
A Reconfigurable Energy Storage Architecture for
Energy-harvesting Devices

Alexei Colin
Carnegie Mellon University

Pittsburgh, U.S.A.
acolin@andrew.cmu.edu

Emily Ruppel
Carnegie Mellon University

Pittsburgh, U.S.A.
eruppel@andrew.cmu.edu

Brandon Lucia
Carnegie Mellon University

Pittsburgh, U.S.A.
blucia@andrew.cmu.edu

Abstract
Battery-free, energy-harvesting devices operate using en-
ergy collected exclusively from their environment. Energy-
harvesting devices allow maintenance-free deployment in
extreme environments, but requires a power system to pro-
vide the right amount of energy when an application needs
it. Existing systems must provision energy capacity statically
based on an application’s peak demand which compromises
efficiency and responsiveness when not at peak demand. This
work presents Capybara: a co-designed hardware/software
power system with dynamically reconfigurable energy stor-
age capacity that meets varied application energy demand.
The Capybara software interface allows programmers to

specify the energy mode of an application task. Capybara’s
runtime system reconfigures Capybara’s hardware energy
capacity to match application demand. Capybara also al-
lows a programmer to write reactive application tasks that
pre-allocate a burst of energy that it can spend in response
to an asynchronous (e.g., external) event. We instantiated
Capybara’s hardware design in two EH devices and imple-
mented three reactive sensing applications using its software
interface. Capybara improves event detection accuracy by
2x-4x over statically-provisioned energy capacity, maintains
response latencywithin 1.5x of a continuously-powered base-
line, and enables reactive applications that are intractable
with existing power systems.

CCS Concepts • Computer systems organization →
Embedded hardware; Embedded software;

Keywords Intermittent computing; energy-harvesting power
system; energy burst

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/10.1145/3173162.3173210

Figure 1. Capybara hardware prototype. The solar panels,
microcontroller, radio, and, five sensors are on the front side
(left), and the power system with five capacitor banks and
four switches is on the back side (right).

ACM Reference Format:
Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A Reconfig-
urable Energy Storage Architecture for Energy-harvesting Devices.
In ASPLOS ’18: 2018 Architectural Support for Programming Lan-
guages and Operating Systems, March 24–28, 2018, Williamsburg,
VA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3173162.3173210

1 Introduction
The maturation of energy-harvesting power systems and
extremely low-power computing and sensing technology
has created a new domain of batteryless devices powered en-
tirely by energy collected from a source in their environment,
such as radio waves, light, or vibration. Freedom from a bat-
tery or tethered power supply enables developers to deploy
applications that require little maintenance, even in harsh,
remote environments, like glaciers and in Earth’s orbit.

Energy-harvesting devices present a unique challenge by
operating only intermittently, as energy is available. Such de-
vices collect energy and store it in a buffer (e.g., a capacitor).
When the capacitor reaches a threshold voltage, the device
begins to run software, manipulating memory, accessing sen-
sors, and communicating. When energy depletes, the device
powers down. After powering down, the device accumulates
energy until it can again begin operating.
Computing, sensing, and communication tasks in an ap-

plication place a spectrum of constraints on the energy-
harvesting power system of the device. Intermittent tasks

https://doi.org/10.1145/3173162.3173210
https://doi.org/10.1145/3173162.3173210
https://doi.org/10.1145/3173162.3173210

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Alexei Colin, Emily Ruppel, and Brandon Lucia

are typically computational tasks with few energy demands.
Intermittent tasks, which were studied in prior work [4, 5, 10,
14, 16, 23, 25, 27, 38], can be executed opportunistically and
interrupted almost arbitrarily. Energy-capacity-constrained
tasks require a minimum energy storage capacity in the
power system. Capacity-constrained tasks include opera-
tions that must execute atomically and cannot be interrupted
by a power failure, such as sending a radio transmission
or collecting correlated sensor data. Temporally-constrained
tasks require energy to be available on-demand. A task that
responds to an external event by transmitting a radio packet
is reactive and requires energy to transmit immediately at
the time of the event.
Capacity- and temporally-constrained tasks in the same

application may have requirements of the power system that
conflict. A hardware designer may build a power system
with a large energy buffer to support the largest capacity-
constrained task in the application. However, after depletion,
a large energy buffer has a long recharge time. During the
recharge period, the device is off and temporally-constrained
tasks will not execute reactively. Alternatively, a hardware
designer may build a power system with a small energy
buffer designed to execute temporally-constrained tasks re-
actively, avoiding long, inactive recharge periods. However,
the small buffer may store insufficient energy for a capac-
ity-constrained task. The application is not fully functional
with either power system.

Application developers must co-design application soft-
ware with power system hardware. Software can control
when and in what quantity to accumulate energy only to the
extent of configuration supported by the hardware. Inflexible
hardware may force all software tasks to use a large “worst-
case” energy buffer, violating application requirements. Power
systems of state-of-the-art energy-harvesting devices do not
support programmatic reconfiguration of energy capacity
at runtime. The limited control over charge and discharge
timing available to programmers today must be expressed
indirectly through control code that puts the device to sleep
at key points in code. Such control code expresses task’s
high-level energy requirements indirectly and imperatively
through ad hoc device-specific code.

We propose Capybara1, a high-level abstraction for spec-
ifying capacity and temporal task constraints with a co-
designed hardware/software system that executes applica-
tions according to those constraints. Capybara supports
declarative specification of tasks’ energy requirements and
eliminates the need for imperative power system control
code that entangles application logic with low level hard-
ware configuration. Capybara allows an application to mix
capacity and temporal requirements with a reconfigurable
hardware energy storage mechanism that an application can
reconfigure at run time to support different capacities. We

1Capybara: Capacitor-based energy banks as a reconfigurable array

developed two full hardware/software prototypes of Capy-
bara built into custom energy-harvesting platforms, one of
which is pictured in Figure 1. We use these prototypes to
show that Capybara enables applications to match power
system characteristics to task requirements, providing flexi-
bility, efficiency, and reactivity. Given concise declarations
of the tasks’ energy needs, Capybara ensures that capac-
ity-constrained tasks have sufficient energy to execute and
temporally-constrained tasks execute reactively. The contri-
butions of this work are:
• A hardware energy storage mechanism with capac-
ity that is reconfigurable at runtime compatible with
different capacitor types and energy harvesters.
• A declarative software interface for specifying task
energy requirements.
• A runtime system that reconfigures energy storage to
meet task energy requirements.
• Two full-system, solar-harvesting platforms: a versa-
tile sensing platform and a board-scale nano-satellite.
• An evaluation on real hardware showing that reconfig-
urability improves responsiveness and event detection
accuracy.

This paper is organized as follows: Section 2 provides back-
ground on energy-harvesting and intermittent software chal-
lenges. Section 3 is an overview of Capybara’s hardware and
software. Section 4 describes Capybara’s software interface
and runtime. Section 5 describes Capybara’s reconfigurable
power system hardware. We evaluate Capybara in two real
energy-harvesting platforms in Section 6. We discuss related
work in Section 7 and conclude in Section 8.

2 Intermittent Energy-constrained
Systems

Energy-harvesting devices collect energy from the environ-
ment, buffer a useful quantity of energy, and execute using
the buffered energy. The larger the buffer, the longer a span
of uninterrupted operation the device can support, and the
longer the time required to recharge the buffer. To not make
any assumptions about availability of incoming power, the
intermittent execution model allows the processor to be com-
pletely off while charging, turn on only once the buffer is
full, and execute until the buffer is empty. This model is more
challenging but also more practical than a non-intermittent
model that assumes that incoming power is always sufficient
to keep the processor in a (memory-retaining) sleep state
while charging the buffer.

The time the device operates before losing power depends
on the energy buffer size, not on the incoming power. A de-
vice consumes buffered energy much faster than it charges,
because harvested power is much lower than active power
consumption. The disparity between charging and consump-
tion has two consequences: charging is negligible during
operation and charge times may be orders of magnitude

A Reconfigurable Energy Storage Architecture ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

longer than discharge times. During active operation, the
energy buffer is the only relevant power source, and its size
determines the software tasks that can be executed.

