Towards Automated Reasoning Chains for
Verification of LLM-Generated Scientific Code

Quentin Oschatz Naifeng Zhang
Carnegie Mellon University Carnegie Mellon University
Pittsburgh, USA Pittsburgh, USA
goschatz@cmu.edu naifengz@cmu.edu

Abstract—With the rise of Large Language Model (LLM)
generated code, including in domains like scientific computing,
ensuring not only syntactical, but also mathematical correct-
ness, has become a critical task. Traditional formal methods
approaches often struggle with the ambiguity of floating-point
code, and full symbolic execution is extremely costly and limited.
We propose a chain-of-reasoning approach that iteratively lifts
basic semantics from code into the SPIRAL system and then
establishes numerical equivalency to the desired mathematical
operation. Here, we leverage the ample mathematical knowledge
already formalized in SPIRAL to enable the system to recognize
not just different implementations of the same algorithm but
fully separate approaches to solving the given problem. The
chain establishes tight error bounds on the output of given code
with respect to the true continuous solution it approximates,
quantifying all sources of error. We demonstrate this approach
by establishing the correctness of a pseudospectral solver for a
simple 1-dimensional Poisson problem.

Index Terms—Numerical analysis, partial differential equa-
tions (PDEs), scientific computing, SPIRAL, large language
models (LLMs)

I. INTRODUCTION

Large Language Models (LLMs) have increasingly become
a widespread tool for neural code generation, despite their
tendency towards hallucinations and mistakes [1], [2]. While
improvements have been made to their ability to generate
semantically correct code, this is often insufficient, especially
when generating code in the space of scientific computing.
Here, numerical errors in algorithm implementation can be
easy to make, hard to catch, and even more difficult to
diagnose, especially with the added complexity of evaluating
floating-point code. This can be a problem not just when
attempting to generate new scientific kernel code as explored
by Valero-Lara et al. [3], but also when translating code written
in languages such as FORTRAN to more modern codebases
as is the goal of projects such as TRACTOR [4].

Leaning on the well-known insight in mathematics and
computer science that proving a solution correct is far easier
than finding one, we propose a multi-step, end-to-end system
to verify the numerical correctness of given code.

This material is based upon work supported by the U.S. Department of
Energy, Office of Science under Award No. DE-SC0025645, by the National
Science Foundation under Award No. 2431265, and by the Defense Advanced
Research Projects Agency (DARPA) under Agreement No. HR00112490517.
Approved for public release: distribution is unlimited.

mike.franusich@spiralgen.com

Franz Franchetti
Carnegie Mellon University
Pittsburgh, USA
franzf @cmu.edu

Mike Franusich
SpiralGen, Inc.
Pittsburgh, USA

Continuous R €— Discrete R $— Floating Point

[Semantics lifting

Numerical analysis
reasoning

Fig. 1: Logical overview of the core steps in the pipeline
connecting C code to the true, continuous solution of the given
problem over the real numbers extending prior work [5].

Previous work [5] leveraged the SPIRAL system [6] to
perform semantics lifting based on symbolic execution and
program transformations. By restricting the problem domain to
those understood by SPIRAL, Fast Fourier Transforms (FFTs)
can be lifted from recursive C implementations. Reversing
SPIRAL’s rules-based, multi-tiered code generation system
that traditionally lowers high level semantics into functioning
code, the system can iteratively fuse operations into higher
level functional blocks, until finally leveraging SPIRAL’s
database of linear transforms to recognize the components of
a FFT. Due to the symbolic execution used for the fusion,
minimal ambiguity is introduced by floating-point operations,
and equivalency can be established. The methods introduced
in this paper extend that work to support more complex
mathematical algorithms consisting of a network of functional
blocks.

Also utilizing the SPIRAL system, the pipeline follows a
similar framework of exploiting symbolic execution and the
database to recognize even higher level operations. However,
complex scientific computing code comprised of numerous
mathematical operations beyond ubiquitous operations like the
FFT are infeasible to merely lift, as SPIRAL would need
to be populated with an enormous database of all possible
operations and their variations. Moreover, those operations
may be implemented in mathematically distinct manners.

