Towards an Algorithm-based Approach for Soft
Error Tolerance using Interval Arithmetic

Larry Tang, Varun Kumar, Matthew Ngaw, Siddharth Singh, Devdutt Nadkarni,
Lohith Tummala, Ken Mai, and Franz Franchetti
Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA
{lawrenct, varunk2, mngaw, ssingh4, dnadkarn, lctummal, kenmai, franzf} @andrew.cmu.edu

Abstract—Soft errors pose a critical reliability concern for
modern electronics both in space and terrestrial applications.
The traditional hardware redundancy approaches such as triple
modular redundancy or dual modular redundancy introduce
significant overheads, especially in large modern SoCs which
must consider tradeoffs between power, performance, area, and
reliability requirements. We propose a new approach for hard-
ware redundancy based on the ideas behind algorithm-based fault
tolerance (ABFT). Rather than replicating entire logic modules in
the design, we propose using floating-point interval arithmetic to
realize redundancy in computational datapaths. Error detection
is then performed by leveraging the guarantees provided by
interval arithmetic and forward error analysis of the specific
algorithm. We demonstrate the technique for protection of a
hardware FFT datapath and a systolic array. To evaluate the
approach, a silicon test chip is fabricated in a 28nm process and
post-PnR/simulation results demonstrate up to 2-3 times savings
in area.

Index Terms—Triple-Modular Redundancy; interval arith-
metic; radiation-hardening; fault tolerance

I. INTRODUCTION

Modern semiconductor technology scaling has led to an
increased vulnerability in electronic systems to radiation-
induced soft errors [1], [2]. High energy particles, such as
heavy ions, protons, or neutrons, can cause a temporary
change of state known as a soft error upset (SEU) upon
striking and interacting with the integrated circuit. Protecting
against soft errors is crucial for circuits operating in safety-
critical space/upper atmosphere applications where radiation
environments are harsh. Even large scale terrestrial systems,
such as hyperscale data centers deploying integrated circuits
(ICs) at high volume, are facing increasing reliability concerns
due to effects from terrestrial radiation [3]-[5].

One of the most common design techniques to mitigate the
effects of soft errors is to incorporate system-level hardware
redundancy for error detection and correction. Using triple
modular redundancy (TMR) or dual modular redundancy
(DMR) schemes, the designer triples/doubles modules within
the design and includes additional logic for error correction
or detection. Both of these approaches can be leveraged at
varying levels of granularity (e.g. at the register or functional
unit-level) at around 2-4X area and power overheads. How-
ever the cost of TMR/DMR-based approaches is significant
and becomes overwhelming, especially as power constraints
and energy efficiency drive the performance scaling of new

computing systems. In designing large modern SoCs, it has
become critical to analyze tradeoffs between reliability, power,
performance, and area so that only critical components are
actually replicated [6], [7]. Hence strategies to reduce the
overheads while still providing tolerance against soft errors
is increasingly important.

Another method to protect against soft errors is to refactor
computations such that they take advantage of properties
of the algorithm itself for error detection or correction, an
approach typically referred to as algorithm-based fault toler-
ance (ABFT) [8]. Exploiting algorithmic properties, such as
transform invariants or matrix checksums, provides opportu-
nities to detect and correct errors at low overhead without
necessarily relying on system-level redundancy techniques.
Inspired by the principles of ABFT, in this work we propose
a new hardware redundancy approach for soft error tolerance
in datapath modules. Our insight is that redundancy can
be realized through floating-point interval arithmetic where
lower precision interval arithmetic hardware reduces overheads
compared to fully replicating modules. Error detection then
relies on the guarantees provided by interval arithmetic and
forward error analysis of the specific computation.

Contributions. This paper makes the following contribu-
tions:

¢ A novel algorithm-based approach using interval arith-
metic and forward error analysis for soft error tolerance.

e The design and implementation of the approach for an
FFT datapath and systolic array on a test chip fabricated
in a 28nm process.

¢ A quantitative evaluation of the approach against tradi-
tional hardware redundancy-based techniques.

We begin with a discussion of related work and relevant
background. Section IV details the idea of using an algorithm-
based interval arithmetic approach for soft error tolerance.
Section V outlines the design of a silicon prototype and
Section VI presents measured results. Finally we conclude
with a discussion and avenues for future work.