Recent work developed support for intermittent computing
on an energy-harvesting device [4–6, 10, 14, 23, 25, 38]. The
key challenge addressed by this prior work is that buffered
energy is available only intermittently. When power fails,
the device loses volatile state, and retains non-volatile state,
compromising forward progress and memory consistency.
Programming languages [10, 25], software [16, 23, 32, 38]
and hardware approaches [4, 5, 14, 24] addressed these issues,
ensuring correctness for intermittent computing workloads.
While prior work focused on the correctness of compu-

tation, energy-harvesting applications may execute tasks
that compute, store data, sense, and communicate, using var-
ious peripherals. While computational tasks can often be
decomposed into subtasks that execute intermittently, other
tasks may require a fixed quantum of energy to complete
atomically without being interrupted by a power failure. For
example, successfully collecting a sample from a sensor may
require operating atomically at a low power level for only
8 milliseconds; transmitting a 25 byte Bluetooth packet re-
quires operating atomically with a much higher power level
for 35 milliseconds. Today’s energy-harvesting devices are
equipped with a single energy buffer and to support a given
application, the buffer must be provisioned at design time to
hold enough energy for the largest atomic task.

2.1 Task constraints
This work is based on the observation that tasks in an applica-
tion are not uniform in their demands of the power system. A
fixed power system cannot serve all types of tasks, i.e., inter-
mittent, capacity-constrained, and temporally-constrained,
because each type of task performs best with a different en-
ergy buffer capacity. Energy storage capacity determines a
device’s operating time and recharge time. The timing of
charge and discharge intervals dictates whether a device
meets the demands of an application. Operating time de-
termines whether a capacity-constrained task will complete
without interruption, because the task will fail given insuffi-
cient operating time. Recharge time determines whether a
temporally-constrained task will execute reactively because
the system is off (unresponsive) during recharge.
When an application mixes atomic and reactive tasks, a

fixed energy buffer is problematic. Low capacity supports
reactive tasks with a short recharge interval, but is insuffi-
cient for large atomic tasks. High capacity supports large
atomic tasks, but causes long, inactive recharge intervals
which compromise reactivity. Usually, with fixed energy ca-
pacity, a developer must sacrifice reactivity to ensure there
is sufficient energy for large atomic operations.
Figure 2 illustrates how fixed energy buffering fails to

meet application demands. The application attempts to col-
lect a time series of 15 sensor samples to cover a time interval

Vstart

 5 10 15 20 25 5 15 25

V
min

 Low Capacity
Time (s)

5
 s

a
m

p
le

s

5
 s

a
m

p
le

s

5
 s

a
m

p
le

s

fa
il

e
d

 p
a

c
k

e
t

c
h

a
rg

in
g

c
h

a
rg

in
g

c
h

a
rg

in
g

c
h

a
rg

in
g

1
5

 s
a

m
p

le
s

c
h

a
rg

in
g

c
h

a
rg

in
g

c
o

m
p

le
te

p

a
c

k
e

t

 High Capacity
Time (s)

E
n

e
rg

y
 B

u
ff

e
r

V
o

lt
a
g

e
 (

V
)

Figure 2. Execution with a fixed-capacity energy buffer. De-
vices are forced to trade short charge cycles for the ability
to complete energy intensive tasks.

and transmit the data by radio. The figure shows how stored
energy (energy buffer voltage) varies with time when the
application executes with two different capacities. Blue re-
gions are operating periods and white regions are recharge
periods. With a small energy buffer (left), the application
collects sensor samples reactively, with short recharge peri-
ods between sampling bursts. However, this system buffers
insufficient energy to completely transmit by radio. With a
large energy buffer (right), the application buffers sufficient
energy to transmit. However, the application spends a much
longer period of time charging and fails to sample the sensor
reactively. There are no samples in the long recharge spans,
and many back-to-back samples. To successfully meet the
demands of such an application, a system requires energy
reconfigurability; which is central to our main contributions.

2.1.1 Asynchronous tasks and on-demand energy
Some individual tasks have both temporal and capacity con-
straints and today’s devices are especially ill-suited to these
tasks. Tasks with both types of constraints are often asyn-
chronous, presenting a need to react to an unpredictable
event, such as an environmental signal or interaction with a
user. To handle unpredictable events, a device’s power sys-
tem must provide support to reserve energy in advance of
a high-energy task that will execute at some unpredictable
point in the future.

Without a way to reserve energy before an event, the sys-
tem has to pause and accumulate energy after the event, but
before executing the task that reacts to the event. Moreover,
a capacity-constrained, reactive task incurs a long recharge
latency before executing, rendering latency-sensitive applica-
tions (e.g., human-computer interfaces), largely inapplicable
to existing energy-harvesting devices. A concrete example
of such an application samples a sensor, detects a specific
event, and sends a radio alert. The radio alert task is both
capacity- and temporally-constrained. Radio transmission
demands a high capacity energy buffer that needs to be avail-
able immediately after the event. These tandem constraints
are beyond the capability of fixed-capacity power systems.

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Alexei Colin, Emily Ruppel, and Brandon Lucia

2.2 Design space
The power system demands of intermittent, energy-con-
strained systems define a new hardware/software design
space. The dimensions of this space are: required atomic-
ity of a task (i.e., minimum operating time), the required
reactivity of a task (i.e., maximum recharge time), the total
energy buffer capacity (in µF), and the board area or volume
consumed by energy buffering capacitors. We characterize
the space to show that the problem is fundamentally one of
hardware/software co-design and that it is essential to avoid
design points that violate application requirements.

2.2.1 Atomicity, reactivity, and energy capacity
Device energy capacity determines the longest possible span
of operations that can execute atomically, and the minimum
time between operations, i.e. maximum reactivity. The mini-
mum interval between operations is also limited by hardware
capabilities, e.g. sensor warm-up time, however this interval
may be unnecessarily inflated at design points where these
limits are below the charge time. Figure 3 illustrates the trade-
off between provisioning for atomicity and reactivity from
a perspective of a task in a multi-task system. The figure
shows how either implementability or efficiency of a task
may be compromised by another task. In this experiment,
we connected a MSP430FR5969 microcontroller to capacitors
of different size and type. For each capacitor, we measured
the longest span of ALU operations that the device could
execute before a power failure, modeling a generic atomic
operation consuming a particular amount of energy.
The curve in Figure 3 represents design points that are

optimal, perfectly matching the span of atomic operations
to buffered energy. In configurations to the left of the curve,
the task is infeasible: the atomicity requirement of the task
exceeds the maximum possible with the given energy buffer
size. In configurations to the right of the curve, the task is
not reactive and inefficient: the buffer and the time to charge
it are larger than needed by this task. In these inefficient
configurations, the device executes in unnecessarily long
bursts, and spends an unnecessarily long time recharging
leaving the device powered off and not reactive. Assuming
the atomicity requirement of the task indicated by the dashed
line, in Design A the task is infeasible, and in Design B the
task is not reactive. However, other tasks might only be
feasible in Design B. Unless all tasks are the same, no fixed-
capacity design will satisfy the requirements of all tasks.

2.2.2 Atomicity and capacitor volume
After determining the energy buffer capacity required to
meet a task’s atomicity requirement, the designer must pro-
vision a buffer with that capacity. Figure 4 illustrates the
non-uniform relationship between capacitor volume and
atomicity. In this experiment, the microcontroller was pow-
ered by a bank of one or more capacitors of the same type in

 A
to

m
ic

it
y
 (

M
o

p
s
)

Capacitance (uF)

0

1

2

3

4

10
2

10
3

10
4

Figure 3. Design space for energy buffer capacity. Systems
with insufficient energy storage capacity will not be able
to complete workloads with atomicity requirements, but
systems with overprovisioned energy storage will spend
more time charging than is necessary.

0 5 10 15 20 25 30 35
Volume (mm3)

10
1

10
0

10
1

10
2

At
om

ic
ity

 (M
op

s)

Ceramic (X5R)
Supercap (CPH3225A)

Figure 4. Design space for provisioning a given atomicity
requirement with a capacitor by volume and type.

the highest density package connected in parallel. The first
observation is that differences between capacitor technolo-
gies produce inefficient design points. An equal or larger
volume of ceramic capacitors provides less atomicity than a
smaller volume of supercapacitors, due to the low density
of ceramic capacitors. The second observation is that for
the supercapacitor model we evaluated, the atomicity sees a
diminishing increase with volume. This effect is due to the
high Equivalent Series Resistance (ESR) of this ultra-compact
supercapacitor model, which is inversely proportional to the
number of capacitors connected in parallel. A high ESR lim-
its the amount of useful energy that can be extracted once
stored, and renders the capacitor useless in power systems
without the capability to boost voltage, as we explain in
Section 5. When provisioning, the designer should avoid in-
efficient design points and consider the capacitor type along
with power system capabilities.

A Reconfigurable Energy Storage Architecture ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

main.c

App Code - Sensor - Radio -

configure mode2
task sense(){
 d = read_sensor()
 nexttask proc }

burst mode3
task radio_tx(){
 radio_tx(“alert!”)
 nexttask sense }

preburst burst=mode3
 exec =mode1
task proc(){
 if(motion_chk(d))
 nexttask radio_tx
 else
 nexttask sense
}

M
od

e
1

M
od

e
2

M
od

e
3

631

Figure 5.Overview of Capybara. The platform has resources
for computation, sensing, and communication, and includes
three energy storage configurations with different capacities.
An example program has tasks annotated with energy mode
requirements.