We propose a pipeline that can recognize and verify these
more complex operations by constructing reasoning chains
as follows. In Section III, the chain starts with basic C
code and uses previous work to extract and verify basic

functional blocks. Next, the mathematical principles of the
pseudospectral solver for the given problem are introduced in
Section IV. Then, Section V describes a chain equating the
lifted operators directly with the equation purportedly being
solved by the code, quantifying and bounding all sources of
error. Afterwards, techniques described by Zaliva in [7] can be
leveraged to formalize the derivation directly in SPIRAL using
theorem provers. We showcase all this by walking through
the verification of a pseudospectral solver for 1-dimensional
Poisson equations, a partial differential equation (PDE).

Contributions. This paper makes the following contribu-
tions towards an end-to-end pipeline:

o Describing an end-to-end pipeline for verifying the cor-
rectness of (LLM-generated) code.

« Demonstrating how to determine equivalency between a
sequence of lifted semantics and the equation the code
purports to solve.

o Sketching proofs for tight error bounds on the output of
said code versus the true solution over the real numbers.

o Showcasing the high computational requirements in-
volved in determining equivalency.

II. BACKGROUND AND RELATED WORK

SPIRAL. SPIRAL is a code generation system capable of
translating certain high level mathematical expressions into
high-performance code by lowering it through multiple stages
of abstraction. During these steps, SPIRAL uses a library of
breakdown rules to perform substitutions that do not break
correctness but can introduce parallelism or recursion, with
the target hardware specifications guiding SPIRAL in these
breakdown choices. For many of the earlier stages, SPIRAL
keeps algorithms fully symbolic, allowing equivalent substitu-
tions to be made and verified exactly.

As mentioned in Section I, SPIRAL was recently used
to perform semantics lifting of C code into higher level
math operations [5]. This was accomplished by reversing the
usual SPIRAL workflow. Instead, code was iteratively lifted
to higher and higher levels of abstraction using the same
substitution rules in reverse.

Formal verification. Formally verifying the correctness
of numerical software is extremely challenging, especially
when floating-point code is involved. Appel and Kellison
[8] presented a framework for verifying some floating-point
programs written in C by using Rocq (formally Coq). They
demonstrated the difficulty in formalizing the relationship
between the outputs of a C program with finite precision and
the true continuous solution over the real numbers, even when
restricting the scope of supported data types and operations.

The HELIX project presented by Zaliva [7] addresses some
of the problems that arise when formally proving floating-
point code. It too builds upon SPIRAL to create a formally
proven high-performance code generation system. Instead of
using the system directly, the author builds a parallel pipeline
with similar design characteristics. The algorithm is kept in
the symbolic domain until most of the optimizations and
transformations are applied, and the final code is generated.

Even then, one of the transformations not formally verified
was the step that introduces finite precision floating-point
numbers, with the author citing the proof would necessitate the
application of a broad range of numerical analysis techniques
that would not easily generalize.

Pseudospectral methods. PDEs are equations involving
partial derivatives of multivariate functions, and can be seen
as a superset of ordinary differential equations (ODEs), which
deal with derivatives of univariate functions. Typically, it
is challenging or even infeasible to directly compute their
solutions, requiring the use of numerical methods to find
approximations.

There are multiple distinct approaches to approximating the
operations and computing a solution, each with their own
trade-offs in terms of accuracy and computational efficiency
[9, Sec. 1]. Pseudospectral methods are one such category of
approaches which aim to approximate differentiation as sums
of smooth basis functions when given a problem on a simple—
usually rectangular—agrid.

Clearly, the choice of basis is, therefore, critical to the
accuracy of the results. As described by Fornberg [9, Sec.
2.1], they should generally meet three requirements: rapid
convergence of the function approximation for smooth func-
tions, ease of determining the coefficients for the derivative of
the function being approximated, and fast computation of the
approximation at a given point. Depending on the boundary
conditions imposed on the problem, different function classes
may meet these requirements, with the FFT (and its sine
and cosine versions) allowing trigonometric expansions and
orthogonal Jacobi polynomials to meet the third requirement.