II. RELATED WORK

In this section we discuss some of the common approaches
for soft error protection.

A. Redundancy-Based Techniques

Hardware redundancy-based schemes have been widely
employed in fault tolerant systems. In Triple Modular Re-
dundancy (TMR), the module to be protected is replicated
three times and a majority voter circuit can then detect and
correct errors assuming a single event upset fault model.
Similarly, Dual Modular Redudancy (DMR) duplicates the
module but only guarantees error detection using comparator
logic between the two outputs. Both schemes are relatively
intuitive and generalizable, but incur significant power and
area overheads due to entire module replication.

Module 1 \
Inputs iori Outputs
a Module2 — Majority p
Voter —
Module 3 —

Fig. 1. TMR technique

As modern systems attempt to continue scaling performance
the key constraint lies in power consumption and energy
efficiency, making it challenging to realize the high overhead
of hardware redundancy-based schemes. Prior work has in-
vestigated methods for replicating only critical portions of the
hardware [6], [7] as well as different low-overhead algorithmic
approaches.

B. Algorithm-Based Fault Tolerance

The idea of exploiting algorithm specific properties for fault
tolerance was first demonstrated for matrix operations [8]. The
key idea behind ABFT is to encode the data such that the
encoding relation still holds after the algorithm is applied,
enabling error detection or correction. The algorithm can then
be modified to operate on the encoded data and produce
encoded outputs, and finally the computation is distributed
across processing units such that faults affect only certain parts
of the data. Error detection and correction can be performed
based on the outputs of the original computation and the
encoded outputs.

The approach has been extended to a number of other
domains such as digital signal processing [9], [10], machine
learning [11], [12], and HPC scientific computing applications
[13]-[16]. Properties of signal processing transforms make
them particularly well suited for ABFT techniques and have
been applied to digital filters [17], [18] and fast Fourier
Transforms [19]-[21]. In linear algebra subroutines based
on matrix multiplication, row and column checksums of the
matrices are often used to encode the matrices [8], [22].
ABFT has also been extended to the context of HPC parallel
distributed machines with low performance overheads for error
detection and correction [13].

III. BACKGROUND: INTERVAL ARITHMETIC

Interval arithmetic [23] is an approach for performing sound
floating-point arithmetic as it provides the guarantee that the

resulting interval must contain the real number that is the result
of the mathematical expression. Operations on real numbers
represented in floating point instead take place on intervals
with floating point boundaries containing the real number.
Concretely, an interval & = [z}, x,] consists of floating point
bounds that guarantee the exact number is contained within
the interval Z. Interval arithmetic operations for addition,
subtraction, and multiplication are then defined as follows:

249 =[RD(z; + 1), RU(zy + yu)] (1)
r— .A = [RD(Il - yu)7 RU('Iu - yl)} (2)
& -9 = [min(RD(2; - 1), RD(; - yu), 3)

RD(xu : yl)v RD(xu yu))7
max(RU(z; - y;), RU(2; « yu),
RU(xu : yl)v RU(xu : yu))]

where RD(x) rounds x towards negative infinity and RU(z)
rounds z towards positive infinity.

The guarantee of sound floating point arithmetic in interval
arithmetic is valuable for safety critical applications in which
round-off errors can be catastrophic [24], [25]. Recent work
has thus studied methods for automatically producing efficient
interval arithmetic programs with higher certified accuracy
[26], [27]. In this work we use this guarantee for designing
an algorithm-based approach to soft error tolerant hardware.

IV. INTERVAL ARITHMETIC-BASED SOFT ERROR
TOLERANCE

In this section we assume the single event upset fault model
in which exactly one internal node in the datapath can have its
logic state flipped at a given clock period. The focus of this
work lies in the protection of logic or datapath modules which
implement a specific computation. Memories are assumed to
be protected through ECCs and scrubbing logic. The following
section discusses how we adopt interval arithmetic for lower
overhead hardware redundancy and perform algorithm specific
forward error analysis for error detection.

A. Hardware Redundancy via Interval Arithmetic

Fig. 2 shows the block diagram of the proposed technique.
Module 1 contains the original hardware which executes its
computation on the unmodified inputs. A lower precision
version of the module executes the same computation in
interval arithmetic using floating-point, providing hardware
redundancy for error detection.