2.2.3 Versatility
Existing energy-harvesting power systems have limited ver-
satility. Factors limiting their versatility are over-specialization
to a particular load (e.g. an MCU or sensor) [33], to an ex-
pected input power level [31], or to a particular capacitor
ESR and voltage rating [30]. Capybara is inspired by the
need for a power system that is reusable across a variety
of applications and dynamically reconfigurable to support
applications with varied energy demands.

3 Capybara Design Overview
Capybara is a system composed of co-designed hardware
and software components that match the energy buffering
capacity of the hardware to the energy demand of the tasks in
the application. Figure 5 shows a high-level system overview
of Capybara (top) and a task-based intermittent program
with energy mode annotations for Capybara (bottom).

A Capybara system may include general purpose comput-
ing components and memories alongside arbitrary peripher-
als, such as sensors and radios. A motivating insight behind
Capybara is that using each of these components to perform
a useful quantum of work without a power failure requires
a different amount of total energy. Capybara provides an
energy reservoir configurable to multiple different energy
capacities. The energy buffer configurations correspond to
different operating modes that, in turn, correspond to differ-
ent energy requirements presented by software tasks.
Task-based programmingmodel.The application depicted
shows software tasks expressed in the style of recent task-
based intermittent programming and execution models [10,

25]. In such a model, the programmer decomposes an appli-
cation into function-like tasks. Control flows from one task
to another when one completes, at a nexttask statement.
In the figure, the tasks require different amounts of en-

ergy. Computing requires little energy, sensor processing
requires more energy, and encoding and communicating
by radio requires yet more energy. The different tasks are
annotated with different modes that express their different
energy requirements, and correspond to the energy buffers
of different capacity on the Capybara board. Section 4 de-
scribes how a programmer conveys task energy requirements
through Capybara’s programming interface. Section 5 how
Capybara’s hardware implements a reconfigurable energy
reservoir using an array of capacitor banks.
Defining Task Energy Requirements. A pre-requisite to
using Capybara to build a system is to measure the abso-
lute amount of energy required by each of an application’s
tasks and to identify the absolute amount of capacitance
required to furnish that amount of energy. From the soft-
ware perspective, Capybara abstracts the specific amount of
energy required by a task, instead allowing software to refer
to a task’s energy mode: an identifier that corresponds to the
specific amount of capacitance required to execute the task
(discussed in detail in Section 4). Capybara’s power system
(described in Section 5) is designed to allow a hardware de-
signer to partition a set of capacitors into one or more banks
such that the capacitance needs of all energy modes can be
met by activating some subset of the banks.

A programmer should define energy modes and provision
hardware only once an application’s code is stable, to avoid
re-provisioning as code changes. Energy provisioning re-
quires measuring a task’s energy consumption, including
initialization and warm-up of peripherals that the task ex-
ercises. A simple way to estimate energy consumption is to
run the task using an increasingly large energy buffer until
the task successfully completes. Another approach is to mea-
sure task energy consumption on continuous power using a
current sense amplifier and analytically derive the required
capacitance and tune it by measuring energy storable in trial
capacitor arrays. The translation of the energy estimate into
a capacitance value may take into account degradation of
the capacitor material over time by the standard practice of
derating, i.e. overprovisioning by a margin.
Capybara’s focus is not developing a methodology for

measuring the energy of software tasks and this simple
measurement-based approach is reasonable (and similar to
UFoP [13]). The key insight of Capybara is, instead, the need
for reconfigurability of hardware energy buffering resources
by software to meet varied software energy demand. Op-
timizing the methodology for measuring software energy
demand is an important, yet orthogonal problem.

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Alexei Colin, Emily Ruppel, and Brandon Lucia

4 Capybara Software Support
Capybara provides a programming interface and runtime
software support to reconfigure the power system to meet
an application’s varied task energy demands. To express the
energy demands of a task, a programmer annotates the task
declaratively with the task’s energy mode. As the program
executes, the Capybara runtime library dynamically recon-
figures the power system hardware to execute tasks with
their specified energy mode. In hardware, an energy mode
corresponds to a specific configuration of Capybara’s recon-
figurable energy storage reservoir. Section 5 discusses how
energy modes are implemented in hardware.

4.1 Energy modes
In a Capybara system, an energy mode is a property of an
application task that expresses a demand of the power system
to meet a capacity constraint, a temporal constraint, or both.
Recall from Section 2 that a task with a capacity constraint
requires a specific minimum amount of energy to complete
without being interrupted by a power failure, a task with a
temporal constraint requires an operation to occur reactively,
without a long recharge delay, and a task with both types of
constraints requires a specific minimum amount of energy to
be reserved to reactively be consumed at some future point.
The programmer annotates a task with parameterized

keywords to associate the task with an energy mode. The
config (mode) annotation indicates that the task should exe-
cute with the configuration of the hardware energy storage
reservoir that corresponds to the identifier mode. As Section 5
describes, a hardware configuration concretely corresponds
to the activation and de-activation of energy banks by means
of a custom switching circuit. When a task with a config
(mode) annotation starts executing, the Capybara runtime
issues a command to the power system to configure the
reservoir to capacity that corresponds to mode. The system
then charges the newly configured energy buffer. When the
buffer is full, the task executes. The system designer is re-
sponsible for ensuring that the hardware configuration that
corresponds to mode meets the requirements of a task anno-
tated with config (mode); we discuss the process of doing
so in Section 3.
The programmer can use a config (mode) annotation to

indicate either a capacity or temporal task constraint. For a
capacity constraint, the programmer is expressing that mode
corresponds to a particular configuration of the hardware
energy store that can buffer sufficient energy to execute the
task without a power failure. For a temporal constraint, the
programmer is expressing that mode corresponds to a hard-
ware configuration that buffers sufficient energy to complete
the task, but also that minimizes recharge time for reactivity.

Figure 5 shows a high-level schematic of the mapping be-
tween hardware energy buffers and software energy modes.
The exemplified Capybara-based platform is equipped with

three hardware energy buffers connectable through switches
in several arrangements. A configuration of the switches,
which are controlled by the Capybara runtime system, cor-
responds to an energy capacity configuration. In the figure,
there are three different energy modes, each of which corre-
sponds to a different subset of hardware banks. The sense()
task in the figure requires the three units of energy pro-
vided by the capacitor arrangement inside the mode2 box as
a result of the config (mode2) annotation on the task. Be-
fore sense() can execute, the Capybara runtime requests
this arrangement from the power system. After the reservoir
charges, the device boots, and the runtime executes sense().

4.2 Responsive asynchronous bursts
Capybara allows tasks to have a capacity constraint and also
to be reactive using its support for bursts. The Capybara
API includes two additional task annotations that support
bursts: burst and preburst. A task annotated with burst
(mode) requires the specific (possibly very large) amount of
energy of the energy mode mode at a time in the future that is
unpredictable, e.g., in response to a specific sensed event. Just
before a burst task executes, the runtime system re-activates
the energy banks that implement the mode configuration
and that had been charged ahead of time (by the mechanism
explained next), and immediately begins executing the burst
in its declared mode mode. The key difference between a
burst task and a config task is that Capybara does not
need to pause to recharge before executing the burst task,
because the energy buffer had been filled ahead of time.
A programmer can use Capybara’s preburst task anno-

tation to charge a burst task’s mode ahead of time. The
programmer will annotate a task that is off of the critical
path of the burst task’s operation with the preburst an-
notation. The pause to charge to the burst task’s mode
will then occur before the preburst task, well in advance
of the time critical burst task. When execution reaches a
task annotated with preburst (bmode, emode), the Capybara
runtime takes several steps. First, Capybara configures the
hardware for the energy mode bmode and pauses until the
energy buffer for bmode is fully charged. Second, Capybara
configures the hardware for emode, de-activating the energy
buffers of bmode. A key property of Capybara is that a de-
activated mode’s energy buffers retain their stored energy,
except the energy lost to leakage. Third, Capybara pauses to
fully charge the energy buffer for emode. Fourth, after fully
charging, Capybara executes the preburst task with the
hardware configured for emode. The preburst task pays the
burst task’s recharge latency in advance when the latency
is tolerable, to save the burst task from paying its recharge
latency on-demand, when the latency is intolerable.

