of the massive
parallelism in DRAM for more reasonable comparisons and
to connect larger volumes of data from real-world workloads
to the hardware for a full-system view of PIM accelerated
bioinformatics applications.

REFERENCES

[1] F. A. Siddique, D. Guo, Z. Fan, M. Gholamrezaei, M. Baradaran,
A. Ahmed, H. Abbot, K. Durrer, K. Nandagopal, E. Ermovick et al.,
“Architectural modeling and benchmarking for digital dram pim.”

[2] B. Jacob, D. Wang, and S. Ng, Memory systems: cache, DRAM, disk.
Morgan Kaufmann, 2010.

[3] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A
modern primer on processing in memory,” in Emerging Computing:
From Devices to Systems. Springer, 2023, pp. 171–243.

[4] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa:
A dram-based reconfigurable in-situ accelerator,” in Proceedings of the
50th annual ieee/acm international symposium on microarchitecture,
2017, pp. 288–301.

[5] T. Finkbeiner, G. Hush, T. Larsen, P. Lea, J. Leidel, and T. Manning,
“In-memory intelligence,” IEEE micro, vol. 37, no. 4, pp. 30–38, 2017.

[6] L. Wu, R. Sharifi, A. Venkat, and K. Skadron, “Dram-cam: General-
purpose bit-serial exact pattern matching,” IEEE Computer Architecture
Letters, vol. 21, no. 2, pp. 89–92, 2022.

[7] M. Lenjani, P. Gonzalez, E. Sadredini, S. Li, Y. Xie, A. Akel, S. Eilert,
M. R. Stan, and K. Skadron, “Fulcrum: A simplified control and
access mechanism toward flexible and practical in-situ accelerators,” in
2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2020, pp. 556–569.

[8] A. Devic, S. B. Rai, A. Sivasubramaniam, A. Akel, S. Eilert, and J. Eno,
“To pim or not for emerging general purpose processing in ddr memory
systems,” in Proceedings of the 49th Annual International Symposium
on Computer Architecture, 2022, pp. 231–244.

[9] J. Kang, W. Xu, W. Bittremieux, N. Moshiri, and T. Rosing, “Accelerat-
ing open modification spectral library searching on tensor core in high-
dimensional space,” Bioinformatics, vol. 39, no. 7, p. btad404, 2023.

[10] V. R. Pagala, A. A. High, X. Wang, H. Tan, K. Kodali, A. Mishra,
K. Kavdia, Y. Xu, Z. Wu, and J. Peng, “Quantitative protein analysis by
mass spectrometry,” Protein-protein interactions: Methods and applica-
tions, pp. 281–305, 2015.

[11] J. M. Chick, D. Kolippakkam, D. P. Nusinow, B. Zhai, R. Rad, E. L.
Huttlin, and S. P. Gygi, “A mass-tolerant database search identifies a
large proportion of unassigned spectra in shotgun proteomics as modified
peptides,” Nature biotechnology, vol. 33, no. 7, pp. 743–749, 2015.