III. LLM CODE GENERATION

We start with Listing 1, a block of C code that purports to
implement a pseudospectral Poisson solver for a 1-dimensional
problem with periodic boundary conditions.

Similar code could easily be generated with the help of
ChatGPT using prompts like “Hey ChatGPT, please generate
C code for solving the Poisson equation in 1D with periodic
boundary conditions using the pseudospectral method with
FFTs and using nothing beyond the standard libraries.” Even
with such a simple example, verifying its correctness is non-
trivial; mistakes could be present in the implementation details
of the FFTs, the computation of the convolution factors
in Fourier space, or even the indexing. Moreover, even if
approaches like fuzzy testing could be leveraged to determine
correctness, merely comparing the output of such code will
often not give a clear indication regarding the root cause of
any errors.

Instead, semantics lifting from previous work [5] mentioned
in Section II is employed to detect and lift the basic building
blocks of the algorithm. Reversing the typical code generation
pipeline in SPIRAL, code is repeatedly lifted to higher level
abstractions via a combination of symbolic execution and
transformations.

Small loops and code segments are symbolically executed
to determine their exact characteristics, then small sections

1 int i, 3J;

> double k, xksq, =xdata, =phi;

i data = calloc (2xN, sizeof (double));
4 ksg = malloc(N % siz f (double));

4
5 phi = malloc(N % sizeof (double));

// Initialize the data
8 initialize_rhs (data);

9 // Numerical Recipes in C, Third Edition
[10]: FFT Function: fourl/()

10 fourl (data, N, 1);

11

12 // Construct solver in Fourier space

13 for (i = 0; 1 < N; i++) {

14 k= (i<=N/2) 2?21 :1i-N;

15 // Construct lambda’

16 ksqi] = - (4 » (M_PI » M_PI) / (L » L)) * (k =
k)i

17}
19 // Apply the constructed solver to the input
0 for (1 = 0; 1 < N; i++) {
21 // At 0,0 don’t normalize
if (ksqgl[i] != 0) {
23 data[2*i] *= 1/ksqlil;
24 datal[2x1i+1] *= 1/ksqglil;
25 }
26}
2% // Zero out
» datal[0] =

first component
data[l] = 0.0;

31 // Perform inverse FFT
» fourl (data, N, -1);

.+ // Copy data array back

3 to phi and normalize
35 for (1 = 0; 1 < N; 1i++)

phi[i] = data[2*i] / N;
Listing 1: Sample C code implementing a 1D Poisson solver
of size N. FFT code has been omitted to save space.

are fused into equivalent operations. For instance, a loop
multiplying the respective elements of two arrays may be fused
into a vector product, which can then replace the original loop.

Using SPIRAL’s vast library of rule transforms originally
created to allow the system to break apart large operations
in parallelizable chunks, operations can be recursively fused
until high level semantics are extracted. Here, this step could
determine the presence and exact correctness of the two FFTs,
as well as the pointwise multiplication in Fourier space. The
latter could be represented as a multiplication with a diagonal
matrix of factors.

As it stands, in a large codebase (e.g., one implementing
a PDE solver), lifting can only identify, at the function level,
what each code block represents. For example, it can recognize
that a specific block implements linear operations such as FFTs
or matrix multiplication. However, at the global level, current
lifting techniques offer minimal insight into the semantics of
how these blocks interact or what their combination represents.
Theoretically, the rules-based system in SPIRAL that enabled
lifting so far could be expanded by adding more rules that
equate a specific sequence of blocks with a 1D Poisson solver.
This approach, however, comes with numerous downsides.

Recognizing even just a subset of PDE solvers would

require building a huge database. Previously, lifting was used
to find a small set of widely-used kernels which represent
the core building blocks for constructing a large range of
scientific computing operations. Basic combinatorics reveals
how quickly the number of possible compound operations
grows. Given the number of PDEs, the variations introduced by
boundary conditions, and higher dimensions, even restricting
lifting to only those still leaves an enormous search space.

Furthermore, this system would be extremely brittle in the
face of superficial changes in implementation or approach.
PDEs can be solved in multiple distinct ways, and even the
same type of solver may be implemented in slightly different
ways. Accounting for all those variants with just pattern
recognition would entail adding all possible variants to the
database as well.