In Figure 5, proc() is the preburst task that charges the
energy buffers that the burst task radio_tx needs to exe-
cute. radio_tx is a burst task because it must be responsive:
when proc() detects a motion event in the data collected

A Reconfigurable Energy Storage Architecture ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

by sense(), the application should send an alarm immedi-
ately. If radio_tx()were not a burst task, the system would
incur the latency of a full charge of the energy capacity re-
quired by radio_tx(), which could be tens to hundreds of
seconds, depending on incoming power and radio hardware.
With preburst, Capybara eliminates the latency between
the event detection and the alarm delivery by charging ahead
of time.

4.3 Capybara runtime implementation
We implemented Capybara’s task annotations in a runtime
software library. The runtime includes a GPIO-based inter-
face to Capybara’s power system hardware to reconfigure
energy buffers for an energy mode; we discuss the switches
and energy buffers more in Section 5. The runtime also im-
plements a non-volatile state machine to support preburst
and burst. Our Capybara runtime implementation ensures
that all operations are robust to power failures by careful
use of non-volatile memory.

5 Reconfigurable Power System Hardware
Capybara introduces a novel, reconfigurable power system
architecture with support to programmatically reconfigure
the device’s energy storage capacity and accumulate energy
for asynchronous bursts. The power system architecture
is illustrated in Figure 6(a). The hardware design consists
of two parts: (i) the power distribution circuit, and (ii) the
capacity reconfiguration circuit.

5.1 Power distribution
Capybara’s power distribution circuit accepts energy from
the harvester, charges energy buffering capacitors, and gen-
erates a usable output voltage to power the load. Our design
is versatile, because it can operate with a wide range of input
voltage and power, it is compatible with high-ESR capacitors
(e.g. small dense super-capacitors), and supports loads with
voltage requirements that may exceed the harvester voltage
output or the capacitor voltage rating. These benefits stem
from the input voltage limiter, and input and output boosters.

The voltage limiter circuit allows the harvester voltage in-
put to rise above the ratings of the components in the system,
allowing a wide dynamic range of input power conditions.
For example, the limiter allows solar panels to be connected
in series to handle dim lighting conditions, while avoiding
damagingly high voltages in bright light.
The input booster is located between the harvester and

the energy buffering capacitors and allows the device to use
weak input power from the harvester by boosting its volt-
age. Charging capacitors from a boosted voltage, instead of
the voltage from the harvester, allows using harvesters that
produce a voltage too low to operate the system. Capybara’s
particular input booster has a “cold-start” phase that substan-
tially slows charging of large capacitors at low input power.

To reduce charge time, when the harvester is producing suf-
ficient energy to charge quickly, we added an input booster
bypass optimization. The bypass circuit keeps the capacitors
disconnected from the booster output and charges them di-
rectly from the harvester (through a keeper diode), until the
booster starts and the capacitor voltage is above the cold
start threshold. We observed that the bypass optimization
reduces charge time by at least an order of magnitude.

The output booster allows Capybara to extract more stored
energy from the energy buffering capacitors than a direct
connection to the load. The booster produces stable out-
put voltage, despite decreasing capacitor voltage until the
capacitor is discharged nearly completely (down to about
10% of capacity on our devices). Output boosting is required
especially for high-density high-ESR supercapacitors to com-
pensate for the voltage droop induced by the ESR under
load. The regulated voltage of the output booster also allows
Capybara to power sensors, actuators, and radios with a high
minimum operating voltage (e.g. 2.5v gesture sensor or 2.0v
for BLE radio).

5.2 Reconfigurable energy storage circuit
Energy stored in a capacitor of capacity C that is charged
to a voltage Vtop and discharged to a voltage Vbottom is E =
1
2C (V

2
top−V

2
bottom). To reconfigure the energy storage capacity,

the hardware must provide a mechanism for runtime control
of one or more ofVtop,Vbottom, orC . We evaluate the merits of
each mechanism by comparing the time the device needs to
cold-start from empty capacitor until boot and the hardware
complexity, cost, and durability.

The mechanisms that manipulate either voltage threshold
must monitor the voltage on the capacitor with a comparator,
either as the device charges (when controlling Vtop) or as it
discharges (when controlling Vbottom). To control Vbottom the
comparator with a resistor network built into the MCU can
be used. The built-in comparator is not an option for control-
ling Vtop, because the reference must be settable at runtime,
must persist while unpowered, and the comparator output
must be valid at voltages down to zero. Furthermore, the
monitoring overhead while the device is charging increases
the minimum incoming power necessary to charge at all.
In addition, both voltage-based mechanisms must charge
the capacitor to above the minimum for the output booster
(1.6v) before any useable energy can be accumulated. As a
result, cold start is longest for the voltage-based mechanisms.
With Vbottom control, cold-start time is longer than with Vtop,
because the capacitor must charge to the top threshold even
for a low atomicity requirement.
The shortest cold-start time is achieved by controlling C .

The smaller C is, the quicker the capacitor charges to the
minimum boostable voltage. To control C the energy stor-
age must be composed of an array of capacitors connected
through persistent switches settable at runtime. For Capybara,

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Alexei Colin, Emily Ruppel, and Brandon Lucia

Figure 6. Capybara power system hardware: system architecture and capacitor bank switch replicable module.

we chose a mechanism for controlling C for its cold-start ad-
vantage and its lower power and space overhead compared to
our prototype of aVtop mechanism. We prototyped the latter
using a non-volatile digital potentiometer based on EEPROM
and found that it occupies twice the area and consumes 1.5x
the leakage current (according to component specifications).
Another advantage of controlling C is its natural wear level-
ing for capacitors with limited charge-discharge cycles (e.g.
EDLC supercapacitors). Taking inspiration from the concept
of caching, dense but fragile capacitors can be dedicated to a
bank and used only when another bank with less dense but
more robust capacitors is insufficient.
Capybara implements the mechanism for controlling C ,

with an array of capacitor banks, each of which is individ-
ually connectable to the device through programmatically-
controllable state-retaining switches (bottom-left of Figure 6(a),
marked SW). The number of banks and the energy capac-
ity of each bank is provisioned at design time, to match
the energy modes that a programmer identifies in a target
application. Section 3 discusses how to determine an appli-
cation’s energy modes. Figure 6(b) shows the switch circuit
that activates a bank. The figure includes two design variants,
“normally-open (NO)” (blue) in which is open by default and
“normally-closed (NC)” (red).

The NC and NO switch choice differ in the implicit capac-
ity reconfiguration that takes place when the input power
is lost for longer than the switch can retain its state. Once
power becomes available and the device boots, the runtime
system remains unaware of the capacity reconfiguration,
because retaining the state loss event is as problematic as
retaining the switch state, and an introspection circuit for
reading switch state would severely decrease the switch re-
tention time due to leakage. With a NO switch, the energy
storage capacity reverts to the (small) default bank, which
will charge quickly once power becomes available. However,
if the default bank is insufficient for the current task, its
first execution attempt will be wasted. Under an adversarial
input power timing, the cycle of switch state loss, incom-
plete task execution, and switch reconfiguration may repeat

indefinitely. A NC switch reverts to maximum storage capac-
ity, which takes longest to charge but guarantees successful
execution on first attempt after boot.
The switch interrupting a bank’s charge path is imple-

mented as a P-channel MOSFET (Q1) in a high-side switch
configuration. The charge on the latch capacitor (Clatch) pre-
serves the switch state while the device is not powered. To
compensate for the leakage of the latch capacitor, the re-
plenishment circuit (orange) connects the latch capacitor to
the highest voltage source in the circuit whenever the latch
capacitor is charged and the device is powered.

Software running on theMCU can control the switch using
a GPIO pin that charges or discharges the latch capacitor
through the interfacing circuit (green). The interface isolates
the latch capacitor from the MCU pins, to prevent the MCU
pin draining the latch capacitor when the MCU loses power
and the pin loses its high-impedance state.
Voltage thresholding alternative Reconfigurable energy
storage is also possible by configuring the voltage to which
capacitors are charged. We studied this design alternative by
including in our prototype a non-volatile, variable thresh-
old circuit based on a digital potentiometer and a voltage
supervisor. Our study revealed that compared to switched
capacitor banks, the threshold circuit occupies twice the area
and has 1.5x higher leakage current (according to compo-
nent specifications). The threshold design also limits device
lifetime, because the write endurance of the EEPROM poten-
tiometer is limited. In a switch design wear can be reduced
on high-density capacitors by dedicating them to a separate
bank that cycles less frequently than the small bank.

6 Evaluation
We evaluated Capybara to demonstrate that our system en-
ables energy-harvesting applications that detect a higher
share of external events and are more responsive. Our exper-
iments on three complete applications running on real hard-
ware compared execution on continuous power (Cont.) to ex-
ecution on intermittent power under a statically-provisioned
fixed energy storage capacity (Fixed) and under two vari-
ants of Capybara. Capy-R is a subset of the complete Capy-P.

