
XaiR: An XR Platform that Integrates
Large Language Models with the Physical World
Sruti Srinidhi*

Carnegie Mellon University
Edward Lu*

Carnegie Mellon University
Anthony Rowe*

Carnegie Mellon University
Bosch Research

GPT-4V

Prompt

Place virtual annotations
into environment

Raycast into 3D world mesh
generated by HMD

Server-side prompt creation
and LLM inference

LLM response + 2D image-
space object coordinates

Ferret

Response

Stream audio and egocentric images (tagged with
camera pose)

T = -2

T = 0

T = -1 …
obj1

obj2

High-level Task
Description

Capture and store 3D world
mesh on HMD

“Place the red wire
[obj1] into the right-most

slot [obj2].”

Text
Response

Coordinate
Response

User wears a headset and
captured data from the

physical world

Figure 1: Overview of XaiR data flow: The figure illustrates the usage of Multimodal Large Language Models to automatically
place and generate XR content. It shows the process from capturing egocentric inputs on a HMD to placing precise AR content
in physical environments, highlighting the cognitive assistant’s role in real-time task guidance.

ABSTRACT

This paper discusses the integration of Multimodal Large Language
Models (MLLMs) with Extended Reality (XR) headsets, focusing
on enhancing machine understanding of physical spaces. By com-
bining the contextual capabilities of MLLMs with the sensory in-
puts from XR, there is potential for more intuitive spatial interac-
tions. However, the integration faces challenges due to the inherent
limitations of MLLMs in processing 3D inputs and their significant
resource demands for XR headsets. We introduce XaiR, a platform
that facilitates integrating MLLMs with XR applications. XaiR
uses a split architecture that offloads complex MLLM operations to
a server while handling 3D world processing on the headset. This
setup manages multiple input modalities, parallel models, and links
them with real-time pose data, improving AR content placement in
physical scenes. We tested XaiR’s effectiveness with a “cognitive
assistant” application that guides users through tasks like making
coffee or assembling furniture. Results from a 15-participant study
shows over 90% accuracy in task guidance and 85% accuracy in AR
content anchoring. Additionally, we evaluate MLLMs against hu-
man operators for cognitive assistant tasks which provides insights
into the quality of the captured data as well as the current gap in
performance for cognitive assistant tasks.

1 INTRODUCTION

The integration of eXtended Reality (XR) with Artificial Intelli-
gence (AI) has long been a dream for XR enthusiasts. Recent ad-
vancements in Multimodal Large Language Models (MLLMs) and
XR headset technologies have made the integration of these two

*e-mail: {ssrinidh, elu2, agr}@andrew.cmu.edu

domains increasingly feasible. In this paper, we address several
pivotal questions: How can XR headsets transmit egocentric phys-
ical information to MLLMs? Can MLLMs apply human-like com-
mon sense to interpret complex spatial scenes? And how effective
are we at providing functional cognitive assistance through these
technologies? If successful, these types of systems can completely
transform the level of abstraction used to program XR systems and
unlock the potential to dramatically increase human efficiency.

To explore these questions, we introduce XaiR1, a platform that
bridges the gap between MLLM inference and real-world environ-
mental contexts. The high-level workflow is shown in Fig. 1 with
sensor data as input, going through various LLM processing steps
and resulting in AR content anchored to object locations in the
scene. Unlike typical LLM applications on head-mounted devices
(HMDs) that predominantly handle verbal queries [1, 7], XaiR in-
tegrates a live 3D world mesh to enhance the situational context
and support AR annotations, allowing a more immersive user inter-
action that extends beyond simple question-and-answer tasks. 3D
world data is important for many tasks where components might be
out of the current view within the scene. For example, imagine a
system that trains users to do a task that requires objects that are
stored away from the user’s view.