Inputs to the interval arithmetic block are lower precision
intervals constructed such that the original number is guar-
anteed to be within the interval. The input values are first
cast to a lower precision floating point representation and then
rounded towards +oo and towards —oo to get the upper and
lower endpoint values. Thus the constructed input intervals are
small—the error margin is at most one unit in least precision
(ulp), the smallest difference between two adjacent floating
point numbers. Constants within the module are also cast
to intervals using the same procedure and in the case that
the number is exactly representable in floating point will

have the same endpoints. The interval outputs and the high
precision outputs from the original module all feed into the
error detection block.

Inputs
l Module 1 —
Outputs
Interval o irrc:'r
Construction Interval etection
Arithmetic —
Module Output)
Lower precision Intervals Output valid?

input intervals

Fig. 2. Interval arithmetic based approach for soft error tolerance.

Interval arithmetic addition and subtraction is implemented
using two adders to compute the upper and lower intervals.
For subtraction the second operands are swapped and the sign
bit is flipped. In interval arithmetic multiplication, a naive
implementation following Eq. 3 may use four multipliers for
each of the operand combinations in computing one endpoint.
Instead we perform sign bit logic to swap operands on the fly
and require only two multipliers for interval multiplication.
Constant multiplication is even simpler since the sign of one
operand is known at design time. The arithmetic unit for the
upper endpoint implements rounding towards +-oco and for the
lower endpoint rounding towards —oo. Fig. 3 shows block
diagrams of the interval arithmetic units.

(a) (b)
Yi Yy u X Xu
l ¢ \2 i y v L\ /
ysel Xsel ysel xsel
RD RU
zl zu
(c)

Fig. 3. Interval arithmetic hardware block diagram for (a) addition, (b)
subtraction, and (c) multiplication.

B. Error Detection

The guarantee of sound floating-point arithmetic and for-
ward error analysis of the computation enable error detection.
There are four general cases depicted in Fig. 4 which we
must consider for the output interval and middle value. Fig. 5
shows a block diagram of the steps for error detection. For
any interval & = [z, x,], we first check that =, > z; and

d(zy,z;) < T where d(z,y) is the distance between two
floating point numbers, and y, in terms of ulp. The threshold
value, T, is determined in terms of ulp through forward error
analysis, which is discussed in the following section. If both
conditions are satisfied then the interval is accepted as valid.
Otherwise we declare that there is an interval error.

T T
> >
Accept output Invalid interval
(i) (iii)
T T
> >
Interval exceeds bound Output outside of interval
(ii) (iv)

Fig. 4. The four potential cases for an output interval: (i) no error, middle
value accepted (ii) interval grows beyond bound, (iii) interval endpoints
flipped, and (iv) high precision middle value outside of interval.

We then check whether the high precision middle value, z,,,
is contained within the interval. If z; < z,, < z,, then we
accept the high precision computation of the original module
and can write the value to a protected memory. If the condition
does not hold, then an error must have occurred in the high
precision block and we mark the computation invalid. The
output control signal can be used to indicate to a controller
that the computation must be redone. We assume that the
algorithms to be protected are numerically stable and bit flips
that affect the lowest order mantissa bits while remaining
within the bound are tolerable.

High Precision Interval
X, [x, x,]

l

Check Interval
x,>x,and d(x, x) < T

Reject
—

l Accept Interval

Reject

Check Middle Value
X< Xp < X,

l Accept x,,
Fig. 5. High level block diagram of the proposed method for error detection.

C. Forward Error Analysis

Using forward error analysis we can analyze the sequence
of operations through the computation to provide a meaningful

[A,A] [B B, [A+B A+B,]
) || | I | o o—1 ! |
w ~ 1" I |
1 2 4 2p RU 8
> > —
1ulp Tulp 2 ulp

Fig. 6. Example of interval growth after floating point operations. Each
interval begins at 1 ulp distance but the resulting interval grows to 2 ulp
due to rounding.

bound on the growth of the interval. We also assume that the
dynamic range of the inputs and outputs are known either
by properties of the application or through static analysis.
All computations begin with intervals that are constructed
such that the width is at most one ulp. In interval addition,
rounding to 4oo introduces an absolute roundoff error of
at one ulp. Rounding down incurs the same error, so the
growth of the interval is bounded by at most two ulp for a
single interval addition. Fig. 6 shows an example of how the
resulting interval width can grow following interval addition.
In multiplication, we can bound the growth of the interval by
constraining multiplicand range. For example when computing
FFTs, multiplication is always with twiddle factors so it is
guaranteed that one multiplicand is in the range [0, 1] and the
growth is fixed to 2 ulp.