A Reconfigurable Energy Storage Architecture ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

Capy-R excludes burst task support and requires recharging
after every energy mode reconfiguration. We also perform a
case-study of applying Capybara to a low-earth-orbit board-
scale satellite [40] to show the versatility of our system.

6.1 Applications and methodology
We implemented three complete applications characteristic
of the embedded domain in the Chain programming lan-
guage [10] and deployed them onto the Capybara board. The
applications depend on tasks with distinct atomicity and
temporal requirements. We provisioned capacitors for each
application through an iterative process. Starting with a pes-
simistic energy estimate based on load current specified in
the datasheets, we ran the task while progressively increas-
ing the capacity on the board until the task completed. We
describe each application and the hardware setup used to
drive the applications with real environmental input.

6.1.1 Wireless Gesture-Activated Remote Control
We implemented a batteryless, wireless, touch-free gesture-
activated remote control (GRC) using the APDS-9960 gesture
sensor, a phototransistor and the CC2650wirelessMCU. Each
time the MCU turns on, the application samples the photo-
transistor to detect if there is an object above the board. If an
object is detected, the application activates the APDS sensor
for gesture recognition. If the sensor successfully decodes a
gesture, the gesture direction is broadcast over BLE radio.

We implemented two variants of the GRC application. In
GRC-Compact the atomicity requirements of the applica-
tion are: (1) acquire one sample from the phototransistor,
(2) keep the APDS sensor on for the minimum duration of
a gesture motion (250 ms), and (3) transmit an 8 byte BLE
packet. In GRC-Fast, tasks (2) and (3) are joined into a sin-
gle task with higher atomicity requirement equal to their
sum. The GRC-Fast variant trades-off peak energy capacity,
i.e. device size, to eliminate the recharge latency between
gesture recognition and packet transmission. The temporal
requirement of the gesture recognition task is to execute
immediately after proximity was detected, before the motion
finishes. The temporal requirement of the proximity sensing
is to minimize inter-sample times to avoid missing proximity
events.
For the Fixed-Capacity system, a capacity of 400 uF ce-

ramic + 330 uF tantalum + 67.5 mF EDLC2 is provisioned
to meet the maximum atomicity requirement, i.e. (2). For
Capybara, two configurations are provisioned, one per en-
ergy mode. In both gesture variants Capybara uses a 400 uF
ceramic + 330 uF tantalum bank for low energy mode. GRC-
Fast provisions 45 mF to meet the high energy requirement
for task (2), and GRC-Compact provisions 67.5 mF to satisfy
the combined atomicity of tasks (2) and (3). In Capy-P, the

2Energy capacity is not fungible due to different equivalent-series-resistance
of capacitor types that affects the effective extractable energy.

second bank is pre-charged prior to the energy burst in the
gesture task. To produce consistent tap-and-swipe motions
for experiments, we use a servo motor to swing a rigid pen-
dulum over the gesture sensor, as seen in Figure 7. The board
is powered using a harvester built from a voltage regulator
and an attenuating resistor that supplies at most 10 mW of
power.

Servo
Controller

Servo
Motor

Pendulum

Capybara
Board Gesture

Sensor
BLE
Sniffer

Figure 7. Experimental setup for gesture-activated remote
control application.

6.1.2 Temperature Monitor with Alarm
The Temperature Alarm (TA) senses the temperature of an
object (e.g. a pipe) using an external analog sensor (TMP96)
and collects a time series of the samples. If the temperature
leaves a specified range, the application sends a BLE packet
that indicates an alarm and contains the most recent time
series. The atomicity requirements of the application are:
(1) acquire one temperature sample and (2) transmit a 25
byte BLE packet. The temporal requirement of the sampling
task is to minimize charging intervals to not miss over- and
under-temperature events. The temporal requirement of the
transmit task is to send the alarm immediately upon anomaly
detection.
The Fixed-Capacity system is provisioned with a single

bank of 300 uF ceramic + 1100 uF tantalum + 7.5 mF EDLC
capacity.The Capybara systems use one configuration with
300 uF ceramic + 100 uF tantalum to support energy mode
(1), and another with 1000 uF tantalum + 7.5 mF EDLC to
support mode (2). In Capy-P, the second bank is pre-charged
prior to the energy burst in the temperature alarm task.

To generate temperature fluctuation, we attach the appli-
cation’s temperature sensor, a 60W heating element, and a
60W Peltier cooler to a flat metal heatsink with thermal tape.
A control loop on a controller board, which has a temper-
ature sensor attached to the same heatsink, cycles power
to the heater and the cooler to maintain the heatsink tem-
perature within a fixed range or push it out of the range to
generate an alarm event.

The board is powered via two TrisolX solar panels, illumi-
nated with a 20W halogen bulb with brightness controlled by

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Alexei Colin, Emily Ruppel, and Brandon Lucia

PWM to 42%. The application on the intermittently-powered
board (DUT) is measured with respect to a continuously-
powered reference board that runs the same code concur-
rently and has its sensor attached to the same heatsink.

6.1.3 Correlated Sensing and Report
We implemented a correlated sensing and reporting (CSR)
application using a magnetometer and proximity sensor to
report the movement of a magnet mounted on our pendulum
setup. CSR samples the magnetometer and triggers the prox-
imity sensor to measure distance to the source of magnetic
flux. The MCU then lights an LED and sends sensor data
by BLE. CSR’s tasks are: (1) sample the magnetometer, (2)
collect 32 distance samples, (3) power the LED for 250 ms,
and (4) send an 8 byte BLE packet. The magnetometer must
maintain a consistent sampling frequency to capture field
changes over time. Tasks (2)-(4) must execute immediately
and atomically after a magnetic field event to get accurate
distance data and send an alert. The Fixed-Capacity system
uses the same bank as GRC-Fast to support (2)-(4). Capybara
systems use a 400 uF ceramic + 330 uF tantalum bank for the
magnetometer, and the large bank from GRC-Fast for the
other mode. The experiment reuses the GRC setup with a
magnet attached to the pendulum.

6.2 Event detection accuracy
To assess how well applications can detect and react to ex-
ternal events with different power systems, we measure the
detection accuracy without and with Capybara. The accu-
racy in GRC is the number of BLE packets with correctly
decoded gesture direction received out of tap-and-swipe
motions generated. For TA, accuracy is the number of BLE
packets indicating an alarm received from the DUT board
out of BLE packets received from the reference board. The
CSR accuracy is the number of BLE packets produced to
report magnetic events. An event will fail to be reported if
the device is charging when the event occurs, or if the device
exhausts the energy in its capacitors before the end of an
atomic workload (e.g. radio transmission or gesture sensing).
Capybara minimizes this cause of undetected events. A sec-
ondary cause for failure is the inevitable non-ideal behavior
of the hardware that manifests even on continuous power,
e.g. BLE packets lost due to interference or gesture sensor
inaccuracy. For TA, we only consider events which were suc-
cessfully reported by the continuously-powered board and
count events unreported by the DUT board for any reason
as missed. For GRC, we report the imperfect accuracy on
continuous power to serve as a point of comparison. Ges-
ture motions are misclassified when the proximity detection
occurs too late in the pendulum’s swing to distinguish the
motion direction. Proximity-only failures occur when the
APDS sensor is activated following a proximity detection
but does not report a gesture. Gestures are missed if the
device is powered off when the pendulum swings by.

Figure 8 shows the accuracy each application achieves on
an event sequence drawn from a Poisson distribution. The
event sequence for TA contains 50 events over 120 min-
utes, and for GRC and CSR– 80 events over 42 minutes.
Fixed-Capacity system correctly detects only 56% of mag-
netic events, 46% of temperature events, and 18% of gestures,
because the charging intervals overlap with events. In con-
trast, both Capybara variants detect 98% of TA events, at
least 89% of CSR events and Capy-P detects 75% and 76% in
the two variants of GRC. With Capybara, the device runs
the reactive task (i.e., sampling of temperature, proximity,
or magnetic field) more frequently, because it charges and
discharges only the small capacitance between each sample.
Capy-R is not suitable for GRC, because it incurs a charging
delay between proximity detection and the gesture recogni-
tion task, during which the gesture motion completes but
the device is off. Capy-P avoids this delay by pre-charging
for gesture processing ahead of time.

Pwr Fixed CB-R CB-P Pwr Fixed CB-R CB-P Pwr Fixed CB-R CB-P Pwr Fixed CB-R CB-P
0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 E
ve

nt
s

TempAlarm GestureFast GestureCompact CorrSense

Correct Misclassified Proximity Only Missed

Figure 8. Event detection accuracy.