Lastly, the resulting system would also fail to provide any
feedback beyond a match. Properties of the algorithm would
need to be hard-coded, and the system would not provide
much feedback for any deviation or mistake beyond a simple
“no match”. Without understanding how the solver in question
is constructed, the system cannot robustly confirm its correct
implementation or provide guarantees on the output.

IV. DERIVATION OF THE SOLVER

As discussed in Section II, the core of the pseudospectral
solver is the representation of a function as a sum of basis
functions. This can be showcased using the 1D Poisson
equation on the interval [0, L],

Ap =g. (1)

Trigonometric expansions are typically valid basis functions
for the pseudospectral method [9, Sec. 2.1]. Assuming suffi-
ciently smooth functions and periodic boundary conditions,
both ¢ and g can therefore be represented as a sum of Fourier
coefficients, e.g.,

o0
> ¢

k=—o0

gO(x) — 627Tia?(k/L). (2)

Following the steps laid out by Fuka [11], the Poisson
equation can then be reduced to finding those coefficients,

ok \ 2
—<2> Ok = G- 3)

From (2) it can be derived that ¢27("/2) are eigenfunctions

of the Laplacian operator, with the corresponding eigenval-
ues A\, = — (27%/1)®. Unfortunately, \j in the order k =
0,1,...,n are not periodic on [0, L], so a shift that reverses the
order of the second half of the eigenvalues must be introduced,

e k<|n/2—1

Ay =
T WAk k> |nj2] — 1.

“)

With all the parts in place, the full method is fairly
straightforward: compute ¢ using the discrete Fourier trans-
form (DFT), divide pointwise by), then return to the time
domain using the inverse discrete Fourier transform (IDFT).

2072 /16 —4r? /16 — 1272 /16 — 47?16
— 4 /16 2072 /16 — 47 /16 — 1272 /16
— 1272 /16 —4r* /16 2072 /16 — 47 /16
— 47 /16 — 1272 /16 — 47 /16 2072 /16

(a) The operator computed by taking the direct pseudoinverse
of the discrete Laplacian.

—367° /16 172 /16 2872 /16 an? f16
472 /16 — 36m2 /16 42 /16 2872 /16
2872 /16 42 /16 — 36m2 /16 472 /16
472 /16 T2 /16 472 /16 — 3672 /16

(b) The operator extracted from the pseudospectral solver.

Fig. 2: Comparing the operators resulting from inverting the
forward operator versus applying the pseudospectral method
for n = 4 on the domain [0, 1].

Using SPIRAL, an operator combining all these steps in matrix
form can be explicitly constructed and compared with the
pseudoinverse of the discrete Laplacian operator. Figure 2,
however, shows that these operators are far from identical.

It should be noted that using this algorithm is equivalent to
computing a convolution of g and the time-domain version of
the function from which X’ is sampled. In fact, this function
is the Green’s function for the Laplacian in the respective
dimensionality, though this method never requires it to be
explicitly constructed. Green’s functions will not be discussed
in detail here, though their properties will be briefly used
in Subsection V-C. The main aspect of note relating to this
paper is that convolving with them is an approach to solving
PDEs and ODEs, i.e. given the Green’s function G(z,s)
corresponding to (1) and the requisite boundary conditions,

() = G(s) % g = / Gz,)g(s)ds.)

V. QUANTIFYING THE ERROR

Having been able to identify key components of the solver
via semantics lifting as discussed in Section III and equipped
with the mathematical framework underlying the pseudospec-
tral method, the next task of the pipeline is verifying the
correctness of the actual solver. Continuing with the Poisson
equation, this section will walk through quantifying the precise
relationship between the true underlying solution of a PDE of
this type and the output of the implemented discrete solver.

A. Discretization

The first divergence from the true solution arises from the
discrete nature of the solver. This is unavoidable given the
discrete operator, though the pseudospectral method and the
use of the FFT imply that the functions are sampled uniformly.