Y[0] One add

) Y[1]
A‘ One sub,
(5)—(x) @—» Y[2] multiply,
add
O—®—0)— 5]

Fig. 7. Analysis of an example 2-point FFT butterfly datapath to bound the
output interval growth.

For each output of the module we analyze the critical
path of additions/subtractions and multiplications to compute
the bound, 7', on the growth of each interval. The bound is
computed in terms of ulp whose absolute value depends on
the range of the number. To avoid tracking dynamic range
throughout the computation, we use a worst case bound by
performing static analysis to determine the maximum ulp
across the entire computation. The block diagram in Fig. 8
shows how we implement the interval check in hardware.
The error detection module uses the exponent associated
with the maximum ulp value to first normalize and shift the
interval mantissas. Then, the mantissas can be subtracted and
compared against the bound, 7. For every output interval
we perform forward error analysis as shown in Fig. 7 for
a 2-point butterfly and implement the corresponding error
checking module in Fig. 8.

Max X, X, X, X,

Exp Exp Mantissas Exp XX
H R
- - Floating
1 1 Point

>> >> Comparator

N 7 >

>T

Fig. 8. Hardware block diagram for interval checking using forward error
analysis.

V. CosMIC: A SILICON PROTOTYPE

We implement the algorithm-based approach using interval
arithmetic for a radix-8 fast Fourier Transform datapath and a
systolic array. We also design test structures to facilitate fault
injections and error evaluation for each of the modules. Fig. 10
shows a block diagram of the test chip.

A. Fast Fourier Transform

The fast Fourier Transform (FFT) datapath shown in Fig. 9
implements a fully unrolled, complex radix-8 FFT support-
ing 32-bit single precision floating point arithmetic. In the
interval arithmetic version of the module each arithmetic unit
is replaced with a 16-bit half precision interval arithmetic
unit. Twiddle factor constants within the datapath are also
converted to intervals. Both the original module and the
interval arithmetic version are pipelined to 13 stages to ensure
all outputs are aligned. Both single precision and half precision
interval FFT hardware are automatically generated using the
SPIRAL [28] code generation system.

£ L
g V58 | —{ Interval
- =) — Y/0
5 \/: .= ~— Check o1
§ eree— i
a ————{ Interval
— Y[1
® ~— Check a1
T > ;
'g | o |, 16x :
© | O > .
‘_E B s | }T1s valid
—— Interval
] O > — — Y[15,
£ 7 C -—> Check 31
[T O L >
-

Fig. 9. Architecture of the radix-8 FFT datapath and interval error detection.

3 | . .

) : 5| : 32-bit Single

< 18 T |6 Precision

= > = > IA-Based e

Clock LFSR ~ © %y P 1% | Radix-8 FFT Error 25

Generator 32 I USSR Detection :

= g 21~ 16-bit Interval '

2". : o : Arithmetic 16x

S |[16x| “ |16x

SPI 32 Output

Interface Memory

5

- . — .

o : 5| : 16-bit Half

2 * he} . P]

S 12 R 5 12 recision

32 = g —> . IA-Based

Controller Input | g LN - ROAN Systolic e 16, |

5 Q i Arra - >

Memory 2 @ [y Detection

2 o 12-bit Interval

o » Arithmetic

S 8x 8x

Fig. 10. System diagram of the CosmlIC test chip. The datapaths include a complex radix-8 FFT and a systolic array, each replicated in interval arithmetic.
Input data can be generated through the LFSRs or specific tests can be loaded into the on-chip memory. Additional test structures enable fault injection tests

and error tracking.

Each 32-bit output and 16-bit interval feeds directly to the
error detection block to check validity of the outputs. A final
reduction step across all interval outputs indicates whether the
computation can be accepted as valid. If invalid, batched FFT
computations [29] can be restarted by a controller.