Pwr Fixed CB-R CB-P Pwr Fixed CB-R CB-P Pwr Fixed CB-R CB-P Pwr Fixed CB-R CB-P
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ev
en

t L
at

en
cy

 (s
)

64

61

68

TempAlarm GestureFast GestureCompact CorrSense

Figure 9. Report latency for detected events.

A Reconfigurable Energy Storage Architecture ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

We assess the sensitivity of accuracy to event inter-arrival
times by repeating the measurement for event sequences
drawn from Poisson distributions with decreasing means.
Figure 10 shows that for both applications the farther apart
the events are in time the more events are successfully recog-
nized and reported. A lower event frequency, however, does
not benefit a Fixed-Capacity system as much as it benefits
a Capybara system, because the former exhausts and has
to recharge its large fixed capacitor whether or not it had
to process an event. For TA, Capy-R achieves an accuracy
up to 20% higher than Capy-P on some event sequences, as
a result of the lower energy overhead of Capy-R discussed
further in Section 6.4.

6.3 Responsiveness
Since all of our applications are latency-sensitive and react
to an event by sending a BLE radio packet, we measured the
latency between when the event occurs and when the packet
is received on a laptop. For TA, latency is the time difference
between the packets from the reference board and the DUT
board that correspond to the same temperature alarm event.
For GRC and CSR, latency is the time between the pendulum
actuation command and the BLE packet reception.
Figure 9 shows the latency of each event that was suc-

cessfully reported in the experiment of Section 6.2. For GRC,
while Fixed-Capacity reports few events, the ones it does re-
port, are reported as quickly as on continuous power, because
there is no charging between event detection and radio trans-
mission. For TA and CSR, under Fixed-Capacity some packet
transmissions fail on first attempt due to insufficient energy
and are re-transmitted after a charging interval, which raises
the average latency across all events.

The advantage of Capy-P over Capy-R in terms of latency
is exemplified by TA. All systems need to charge a large ca-
pacity before they can transmit the packet, but only Capy-R
charges on the critical path, increasing the latency by the
charge time (64 s). By charging the capacitor ahead of time,
Capy-P reduces the latency to 2.5 s. By the same principle,
in GRC, Capy-P successfully eliminates the charging latency
between proximity event and gesture recognition, but not
necessarily between gesture recognition and packet trans-
mission. The end-to-end latency differs between the two
variants of GRC that demonstrate the trade-off between la-
tency and the maximum required capacity. In all cases, the
provisioning is for the average case energy cost, not the
worst-case, which causes some events to require charging,
despite pre-charge. The increased latency is incurred for 7%
of reported events in GRC-Fast and 54% in GRC-Compact,
which is reflected in the average latency in Figure 9. As ex-
plained in Section 6.2 Capy-R reports no events for GRC.

100 150 200 250 300 350 400
Mean event interrarival time (s)

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 re

po
rte

d
ev

en
ts

TempAlarm

Pwr
Fixed
CB-R
CB-P

10 15 20 25 30
Mean event interrarival time (s)

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 re

po
rte

d
ev

en
ts

GestureFast

Pwr
Fixed
CB-P

Figure 10. Sensitivity of accuracy to event inter-arrival.

6.4 Reactivity
In sensing applications that record time series, the times at
which the samples are sensed matter as much as their total
count. For example, batches of back-to-back samples are less
valuable than evenly spaced series. In this experiment we
quantify improvements in sampling quality achievable with
Capybara, by measuring the intervals between temperature
samples in the TA application. Figure 11 shows the distri-
butions of inter-sample times for three systems when the
input is the same sequence of 20 temperature alarm events.
The sub-second intervals between back-to-back samples are
colored gray to indicate their limited utility. The remaining
inter-sample intervals are broken down into ones during
which one or more events occurred and were (necessarily)
missed (red), and those without any events (green).
A Fixed-Capacity system forces the application to sam-

ple in batches of as many samples as can be taken on the
capacity provisioned for the largest atomic workload (i.e.
radio packet transmission). An alternative implementation
might put the processor to sleep in between samples to in-
troduce a delay. However, the batches will still be separated
by the long charge time of the large capacitor, because it will
discharge during sampling despite the sleep mode, due to
the power overhead of the power system that remains on.
With Fixed-Capacity, most non-back-to-back inter-sample
intervals are long (110-250 s) and cause the missed events
reported in Section 6.2.
With Capybara, the large capacity needs to be charged

only as many times as there are temperature events to re-
port (32 out 1738 inter-sample periods). All other times, the
samples are either separated by the (shorter) charge time
of the smaller capacitor (1.5-4 s) or are back-to-back. The
back-to-back samples still occur because the small bank is
over-provisioned for the temperature sample, since the Capy-
bara power system requires the bank to be no smaller than
that needed by the output booster to start up.
Compared to Capy-P, the undesirable (but unavoidable)

long inter-sample times with Capy-R have a smaller impact
on accuracy, as suggested by the share of long intervals that

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Alexei Colin, Emily Ruppel, and Brandon Lucia

0 1 2 3 4
0

200

400

C
ou

nt

15682
0 samples
0 samples

10 60 110 160 210 260 310
0

5

10

15

20
6 samples
45 samples

0 1 2 3 4
0

200

400

C
ou

nt

25926
1706 samples
32 samples

10 60 110 160 210 260 310
0

5

10

15

20
29 samples
3 samples

0 1 2 3 4
Time between samples (s)

0

200

400

C
ou

nt

7850
780 samples
21 samples

10 60 110 160 210 260 310
Time between samples (s)

0

5

10

15

20
5 samples
23 samples

No events missed
Events missed

Fixed Capacity (Fixed)

Capybara-Reconfigurable (CB-R)

Capybara-Precharge (CB-P)

Figure 11. Distribution of times between samples in Tem-
pAlarm application. Total counts of non-back-to-back sam-
ples show that sampling is denser with Capybara compared
to a fixed capacity.

caused an event miss (23 out of 28 for Capy-P vs 3 out of
31 for Capy-R). This decrease in event misses is explained
by a shorter mean charge time (84 vs 220 s), which is a
consequence of a subtle power system effect that boosts the
charging efficiency of Capy-R relative to Capy-P, for the
same energy capacity and input power.

The increase in charge time in Capy-P is a consequence of
the lower voltage at which charging has to start for Capy-P
compared to Capy-R. The charging starts at a lower voltage
for Capy-P, because the discharge starts at a lower voltage.
The full-bank voltage is lower for Capy-P, because Capybara
can pre-charge a bank only to a strictly lower voltage than
it can charge a bank to (by approximately 0.3v), which is
a limitation of our particular implementation of the switch
circuit. This disadvantage of Capy-P relative to Capy-R is
also reflected by the drop in accuracy in Figure 10, but is
compensated by the order of magnitude improvement in
latency in Figure 9.

6.5 Characterization
Capybara power system hardware is intended to be inte-
grated onto the board of an energy-harvesting device along-
side its MCU and sensors. On our 6x6 cm prototype board,
solar panels occupy 700 mm2, the Capybara power system
circuits occupy 640 mm2, and one reconfiguration switch
occupies 80 mm2 with support for both NO and NC configu-
rations and other debugging capabilities that can be omitted
from a release version. In our prototype, the switch uses a
4.7 µF latch capacitor and retains state for approximately 3
minutes. The hardware design files and source code for our
prototype will be released.

6.6 CapySat case study
We specialized Capybara to build a solar-powered board-
scale low-earth orbit satellite deployable via a KickSat carrier
satellite [40]. Unlike our terrestrial sensors nodes, the satel-
lite board has strict constraints on volume (1.7x1.7x0.15in,
including the solar panels) and must withstand temperatures
as low as -40C. The volume and temperature constraints
severely limit eligible energy-storage technologies, disqual-
ifying all batteries, including thin-film, and many super-
capacitors. However, the sensing application, tasked with col-
lecting samples from an on-board magnetometer, accelerom-
eter, and gyroscope, has an extreme atomicity requirement
and requires two energy modes. The energy modes are sam-
pling and communication back to Earth. To transmit a 1-byte
radio packet to Earth the satellite must keep the radio on for
250 ms while draining 30 mA of current, due to a redundant
encoding with a 1064x bit length overhead.
Capybara power system features described in Sections 3-

5 are vital for meeting these requirements. For example,
without the input and output boosters, energy storable and
extractable from a capacitor bank that would fit on the board
would be insufficient for the radio transmission. Because the
application runs on two MCUs concurrently, each exercising
one of the two energy modes, we are able to support energy
modes with a simplified version of the capacitor bank switch
from Section 5.2. We transform the switch into a diode-based
splitter that always connects both banks to the harvester but
only one bank to each of the MCUs. Like the general-purpose
Capybara, the resulting configuration matches the energy
storage to the application demands, but at 20% of the area.