Beyond the inherent information loss incurred by discretiza-
tion, error can also be introduced should this process involve

projecting samples onto an insufficient base. Fortunately, as
noted in Section IV, the Fourier coefficients are eigenfunctions
of the Laplacian operator at the heart of the Poisson PDE when
constrained by periodic boundary conditions [12, pp. 35-37].
Hence, the Fourier transforms represent no distortion of the
result not also present in the Laplacian.

In fact, since they share the same base, the discretization
operation can be pulled out of the solver entirely and per-
formed beforehand, yielding an equivalent formulation. Now
the solver no longer introduces that error, mirroring the fact
that the code accepts already discretized input vectors, not
continuous function descriptions.

B. Numerical Equivalency to the Inverse Operator

So far, it has been verified that no unaccounted numerical
error slipped in when constructing the framework for the solver
or its base components. However, it must also be verified that
the solver actually produces a correct solution. In short, the
solver should be able to solve the equation.

To accomplish this, SPIRAL can explicitly construct the
forward operator central to the PDE in question—the discrete
Laplacian—in matrix form. Then, we use SPIRAL’s built-in
computer algebra system (CAS) functionality to determine its
exact symbolic inverse.

Here it should be noted that periodic boundary conditions
are insufficient to fully constrain the solution space, meaning
that the operator is rank-deficient and has no pure inverse.
Instead, we compute the pseudoinverse, which projects all
solutions to a space where they have a mean of zero. Therefore,
multiplying the constructed forward and inverse operators
should not yield an identity matrix but rather a matrix of the
following form,

(n— 1)/'IL —1/71,
—l/n (n— 1)/n

_1/71,
—1/n

. —1/n
_l/n (nfl)/n

Taking the sequence of operations lifted from the raw C
implementation—an FFT, a multiplication with a diagonal
matrix whose main diagonal is composed of the M’s, fol-
lowed by an inverse FFT—SPIRAL’s symbolic engine can
compare them to the constructed pseudoinverse, as well as
to the forward operator. Given no indication so far that errors
are introduced by utilizing the pseudospectral method when
compared to a discretized version of the true solution, the
two inverse operators should be identical. However, as already
showcased in Figure 2, they are not. Curiously, both operators
do correctly invert the forward operator, both producing the
same matrix (6).

Upon closer inspection, the operators are in fact equivalent,
merely separated by a rotation in their eigenspaces. This
creates not only superficially different operators but also
ones with seemingly incongruent eigenspaces (i.e. different
eigenvalues and eigenvectors). The rotation matrix can be
constructed in closed form, or directly by SPIRAL using
Gaussian elimination, and automatically verified to be a valid

(6)

—417/4 4+ 18 - E(32) + 10 - E(32)% + 22 - E(32)3 + 4 - E(32)* + 8 - E(32)5 + - - - — 22 - E(32)!® — 10 - E(32)!* — 18 - E(32)15

Fig. 3: A single entry in the base change matrix for n = 16, a cyclotomic polynomial with E(n) being the nth root of unity.

base change. Since the base change is invertible, it adds no
error and has no impact on the correctness of the output
produced by the operators, hence why both successfully cancel
the forward operator.

Here, another advantage of using a proper CAS such as
SPIRAL emerges. SPIRAL supports cyclotomic polynomials,
allowing them to be operated on symbolically. These polyno-
mials are irreducible, with their roots being the primitive roots
of unity, which appear in the base change and can emerge in
Green’s functions (though not for the 1D Poisson case). As
seen in Figure 3, they rapidly grow in complexity, with most
entries in the base change matrix having as many terms as the
problem size n. Without robust support, the approximation
error can grow rapidly, making the base change potentially
non-invertible and exact verification impossible.

C. Lipschitz Bounds

Though the correctness of the output points by the solver
implemented in C has now been established, no bounds have
been placed on the range of continuous functions that could
be represented by these points. Between these points, there are
no limits on what values the true solution could take.

The main operation of the solver is a convolution—
computed via the FFT for performance reasons—with a set
of values originating from the DFT itself. In the time domain,
these values are samples from the Green’s function, though it
is never explicitly constructed.