Currently, LLMs are primarily trained on text and image data
from the Internet, making it difficult to integrate the crucial 3D spa-
tial data needed for XR applications. This means that while some
MLLMs can process 2D images and videos [16, 17, 25, 32, 34, 36],
their ability to handle 3D data remains uncertain. A possible so-
lution might involve training models directly on 3D datasets, al-
though acquiring the necessary large-scale data presents its own
challenges. XR headsets, constrained by limited memory and pro-
cessing power, are ill-suited for running resource-intensive MLLMs
natively. Alternative approaches involve smaller, mobile-optimized

1Pronounced “x-air”, we insert (a little) AI into XR experiences using
the cloud (X→ai←R)

Physical I/O Headset Server

Reality Encoder

LLM-Backend

LLM-1 LLM-n

Text

Speech to Text

Frame Selection

High-Level Task
Description

You can place your
plant on the stool

or the bench

Camera

Microphone

Depth Sensor

Prompt

HUD

Audio Data

Image Frames

World Mesh Camera Pose

Audio/
Images

Reality Decoder

3D Projection

AR Overlays

Text + Images

Figure 2: High-level XaiR system architecture and dataflow. The figure shows the different components of the system, which device they run
on, and the different types of data captured and transmitted over the network.

LLMs [35], but these often sacrifice accuracy for performance. As
a result, many LLM-based applications depend on a cloud-based
architecture to offload intensive computations [1, 11].

XaiR employs a similar split processing architecture to address
the limited spatial comprehension of MLLMs and the restricted
processing capabilities of XR headsets. It offloads complex opera-
tions such as MLLM inference to a nearby server, while the headset
handles 3D world mesh operations locally. The system efficiently
manages the concurrent execution of multiple models that process
egocentric images, speech, and text input, all synchronized with
time-stamped pose data within the world mesh. This separation
of processing tasks allows the system to appropriately project AR
content into the scene, aligning the output text with the user’s time,
location, and orientation. Using these data and the LLM text re-
sponse, virtual content is integrated into the world through raycast-
ing from recorded camera poses into the 3D map produced by the
headset. Our system consist of three main components: the Reality
Encoder, which gathers data about the physical environment (pose
timestamped images and audio); the LLM-backend, which synthe-
sizes output from various specialized MLLMs; and the Reality De-
coder, which refines text outputs and overlays AR annotations. A
High-Level Task Description is used as a prompt to guide the LLM-
backend to customize the system for specific tasks (see Fig. 2).

We evaluate our platform using a “cognitive assistant” applica-
tion, which aims to guide users through detailed physical tasks us-
ing AR annotations. This application addresses tasks that involve
sequential steps, such as guiding users through the assembly of
industrial machinery or instructing someone on using a new cof-
fee machine. The cognitive assistant application operates in two
main phases. First, an expert user walks the system through the
task and asks the MLLM to generate instructions from an egocen-
tric videotream. Second, during a live session, the system guides a
novice user through the same task using the pregenerated instruc-
tions as a High-Level Task Description and the captured egocentric
images as references.

Our evaluation involves a study designed to compare the perfor-
mance of MLLMs with that of a human guide operating in real time
on the same data feed at a remote computer, establishing a human
baseline. The participants performed various physical tasks, some
guided by our MLLM system and others by a human back-end. We
evaluated the effectiveness of each guide using metrics such as task
completion time, number of user queries, and the NASA Task Load
Index (TLX) [12] to measure cognitive load. In addition, we ana-

lyze how the type and quantity of input data influence the efficiency
and accuracy of the MLLM to provide step-by-step instructions. In
general, the human outperformed the MLLMs, but the difference in
performance was at times very close.
In summary, this paper contributes the following:

• An open-source system for developing XR headset applica-
tions that integrate spatial data with MLLMs2.

• A comparative study on the effectiveness of MLLMs in sup-
porting physical tasks against human benchmarks.

• Insights into the optimal types and amounts of data needed for
MLLMs to effectively support real-world tasks.

2 RELATED WORK

We split our related work into two categories: Large Language
Models and their integration into XR, and prior work with instruc-
tion following-based cognitive assistants.