7 Related Work
Energy-harvesting platforms and power systems Re-
cent energy-harvesting research produced platforms, re-usable
power modules, and power system designs. Compared to
battery-poweredmotes, e.g. Synergy [1], Amulet [12], Eco [29],
devices based on Capybara eliminate the volume and main-
tenance overhead of batteries through energy-harvesting.
Energy-harvesting motes available today harvest light [26,
37, 39], RF [33, 41] and other sources surveyed in [35]. The
power systems in these devices are more efficient but less
versatile than Capybara, because they specialize for a par-
ticular device and target deployment. Capybara places few
constraints on platform components and capacitor technol-
ogy, and provides reconfigurable energy storage.
Federated energy storage [13] dedicates separate capaci-

tors to the MCU and peripherals, charging them in a cascade.
Federation, like Capybara, eliminates the need to charge
a large capacitor provisioned for the worst-case workload
before performing other work. However, federation rigidly
allocates energy buffering to a hardware peripheral, not a
software task making it less capable and flexible than Capy-
bara. UFoP focuses on energy partitioning, while Capybara

A Reconfigurable Energy Storage Architecture ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

addresses other challenges: programmable reconfigurabil-
ity, full capacitor charging with low harvester voltage, and
supporting load voltages that exceed capacitor ratings.

Dynamic Energy Burst Scaling (DEBS) [11] programmati-
cally configured energy bursts to minimize the total energy
required to execute a complete sequence of tasks. Using re-
configuration, Capybara satisfies atomicity constraints of
tasks, as does DEBS, but Capybara also identifies and ad-
dresses temporal constraints of tasks, including asynchro-
nous tasks, which motivate a mechanism for pre-charging
energy bursts (Section 4.2). TheDEBS reconfigurationmecha-
nism is implemented by controlling theVtop threshold, whereas
Capybara’s mechanism controls capacity C (Section 5.2).

Unlike Capybara, Ambimax [28] partitions capacitors across
sources not loads, to charge at the maximum power point
of each source. Capybara leverages maximum power point
tracking in its input booster. eShare [42] allows sensor nodes
to share energy via wires to extend network lifetime, and is
orthogonal to Capybara.
While Capybara is batteryless, some energy-harvesting

systems combine batteries and capacitors. Prometheus [17]
increases rechargeable battery lifetime by operating from a
supercapacitor when solar energy is available. Unlike Capy-
bara, Prometheus supports only a single, fixed energy buffer.
Heliomote [31] is a generic solar-harvester with a permanent
battery that informs an application of instantaneous battery
and panel voltage. ZebraNet collars [18] were one of the
earliest devices to use a solar harvester to charge a battery,
and supported peripherals with voltage requirements above
battery voltage through voltage boosters, as does Capybara.
Software-defined batteries [2] allow the OS to control charge
flowing into and out of each battery in an array and to change
the power source properties. Batteries avoid the challenges
of intermittent execution faced by Capybara, but constrain
device size, temperature range, and lifetime.

System support for intermittent computing Software
intermittent programming and execution models are com-
plimentary to the support for energy modes provided by
Capybara. Capybara’s software interface complements task-
based systems [10, 23, 25], allowing the programmer to ex-
press atomic operations as tasks and annotate tasks with
energy requirements. Dynamic checkpointing approaches
are less amenable to use with Capybara because checkpoints
occur arbitrarily, on energy changes (Hibernus [4, 5], Ide-
tic [27], QuickRecall [16]), at backedges [32], idempotent
regions [38], or when detected by custom hardware [14].

Programming language and system support for en-
ergy management Energy-aware programming systems
allow energymanagement. However, it is difficult using exist-
ing languages to express burst and temporal energy require-
ments, which is central to Capybara’s design. In Eon [36],
task are associated with abstract energy states and executed
when the system is in the corresponding state. Unlike Eon,
Capybara actively changes energy modes by reconfiguring

energy capacity, rather than adapting to device changes. En-
ergy Types [9] attribute energy to application phases via
a type system. ENT [7] introduces dynamic types that re-
solve to cause different behavior based on device energy state.
Type-systems use energymodes to prevent high-energy code
from running while the device is in a low-energy state. In
contrast, Capybara uses modes for versatile reconfigurability,
reactiveness, and efficiency.

The LAB abstraction [20] lets the programmer declare the
required quality of sensing data and leaves it to the system to
activate sensors to provide the required data at the minimum
energy cost. By forgoing such high-level application-specific
abstractions in its software interface, Capybara supports low-
level general-purpose embedded programming. An emerg-
ing class of application-level power-reduction techniques is
based on decreasing the workload through approximation
in response to changes in the available energy [3, 15, 19, 34].
These systems rely on a mechanism for estimating available
energy at runtime, which is an open problem for an energy-
harvester that will likely require additional hardware and
software. OS-level power management that keeps unused
resources in sleep states [22] is complimentary to Capybara.
Methods for estimating worst-case energy consumption of
software tasks [8, 21] apply for provisioning capacity for
Capybara banks given an application.

8 Conclusion
Energy-harvesting platforms free applications from batteries,
which are large, heavy, and fragile. To handle environmen-
tal triggers responsively, application tasks place capacity
and temporal constraints on a device’s power system. We
observed that a system with a fixed-capacity energy buffer
cannot satisfy both capacity and temporal constraints, due to
the inverse relationship between capacity and charge time.
Capybara is the first system with a software interface

for expressing task energy requirements as energy modes,
a hardware mechanism for reconfiguring energy storage
capacity and pre-charging capacitors for on-demand energy
bursts, and a runtime system that supports reconfiguration.
Our evaluation of Capybara in a solar energy harvesting
device showed that reconfigurability improves application
responsiveness and event detection accuracy. Future work
should automate energy capacity estimation for application
tasks and find an allocation of capacitors to banks for a set
of task energy requirements.

9 Acknowledgments
Thanks to the anonymous ASPLOS 2018 reviewers for their
valuable feedback. This work was funded by gifts from Dis-
ney Research and Google, by NSF grant CNS-1526342 and
NSF CAREER Award CCF-1751029.

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA Alexei Colin, Emily Ruppel, and Brandon Lucia

References
[1] Michael P. Andersen, Gabe Fierro, and David E. Culler. System de-

sign for a synergistic, low power mote/BLE embedded platform. In
Information Processing in Sensor Networks (IPSN), 2016 15th ACM/IEEE
International Conference on, pages 1–12. IEEE, 2016.

[2] Anirudh Badam, Evangelia Skiani, Ranveer Chandra, Jon Dutra, An-
thony Ferrese, Steve Hodges, Pan Hu, Julia Meinershagen, Thomas
Moscibroda, and Bodhi Priyantha. Software defined batteries. pages
215–229. ACM Press, 2015.

[3] Woongki Baek and Trishul M. Chilimbi. Green: a framework for
supporting energy-conscious programming using controlled approx-
imation. In ACM Sigplan Notices, volume 45, pages 198–209. ACM,
2010.

[4] Domenico Balsamo, Alex S Weddell, Anup Das, Alberto Rodriguez
Arreola, Davide Brunelli, Bashir M Al-Hashimi, Geoff V Merrett, and
Luca Benini. Hibernus++: a self-calibrating and adaptive system
for transiently-powered embedded devices. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 35(12):1968–
1980, 2016.

[5] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-
Hashimi, Davide Brunelli, and Luca Benini. Hibernus: Sustaining
computation during intermittent supply for energy-harvesting sys-
tems. IEEE Embedded Systems Letters, 7(1):15–18, 2015.

[6] Naveed Anwar Bhatti and Luca Mottola. HarvOS: efficient code instru-
mentation for transiently-powered embedded sensing. pages 209–219.
ACM Press, 2017.

[7] Anthony Canino and Yu David Liu. Proactive and adaptive energy-
aware programming with mixed typechecking. pages 217–232. ACM
Press, 2017.

[8] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John
Sartori. Determining Application-specific Peak Power and Energy
Requirements for Ultra-low Power Processors. pages 3–16. ACM Press,
2017.

[9] Michael Cohen, Haitao Steve Zhu, Emgin Ezgi Senem, and Yu David
Liu. Energy types. InACM SIGPLANNotices, volume 47, pages 831–850.
ACM, 2012.

[10] Alexei Colin and Brandon Lucia. Chain: tasks and channels for reliable
intermittent programs. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 514–530. ACM, 2016.