Green’s functions are tied to specific operators and boundary
conditions, and are definitionally functions which can be
convolved with the input to a PDE to solve the equation. Since
the values we use originate from this function, its inherent
properties are useful to derive bounds on the output as well.

If a constraint is imposed on the input requiring it to be
Lipschitz continuous on the interval of interest, the Dominated
Convergence Theorem and Bochner’s Theorem [13, pp. 25—
30] can be used to show that the solution is also Lipschitz
continuous. Since the pseudospectral method makes similar
assumptions, this is a reasonable constraint. Then, utilizing
the known features of the Green’s function),

o(z) = / o(z + D)o@z = Il < gl

Hence, its range between samples is strictly limited by the con-
straint on its derivative, and thus the space between samples
in which it must lie is constrained.

D. Machine Error

The SPIRAL system enables the isolation of numerical
sources of error as it is built upon symbolic execution. In
normal code, however, operations are not executed symbol-
ically but numerically, which leads to the accumulation of
machine error due to finite precision. These errors can be

A T AJ|rB
I L |
}‘W] d |
0 05 1 2 3 4 5 6
——
Rounding

Fig. 4: Example of how error can be introduced by adding two
floating-point numbers, encountered when the result moves
into a range with coarser precision. This nonuniform distri-
bution of precision is inherent to most typical floating-point
formats, shown here by 4.5 not being representable.

quantified exactly by conducting forward error analysis. For
this, interval arithmetic is used, counting the number of finite
precision operations in the critical path of the input.

The idea behind this stems from the distribution of floating-
point numbers along the number line when using traditional
representations such as IEEE-754. As showcased in Figure 4, a
rounding error can occur after an addition operation involving
floating-point numbers due to the nonuniformity of the repre-
sentation, where less precision is dedicated to larger numbers.
That way, two numbers between two different powers of two
can yield an exact result that cannot be represented by the
format and hence must be rounded.

Different operations interact differently with the error inter-
val. While the add operations introduce a maximum of one
rounding error equal to half the distance between numbers
at the lowest precision, which shall be called one “tick”,
multiplication is different. Ordinarily, these operations would
massively expand the error intervals, but since all constants
are in [0, 1], they cannot. In fact, these multiplications merely
add a maximum of one tick, caused by the rounding of the
result post-operation.

Hence, the total maximum error incurred by finite precision
can be determined by counting the number of additions
and multiplications performed in the critical path. Each FFT
contains four such operations per butterfly component, with
the entire FFT being composed of log n butterflies. Since two
FFTs are used, we double that number and add three for the
complex multiplication done in frequency space. In total, this
means that the machine error is 8 log(n) + 3 times the size of
a tick.

VI. RESULTS

To recap the pipeline, it begins with Listing 1, a snippet of
code implementing the pseudospectral solver. Its basic seman-
tics can be lifted by techniques in line with those presented in
a previous paper [5]. This results in a sequence of symbolic
operators, which can then be related to the known forward
operator for this equation, namely the discrete Laplacian with
periodic boundary conditions. While the extracted operator

Compute Resources Needed for Reasoning Chains

Time to prove equivalency in SPIRAL for problem size n and size of the base change
Time [s] Memory [KB]

25,000 160

20,000
=+Time 120

4Memory
15,000 100

10,000

5,000

0 S L 0
2 24 25 26

N,
N

Problem Size

Fig. 5: Compute resources needed for determining the equiva-
lency of the lifted operator sequence and the forward operator.
Memory is the approximate space required for the cyclotomic
polynomials of the base change, which grow rapidly with
problem size. For n = 26 execution exceeded 24 hours and
was then stopped. Cases 22-25 were run on a Regular Memory
node with 512 GB RAM, case 25 on an Extreme Memory
node, all at the Pittsburgh Supercomputing Center [14].

differs from the direct pseudoinverse of the forward operator,
this is the result of the eigenspace rotation discussed in
Subsection V-C. Therefore, SPIRAL can compute a change
of basis between the operators, then have it verify that the
result matches the requirements of a base change.