The bound on interval growth for the FFT is calculated by
tracking the number of operations that occurs for each output.
We also assume that the input dynamic range is bounded to
values in the range of [0, 1]. For example, the first output
in Fig. 9 incurs a maximum growth of 6 ulp from the three
addition operations and we know that the maximum output
dynamic range by properties of the FFT is [0, 8]. Thus the
maximum exponent and the threshold bound is determined
and can be used for error detection.

B. Systolic Array

We also implement a parametrized systolic array architec-
ture composed of 16-bit IEEE-compliant Fused-MAC (FMA)
units. The interval version implements a custom 12-bit floating
point format where the exponent is 5 bits, mantissa is 6
bits, and the final bit is reserved for the sign. This design
implements a small 4x1 systolic array.

A similar checker is used for the systolic array outputs. The
bounds on interval growth for the systolic array are calculated
based on the dimensions of the array, where each FMA unit
contributes to the growth.

C. Interval Generation

We design a block for generating intervals on the fly as
floating point numbers enter each of the computations. The
numbers are rounded towards +oo and towards —oo for the
desired lower precision representation: 16-bit half precision
for the FFT and the custom 12-bit format for the systolic
array. This creates intervals which are exactly one ulp distance

Interval and High Precision Inputs

|

PE | PE | PE [—{ PE -4 'merel L o,
r T T 1| =

re | ={pef =ret=lre | = G om
e T

| l @"D‘{“_ \Tw valid
PE | P PR e = e | o

Fig. 11. Systolic array architecture and error detection block. Each PE consists
of an FMA unit that computes in interval arithmetic and a higher precision
floating point representation.

away from each other. The logic is entirely combinational for
each input going into the respective block. This also enables
the protected hardware to act as a drop-in replacement since
the interface to the data does not change from the original
hardware implementation.

D. Test Infrastructure

We implement linear feedback shift registers (LFSRs) to
generate pseudo-random inputs for both the FFT and systolic
array modules. For each of the modules we would also like
to bound the input dynamic range, so we add additional
post-processing logic to ensure the generated floating point
inputs are within the fixed range. We also design synthesized
memories so that specific test vectors can be loaded for test
and evaluation post-silicon.

To facilitate fault injection tests, we insert a dedicated
scan chain for all flops in the core datapaths. This allows us

to scan out the state of the computation, flip any bit, and
scan the modified state back in to resume computation. The
error detection block also incorporates additional logic for
tracking error counts and location across the output intervals.
A ring oscillator-based on-die clock generator can provide
frequencies up to the target 500 MHz core frequency.

VI. EXPERIMENTAL RESULTS

A. Silicon Prototype

The Imm x Imm test chip is fabricated in a TSMC 28nm
process and has a core area of 0.7mm x 0.7mm. A micrograph
of the die and the layout of the core components is shown in
Fig. 12.

Interval Arithmetic
Protected Circuits

%8
L3
=

2z
£3

Fig. 12. 1mm x Imm die micrograph. There are 44 10 pads and three power
domains. The protected accelerators are on the right side of the die. Additional
test infrastructure including LFSRs, memories, interval generation, and clock
generator are on the left side of the die.

The design targets a core frequency of 500 MHz. There
are three power domains for the clock generator, FFT/systolic
array, and other control/test logic. The chip can be operated
through the LFSRs which feed data directly to the datapaths
or through specific test vectors that are loaded to the input
memories. The input/output memories are large enough to
saturate the pipeline of the datapaths.

B. Comparison against TMR

To evaluate our approach we implement a TMR version of
the modules as a baseline comparison against the fabricated
test chip. All results are extracted from post place-and-route
designs and include the logic area required for error handling.

The proposed interval arithmetic approach achieves a 2
times reduction in area for the 8-point complex FFT and
3.3 times reduction for the systolic array compared to the
traditional TMR approach. The greater area improvement in
the systolic array design can be attributed to its higher fraction
of multipliers which scale down faster with decreased bitwidth.
We also note the potential for further savings by lowering the
interval precision.