[11] Andres Gomez, Lukas Sigrist, Thomas Schalch, Luca Benini, and Lothar
Thiele. Efficient, long-term logging of rich data sensors using tran-
sient sensor nodes. ACM Trans. Embed. Comput. Syst., 17(1):4:1–4:23,
September 2017.

[12] Josiah Hester, Sarah Lord, RyanHalter, David Kotz, Jacob Sorber, Travis
Peters, Tianlong Yun, Ronald Peterson, Joseph Skinner, Bhargav Golla,
Kevin Storer, Steven Hearndon, and Kevin Freeman. Amulet: An
Energy-Efficient, Multi-Application Wearable Platform. pages 216–
229. ACM Press, 2016.

[13] Josiah Hester, Lanny Sitanayah, and Jacob Sorber. Tragedy of the
coulombs: Federating energy storage for tiny, intermittently-powered
sensors. In Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems, pages 5–16. ACM, 2015.

[14] Matthew Hicks. Clank: Architectural Support for Intermittent Com-
putation. pages 228–240. ACM Press, 2017.

[15] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic,
Anant Agarwal, and Martin Rinard. Dynamic knobs for responsive
power-aware computing. In ACM SIGPLAN Notices, volume 46, pages
199–212. ACM, 2011.

[16] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. Quick-
recall: A low overhead hw/sw approach for enabling computations
across power cycles in transiently powered computers. In VLSI Design
and 2014 13th International Conference on Embedded Systems, 2014 27th
International Conference on, pages 330–335. IEEE, 2014.

[17] Xiaofan Jiang, Joseph Polastre, and David Culler. Perpetual environ-
mentally powered sensor networks. In Proceedings of the 4th interna-
tional symposium on Information processing in sensor networks, page 65.
IEEE Press, 2005.

[18] Philo Juang, Hidekazu Oki, YongWang, Margaret Martonosi, Li Shiuan
Peh, and Daniel Rubenstein. Energy-efficient computing for wildlife
tracking: Design tradeoffs and early experiences with zebranet. In
ACM Sigplan Notices, volume 37, pages 96–107. ACM, 2002.

[19] Melanie Kambadur and Martha A. Kim. NRG-loops: adjusting power
from within applications. pages 206–215. ACM Press, 2016.

[20] Aman Kansal, Scott Saponas, A.J. Bernheim Brush, Kathryn S. McKin-
ley, Todd Mytkowicz, and Ryder Ziola. The latency, accuracy, and
battery (LAB) abstraction: programmer productivity and energy effi-
ciency for continuous mobile context sensing. pages 661–676. ACM
Press, 2013.

[21] Steve Kerrison and Kerstin Eder. Energy Modeling of Software for a
Hardware Multithreaded Embedded Microprocessor. ACM Transac-
tions on Embedded Computing Systems, 14(3):1–25, April 2015.

[22] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin
Whitehouse, AlecWoo, David Gay, Jason Hill, Matt Welsh, Eric Brewer,
and others. TinyOS: An operating system for sensor networks. Ambient
intelligence, 35:115–148, 2005.

[23] Brandon Lucia and Benjamin Ransford. A simpler, safer programming
and execution model for intermittent systems. In ACM SIGPLAN
Notices, volume 50, pages 575–585. ACM, 2015.

[24] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan,
Xueqing Li, Yongpan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan
Narayanan. Architecture exploration for ambient energy harvesting
nonvolatile processors. In High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on, pages 526–537.
IEEE, 2015.

[25] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: Intermit-
tent execution without checkpoints. In Proceedings of the 2017 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. ACM, 2017.

[26] Robert Margolies, Peter Kinget, Ioannis Kymissis, Gil Zussman, Maria
Gorlatova, John Sarik, Gerald Stanje, Jianxun Zhu, Paul Miller, Marcin
Szczodrak, Baradwaj Vigraham, and Luca Carloni. Energy-Harvesting
Active Networked Tags (EnHANTs): Prototyping and Experimentation.
ACM Transactions on Sensor Networks, 11(4):1–27, November 2015.

[27] Azalia Mirhoseini, Ebrahim M Songhori, and Farinaz Koushanfar. Ide-
tic: A high-level synthesis approach for enabling long computations
on transiently-powered asics. In Pervasive Computing and Communi-
cations (PerCom), 2013 IEEE International Conference on, pages 216–224.
IEEE, 2013.

[28] Chulsung Park and Pai H. Chou. Ambimax: Autonomous energy
harvesting platform for multi-supply wireless sensor nodes. In Sensor
and Ad Hoc Communications and Networks, 2006. SECON’06. 2006 3rd
Annual IEEE Communications Society on, volume 1, pages 168–177.
IEEE, 2006.

[29] Chulsung Park, Jinfeng Liu, and Pai H. Chou. Eco: an ultra-compact
low-power wireless sensor node for real-time motion monitoring. In
Proceedings of the 4th international symposium on Information process-
ing in sensor networks, page 54. IEEE Press, 2005.

[30] Powercast Corporation. P2110B 915MHz RF Powerharvester Receiver.
http://www.powercastco.com/products/powerharvester-receivers/,
2017.

[31] Vijay Raghunathan, Aman Kansal, Jason Hsu, Jonathan Friedman, and
Mani Srivastava. Design considerations for solar energy harvesting
wireless embedded systems. In Proceedings of the 4th international
symposium on Information processing in sensor networks, page 64. IEEE
Press, 2005.

[32] Benjamin Ransford, Jacob Sorber, and Kevin Fu. Mementos: System
support for long-running computation on rfid-scale devices. Acm
Sigplan Notices, 47(4):159–170, 2012.

http://www.powercastco.com/products/powerharvester-receivers/

A Reconfigurable Energy Storage Architecture ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

[33] Alanson P Sample, Daniel J Yeager, Pauline S Powledge, Alexander V
Mamishev, and Joshua R Smith. Design of an rfid-based battery-free
programmable sensing platform. IEEE Transactions on Instrumentation
and Measurement, 57(11):2608–2615, 2008.

[34] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-
gasam, Luis Ceze, and Dan Grossman. EnerJ: Approximate data types
for safe and general low-power computation. InACM SIGPLANNotices,
volume 46, pages 164–174. ACM, 2011.

[35] Faisal Karim Shaikh and Sherali Zeadally. Energy harvesting in wire-
less sensor networks: A comprehensive review. Renewable and Sus-
tainable Energy Reviews, 55:1041–1054, March 2016.

[36] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Bren-
nan, Mark D Corner, and Emery D Berger. Eon: a language and runtime
system for perpetual systems. In Proceedings of the 5th international
conference on Embedded networked sensor systems, pages 161–174. ACM,
2007.

[37] Phillip Stanley-Marbell and Diana Marculescu. An 0.9x1.2, low power,
energy-harvesting system with custom multi-channel communication
interface. In Proceedings of the conference on Design, automation and

test in Europe, pages 15–20. EDA Consortium, 2007.
[38] Joel Van Der Woude and Matthew Hicks. Intermittent computation

without hardware support or programmer intervention. In Proceedings
of OSDI’16: 12th USENIX Symposium on Operating Systems Design and
Implementation, page 17, 2016.

[39] Lohit Yerva, Brad Campbell, Apoorva Bansal, Thomas Schmid, and
Prabal Dutta. Grafting energy-harvesting leaves onto the sensornet
tree. In Proceedings of the 11th international conference on Information
Processing in Sensor Networks, pages 197–208. ACM, 2012.

[40] Zac Manchester. KickSat. http://zacinaction.github.io/kicksat/, 2015.
[41] Hong Zhang, Jeremy Gummeson, Benjamin Ransford, and Kevin Fu.

Moo: A batteryless computational rfid and sensing platform. Depart-
ment of Computer Science, University of Massachusetts Amherst., Tech.
Rep, 2011.

[42] Ting Zhu, Yu Gu, Tian He, and Zhi-Li Zhang. eShare: a capacitor-
driven energy storage and sharing network for long-term operation. In
Proceedings of the 8th ACM Conference on Embedded Networked Sensor
Systems, pages 239–252. ACM, 2010.

http://zacinaction.github.io/kicksat/

	Abstract
	1 Introduction
	2 Intermittent Energy-constrained Systems
	2.1 Task constraints
	2.2 Design space

	3 Capybara Design Overview
	4 Capybara Software Support
	4.1 Energy modes
	4.2 Responsive asynchronous bursts
	4.3 Capybara runtime implementation

	5 Reconfigurable Power System Hardware
	5.1 Power distribution
	5.2 Reconfigurable energy storage circuit

	6 Evaluation
	6.1 Applications and methodology
	6.2 Event detection accuracy
	6.3 Responsiveness
	6.4 Reactivity
	6.5 Characterization
	6.6 CapySat case study

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

