Machine Learning in the Self-* Architecture

Eno Thereska
Mike Mesnier, Greg Ganger
and Self-* Team

PARALLEL DATA LABORATORY
Carnegie Mellon University

Self-*: Towards easier to manage storage

- Why: storage management is far too work-intensive
 - we’re working for the computers (1 admin / 1-2 TB)

- How: automate, automate, automate
 - people specify goals, system figures out how
 - people complain, system improves itself

- How: Integrating management functions into design
 - rather than designing tools after-the-fact

Self-*: Administration challenges/issues

- Data protection
 - mistake recovery, device failure recovery, archiving

- Capacity planning
 - initial provisioning and expanding over time

- Tuning and load balancing
 - dataset placement, device parameters, etc.

- Problem diagnosis and healing
 - identifying source and adjusting appropriately

Self-* Storage Architecture

I/O request routing

Management hierarchy

Workers

Clients

Administrator

John & Andy know all the details
What is Machine Learning?

- It’s really statistics…
- Two high-level goals:
 - Predicting the future
 - Maximizing future rewards
- …through probabilistic models

Why Machine Learning in Self-*?

- Large state space
 - workers need to explore different layouts
 - supervisors need to explore different configurations
- Design cannot handle all system scenarios
 - workloads change
 - storage bricks have different properties
- Ok, but…
 - What does “classical” systems analysis tell us?

Classical Analysis in Systems

- workload
 - name space locality
 - organize by age
 - disk shuffling
 - place track-aligned
 - new layout

Self-* Worker Desired Design

- workload
 - constraint generation
 - heuristic 1
 - ... heuristic n
 - adaptive combiner
 - performance analyzer
 - layout manager
 - learner
 - final layout

Self-* Worker Design
Classical Analysis in Systems

- Rules of thumb
 - aka ad hoc methods when combined
- Trial and error
- Systems often over-provisioned
- Most methods focus on initial configuration only

Self-* Supervisor Desired Design

- Workload
 - capture defining characteristics

= Goals?

Self-* Other Considerations

- Lots of room for other cool stuff
 - smart caching of objects
 - smart routing
 - smart scheduling
 - etc...

- Bottom line: impossible to design for all possible scenarios. Needs to adapt to new, unaccounted for cases

Outline

- Motivation and Overview
- ABLE
- Preliminary Evaluations
- Conclusions
ABLE: Introduction by Analogy

- Suppose you are the manager of a warehouse
- Must capacity plan and provision resources
- Carriers (e.g., FedEx) are contracted by customers (e.g., Sears, Intel, Starbucks)
 - Customers determine nature of packages
 - Carriers determine nature of delivery
- You quickly learn the behaviors of both
- Careful profiling of your clientele will allow you to classify and generalize their behavior
 - Intel and AMD more similar than Intel and Sears
 - Makes adding new customers easier...

ABLE: Applying the Analogy

- Customers are the applications
 - backup, cc, make, pine
- Carriers are the storage applications
 - File systems, databases
- Objects are items being stored
- We want to profile object behavior
 - Who, what, when and how accessed
- Based only on existing object attributes
 - such as nlinks, file name, mode, mtime, ctime, etc

- Customers are the applications
 - backup, cc, make, pine
- Carriers are the storage applications
 - File systems, databases
- Objects are items being stored
- We want to profile object behavior
 - Who, what, when and how accessed
- Based only on existing object attributes
 - such as nlinks, file name, mode, mtime, ctime, etc

Types of Object Behavior

- Functional lifetime (cache vs disk lifetime)
 - Difference between last written and read
 - Ex: .o files are short-lived, .c long-lived
- Access pattern
 - Sequential, random, strided, partial, full
 - Read/write ratio
- Maximum sizes
 - zero, <4K, >1MB
 - etc...

ABLE is the prototype for a powerful predictor

Simple Example

<table>
<thead>
<tr>
<th>Extension</th>
<th>Functional Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>object 1 .c</td>
<td>long</td>
</tr>
<tr>
<td>object 2 .h</td>
<td>long</td>
</tr>
<tr>
<td>object 3 .o</td>
<td>short</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>object j .h</td>
<td>long</td>
</tr>
<tr>
<td>object j+1 .c</td>
<td>long! 😊</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>object n .o</td>
<td>short! 😊</td>
</tr>
</tbody>
</table>

Easy to learn the pattern
Apply what we've learned

Not all classifications are this simple…
ABLE in Self-*

- ABLE: predicts maximum object size, object access patterns etc
- Worker: Continuously reorganizes layout
- ABLE: gives hints on object lifetime
- Cache manager: decides on the best caching policy for the object

Anthony Brockwell’s team

Goal: Predict how well a workload will do on a certain black-box worker

Outline

- Motivation and Overview
- ABLE
- Preliminary Evaluations
- Conclusions

Learning Model Requirements

- Computational Scalability
 - training speed and recall speed
- Model Storage Requirements
 - kNN needs to store all training data points
 - DTs only store “compressed stats” in a tree
- Incremental Learning
 - after initial training system is deployed
 - deployed system must still learn
Learning Model Requirements

- Good predictive power
 - accuracies higher than 80% ?
- Low impact of misprediction
 - want to only improve system by using the model hints
 - examples:

```
+-----+-----+-----+-----+
| long| short| long| short|
+-----+-----+-----+-----+
| 500 | 500  | 500 | 0    |
| 0   | 3000 | 3500| 0    |
```

ABLE lifetime predictions confusion matrices

ABLE: Preliminary Evaluations

- Experimental setup:
 - Decision trees as base learner
 - Training speed: $O(AxN\times\log(N))$
 - Recall speed: $O(\text{height(tree)})$
 - Storage requirements: small (~1MB/tree)
 - Incremental learning: yes (ID4 & ID5)
 - Cost matrix reduces impact on misprediction
 - Harvard NFS traces (7 days)
 - P3 with 384MB of RAM

ABLE: Preliminary Evaluations

- Goal: Predict size and cache lifetime based on file attributes

![Graph](https://example.com/graph.png)
ABLE: Preliminary Evaluations

![Graph showing cache lifetime prediction accuracies](image)

Future Work

- Analyze various re-training methods
- Combine application needs with learning model
 - can predict really well size in 3 buckets
 - but what if application wants finer grained predictions
- Evaluate ABLE in a real storage system
 - FFS
 - Self-*

Conclusions

- Machine learning and systems have met
 - systems not mature for classical analysis
- Self-* requires clean automation
 - Worker combines heuristics
 - Supervisor assigns workloads to devices

ABLE is the prototype for a powerful predictor