The base change can also be constructed directly using a
closed-form expression. If this fails to match, meaning the op-
erator is either incorrect or implemented in a radically different
fashion, running the much slower Gaussian elimination would
generate the base change and determine whether the operator
is correct. This demonstrates the degree of robustness—even
towards mathematically different solution methods—enabled
by using a symbolic execution system like SPIRAL.

A major cost of this type of correctness checking, however,
is the extreme computational resources it requires for larger
problem sizes. Figure 5 shows how long it can take for
SPIRAL to match these (already lifted) operators, and the
scaling behind it. It also reveals the high memory scaling of
just the exact base change, since this is composed of rapidly
growing cyclotomic polynomials.

Though shortcuts like generating the base change directly
can help speed up computation, these are limited tricks that
must be manually added to the chain for a given operator. Even
when operating on a supercomputer node, it remains intensive.

VII. DISCUSSION

Key to the proposed pipeline is the automation of the
reasoning chains discussed throughout this paper. Given a
piece of code and a mathematical expression within a problem
domain representable by SPIRAL (particularly PDEs), veri-
fication should be possible without problem-specific manual
tweaks. For the 1D Poisson equation, the pipeline has been

described here, including how to direct SPIRAL’s existing
systems to mostly automate it.

Critically, for a given (small) compile time n, the system
can lift most of the operations (especially the FFTs) into the
symbolic domain. A SPIRAL script exists that then confirms
numerical equivalency with the forward operator. Using the
IGen system [15], the forward error analysis described in
Subsection V-D can be completed automatically and the exact
intervals returned. In the future, the HELIX system [7] could
be leveraged to formalize the entire reasoning chain directly in
SPIRAL using Rocq, generating dependent types with inherent
guarantees and correctness bounds.

Beyond that, crucial next steps involve expanding the prob-
lem domain beyond the Poisson equation and periodic bound-
ary conditions. The insights gained from constructing this first
chain and automating its components should generalize to
more PDE types and boundaries, especially those that use sine
and cosine transforms.

While the problem demonstrated here is rather simple,
complexity in PDE solvers rises rapidly with dimensionality
and boundary conditions. For instance, work by Fedeli et al.
on the WarpX project [16] demonstrates the extreme complex-
ity introduced by the interplay of higher dimensions, more
complicated equations, and intricate boundary conditions.
Here, while the underlying theory remains similar, manual
verification quickly becomes intractable, and even automated
experimental testing is difficult. Therefore, leveraging that
common theory and iteratively extracting semantics can reduce
these problems to similar collections of components, which
then become part of reasoning chains.

The process of first creating the chain of reasoning demon-
strated here required using both the CAS features built into
SPIRAL and Mathematica [17]. Primarily, the latter was
useful in exploring the different eigenspaces of the direct
pseudoinverse and the pseudospectral operator. Mathematica
allows for rapid computation of the entire eigenspace of an
operator and its variants, as well as supporting a broader range
of general mathematical functions in a friendlier interface.
This streamlined the process of understanding the rotation
and required base change. However, to actually construct the
chain, SPIRAL alone suffices, as it is capable of generating the
base change, either via direct construction or using Gaussian
elimination, and confirming its properties.

ACKNOWLEDGMENT

The authors would like to thank Dr. Brian Van Straalen,
Dr. Het Mankad, and Dr. Phillip Colella for many insightful
discussions related to this project.

This work used Bridges-2 at Pittsburgh Supercomputing
Center through allocation cis250137p from the Advanced Cy-
berinfrastructure Coordination Ecosystem: Services & Support
(ACCESS) program, which is supported by National Science
Foundation grants #2138259, #2138286, #2138307, #2137603,
and #2138296.

This paper was prepared as an account of work sponsored
by an agency of the United States Government. Neither the

United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not nec-
essarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency
thereof. Any views, opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the
authors and do not necessarily state or reflect the views of
the National Science Foundation, United States Government,
or any agency thereof. They should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. Government.

REFERENCES

[1] Z.Zhang, C. Wang, Y. Wang, E. Shi, Y. Ma, W. Zhong, J. Chen, M. Mao,
and Z. Zheng, “LLM hallucinations in practical code generation: Phe-
nomena, mechanism, and mitigation,” Proc. ACM Softw. Eng., vol. 2,
no. ISSTA, Jun. 2025.