C. Efficacy Results

We discuss some results from fault injection simulation
to demonstrate that our method effectively detects bit flips
occurring in the datapath. The test cases presented below are

& 400

§ == TMR

" mmm Interval Arithmetic
< 300

] 2.0x

3

o 200

s

© 100

g 3.3x
<, [

Dft8

Systolic Array

Fig. 13. Comparison of total area between TMR and interval arithmetic
protected implementations.

extracting the 11th output of the FFT datapath and each one
corresponds to a scenario presented in Fig. 4. For each result
we present the lower, middle, and upper {x;, z,, z,} values
with the affected value in bold.

1) Result: {0.6528,0.6505,0.6509}. The interval check im-
mediately catches that 0.6528 > 0.6509 and signals that
the result is invalid.

2) Result: {0.6504,0.6507,0.6509}. The center value’s
lower mantissa bit is affected, resulting in a value of
0.6507. However the interval result [0.6504, 0.6509] is
tight and still bounds the center value. Thus the error is
tolerable and the result can be accepted.

3) Result: {0.6504,0.6505,0.9004}. There is an error in
the MSBs of the upper endpoint of the interval. The
interval distance is much larger than the allowable bound
and the result is declared as invalid.

VII. CONCLUSION

Modern technology scaling poses an increased reliability
concern for soft errors in space and terrestial applications. In
this paper we proposed a novel algorithm-based method for
hardening by design using interval arithmetic. We presented a
first look through the design of a test chip protecting an FFT
and systolic array datapath. Our measured post-PnR results
show a lower area overhead than the traditional TMR method
for radiation-hardening. Through fault injection RTL simu-
lation, we also show that the approach successfully detects
problematic bit flips in the datapaths.

There are many avenues for future work. It would be inter-
esting to evaluate tradeoffs between reliability and precision
of the interval arithmetic and high precision hardware. Ulti-
mately, we look towards building a fully hardened-by-design
system that operates with protected memories and control logic
to facilitate recomputation in an end-to-end application.

ACKNOWLEDGMENTS

This work was supported in part by PRISM, one of seven
centers in JUMP 2.0, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA. We also thank Apple’s
New Silicon Initiative for academic tapeout support.

[1]
[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

REFERENCES

D. M. Fleetwood, “Radiation effects in a post-moore world,” IEEE
Transactions on Nuclear Science, vol. 68, no. 5, pp. 509-545, 2021.
D. Kobayashi, “Scaling trends of digital single-event effects: A survey
of seu and set parameters and comparison with transistor performance,”
IEEE Transactions on Nuclear Science, vol. 68, no. 2, pp. 124-148,
2021.

H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy,
B. Muthiah, and S. Sankar, “Silent data corruptions at scale,” 2021.
[Online]. Available: https://arxiv.org/abs/2102.11245

R. Bonderson, “Training in turmoil: Silent data corruption in systems at
scale,” in International Test Conference Silicon Lifecycle Management
Workshop, 2021.

P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju, P. Ran-
ganathan, D. E. Culler, and A. Vahdat, “Cores that don’t count,” in
Proceedings of the Workshop on Hot Topics in Operating Systems, 2021,
pp. 9-16.

O. Atli, “Soft error analysis and design space exploration of radiation-
hardened system-on-a-chip platforms,” Ph.D. dissertation, Carnegie Mel-
lon University, 2024.

J.-M. Daveau, A. Blampey, G. Gasiot, J. Bulone, and P. Roche, “An in-
dustrial fault injection platform for soft-error dependability analysis and
hardening of complex system-on-a-chip,” in 2009 IEEE International
Reliability Physics Symposium, 2009, pp. 212-220.

K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transactions on Computers, vol. C-33, no. 6,
pp. 518-528, 1984.

A. Reddy and P. Banerjee, “Algorithm-based fault detection for signal
processing applications,” IEEE Transactions on Computers, vol. 39,
no. 10, pp. 1304-1308, 1990.

B. Shim and N. R. Shanbhag, “Energy-efficient soft error-tolerant
digital signal processing,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 14, no. 4, p. 336-348, Apr. 2006. [Online]. Available:
https://doi.org/10.1109/TVLSI.2006.874359

K. Zhao, S. Di, S. Li, X. Liang, Y. Zhai, J. Chen, K. Ouyang,
F. Cappello, and Z. Chen, “Ft-cnn: Algorithm-based fault tolerance
for convolutional neural networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 7, pp. 1677-1689, 2021.

J. Kosaian and K. V. Rashmi, “Arithmetic-intensity-guided fault
tolerance for neural network inference on gpus,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’21. New York, NY,
USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3458817.3476184

G. Bosilca, R. Delmas, J. Dongarra, and J. Langou,
“Algorithm-based fault tolerance applied to high performance
computing,” Journal of Parallel and Distributed Computing,
vol. 69, no. 4, pp. 410-416, 2009. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731508002141
Z. Chen and J. Dongarra, “Algorithm-based fault tolerance for fail-
stop failures,” IEEE Transactions on Parallel and Distributed Systems,
vol. 19, no. 12, pp. 1628-1641, 2008.

L. Narmour, S. Derrien, and S. Rajopadhye, “Automatic algorithm-
based fault tolerance (aabft) of stencil computations,” in 2023 32nd
International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2023, pp. 187-198.

Z. Chen, “Online-abft: an online algorithm based fault tolerance
scheme for soft error detection in iterative methods,” in Proceedings
of the 18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, ser. PPoPP *13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 167-176. [Online].
Available: https://doi.org/10.1145/2442516.2442533

S. Pontarelli, G. Cardarilli, M. Re, and A. Salsano, “Totally fault tolerant
rns based fir filters,” in 2008 14th IEEE International On-Line Testing
Symposium, 2008, pp. 192-194.

P. Reviriego, C. J. Bleakley, and J. A. Maestro, “Structural dmr: A
technique for implementation of soft-error-tolerant fir filters,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 58, no. 8,
pp. 512-516, 2011.

J.-Y. Jou and J. Abraham, “Fault-tolerant fft networks,” IEEE Transac-
tions on Computers, vol. 37, no. 5, pp. 548-561, 1988.

Y.-H. Choi and M. Malek, “A fault-tolerant fft processor,” IEEE Trans-
actions on Computers, vol. 37, no. 5, pp. 617-621, 1988.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

S.-J. Wang and N. Jha, “Algorithm-based fault tolerance for fft net-
works,” IEEE Transactions on Computers, vol. 43, no. 7, pp. 849-854,
1994.

P. Wu, Q. Guan, N. DeBardeleben, S. Blanchard, D. Tao, X. Liang,
J. Chen, and Z. Chen, “Towards practical algorithm based fault
tolerance in dense linear algebra,” in Proceedings of the 25th
ACM International Symposium on High-Performance Parallel and
Distributed Computing, ser. HPDC ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 31-42. [Online].
Available: https://doi.org/10.1145/2907294.2907315

R. E. Moore, Methods and applications of interval analysis.
1979.

D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine,
“Towards an industrial use of fluctuat on safety-critical avionics soft-
ware,” in Formal Methods for Industrial Critical Systems, M. Alpuente,
B. Cook, and C. Joubert, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 53-69.

F. Franchetti, T. M. Low, S. Mitsch, J. P. Mendoza, L. Gui, A. Phao-
sawasdi, D. Padua, S. Kar, J. M. Moura, M. Franusich, J. Johnson,
A. Platzer, and M. M. Veloso, “High-assurance spiral: End-to-end
guarantees for robot and car control,” IEEE Control Systems Magazine,
vol. 37, no. 2, pp. 82-103, 2017.

J. Rivera, F. Franchetti, and M. Piischel, “An interval compiler for
sound floating-point computations,” in 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), 2021, pp.
52-64.

——, “A compiler for sound floating-point computations using affine
arithmetic,” in 2022 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), 2022, pp. 66-78.

F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato,
J. R. Johnson, M. Piischel, J. C. Hoe, and J. M. F. Moura, “Spiral:
Extreme performance portability,” Proceedings of the IEEE, vol. 106,
no. 11, pp. 1935-1968, 2018.

L. Tang, S. Chen, K. Harisrikanth, G. Xu, K. Mai, and F. Franchetti, “A
high throughput hardware accelerator for fftw codelets: A first look,” in
2022 IEEE High Performance Extreme Computing Conference (HPEC),
2022, pp. 1-7.

SIAM,