[2] Y. Tian, W. Yan, Q. Yang, X. Zhao, Q. Chen, W. Wang, Z. Luo, L. Ma,
and D. Song, “CodeHalu: Investigating Code Hallucinations in LLMs
via Execution-based Verification,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 39, no. 24, pp. 25300-25 308, Apr. 2025.

[3] P. Valero-Lara, W. F. Godoy, K. Teranishi, P. Balaprakash, and J. S.
Vetter, “ChatBLAS: The First AI-Generated and Portable BLAS Library
) in Proceedings of the SC ’'24 Workshops of the International
Conference on High Performance Computing, Network, Storage, and
Analysis, ser. SC-W ’24. Atlanta, GA, USA: IEEE Press, Feb. 2025,
pp- 19-24.

[4] “TRACTOR: Translating All C to Rust | DARPA.” [Online]. Available:
https://www.darpa.mil/research/programs/translating-all-c-to-rust

[5] N. Zhang, S. Rao, M. Franusich, and F. Franchetti, “Towards Semantics
Lifting for Scientific Computing: A Case Study on FFT,” arXiv preprint
arXiv:2501.09201, 2025.

[6] F. Franchetti, T.-M. Low, T. Popovici, R. Veras, D. G. Spampinato,
J. Johnson, M. Pii schel, J. C. Hoe, and J. M. F. Moura, “SPIRAL:
Extreme performance portability,” Proceedings of the IEEE, special
issue on “From High Level Specification to High Performance Code”,
vol. 106, no. 11, 2018.

[71 V. Zaliva, “HELIX: From Math to Verified Code,” Ph.D. dissertation,
Carnegie Mellon University, USA, 2020.

[8] A. Appel and A. Kellison, “VCFloat2: Floating-Point Error Analysis
in Coq,” in Proceedings of the 13th ACM SIGPLAN International
Conference on Certified Programs and Proofs, ser. CPP 2024, New
York, NY, USA: Association for Computing Machinery, Jan. 2024, pp.
14-29.

[9]1 B. Fornberg, A Practical Guide to Pseudospectral Methods, ser. Cam-
bridge Monographs on Applied and Computational Mathematics. Cam-
bridge: Cambridge University Press, 1996.

[10] W. Press, Numerical Recipes 3rd Edition: The Art of Scientific Com-
puting, ser. Numerical Recipes: The Art of Scientific Computing.
Cambridge University Press, 2007.

[11] V. Fuka, “PoisFFT — A free parallel fast Poisson solver,” Applied
Mathematics and Computation, vol. 267, pp. 356-364, Sep. 2015.

[12] D. Borthwick, Spectral Theory: Basic Concepts and Applications.
Cham: Springer International Publishing, 2020.

[13] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, ser.
Springer Monographs in Mathematics. London: Springer, 2002.

[14] S. T. Brown, P. Buitrago, E. Hanna, S. Sanielevici, R. Scibek, and
N. A. Nystrom, “Bridges-2: A Platform for Rapidly-Evolving and Data
Intensive Research,” in Practice and Experience in Advanced Research
Computing 2021: Evolution Across All Dimensions, ser. PEARC ’21.
New York, NY, USA: Association for Computing Machinery, Jul. 2021,
pp. 1-4.

[15] J. Rivera, “IGen,” May 2024. [Online]. Available: https://github.com/
joaoriverd/IGen

[16] L. Fedeli, A. Huebl, F. Boillod-Cerneux, T. Clark, K. Gott, C. Hillairet,
S. Jaure, A. Leblanc, R. Lehe, A. Myers, C. Piechurski, M. Sato,
N. Zaim, W. Zhang, J.-L. Vay, and H. Vincenti, “Pushing the Frontier in
the Design of Laser-Based Electron Accelerators with Groundbreaking
Mesh-Refined Particle-In-Cell Simulations on Exascale-Class Super-
computers,” in SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov. 2022, pp. 1-12.

[17] W. R. Inc., “Mathematica, Version 14.2” [Online]. Available:
https://www.wolfram.com/mathematica