2.1 XR Large Language Models
With the development of LLMs, we see an increase in models that
are both general-purpose and have human-like understanding and
responses [10, 21]. With LLMs now having multitmodal capabili-
ties, they can also perform zero-shot inference on images and au-
dio [28, 30]. This naturally leads to an integration into AR appli-
cations, where their advanced capabilities can enhance user experi-
ences and interactions in immersive environments.

However, these powerful LLMs are resource-intensive and can-
not run efficiently on mobile AR devices due to their high computa-
tional and memory requirements. As advancements continue in the
development of general-purpose LLMs, considerable efforts have
been directed towards enabling their operation on mobile platforms.
These models are undergoing quantization and sparsification, as
evidenced by works such as Zhang et al.’s TinyLLAMA [35] and
Hsieh et al.’s Distilling Step-by-Step [13], enabling deployment on
devices like mobile XR headsets. While this improves memory us-
age, lowers latency, and reduces network demands, it does so at the
expense of decreased descriptiveness, accuracy, and general appli-
cability [14]. On the other hand, robust LLMs such as GPT-4 [21],
Llama [5] and LLaVA [18] boast billions and trillions of param-
eters and are trained on vast datasets, enabling them to offer more
detailed and imaginative responses across a broad spectrum of top-
ics. However, their size renders them unable to run on edge de-
vices, requiring them to be run on powerful servers. Recognizing

2Github Link: https://github.com/srutisrinidhi/XaiR

https://github.com/srutisrinidhi/XaiR

these limitations, our system performs LLM processing in the cloud
while handling XR-related tasks on the headset, balancing perfor-
mance and resource usage. We acknowledge that this approach
increases latency, but we believe that as technology advances, la-
tency will eventually decrease. The trade-off between latency and
response quality is an area for future exploration, potentially lead-
ing to a system that can adapt to changing networks or application
demands, similar to the approach in [19].

We will now discuses early work on connecting LLMs with
physical data. OpenAI’s GPT-4 omni [6] is a step towards creat-
ing a more natural interaction with an LLM with multimodal capa-
bilities to understand the user’s context. Xu’s Penetrative AI [31]
demonstrates how LLMs can apply common-sense style knowledge
to sensor data to infer higher-level concepts. Our system applies
similar techniques, but connects them more closely with egocentric
data with XR outputs.

2.2 Instruction Following and Cognitive Assistants

We demonstrate potential of XaiR through an instruction-guiding
“cognitive assistant” application that can be compared to a number
of existing approaches. Despite significant strides in developing
such instruction-following assistants in XR, many of these systems
need extensive manual effort to craft XR instructions for each spe-
cific task [24, 33]. These processes are labor-intensive and lack
adaptability across varying tasks. Moreover, these systems often
offer fixed responses, lacking the capability to dynamically adjust
guidance based on user interactions. Although the work by Chi-
dambaram et al. [9] contributes to instruction generation and work
by Stanescu et al. [23] detects task completion through object de-
tection techniques, both still fall short in adapting guidance to the
user’s interactions. Commercial systems like Step Check [4] com-
bine AI with XR for manufacturing inspections. While this auto-
matically detects errors, it still requires significant effort to create
each of the AI models for the specific manufacturing processes.

LLMs have demonstrated significant potential to power virtual
assistants across various domains such as programming, personal
tasks, and medical diagnosis [2, 15, 20, 27]. However, recent ad-
vancements in multimodal AI and perception techniques have ush-
ered in a new era of “intelligent” assistants, capable of interpreting
and responding to the physical environment with tailored responses.
Meta’s Ray-ban Smart glasses [1], for instance, leverage AI infer-
ence to analyze images captured by the glasses and can provide
insights into the user’s surroundings. Similarly, Google’s Project
Astra [7] can understand and respond in the context of the user’s
physical environment using visual and audio prompts. While these
types of systems excel at perceiving the environment, they are lim-
ited to displaying a fixed, static output and lack the capability to
dynamically project and anchor responses back into the environ-
ment.

Amidst discussions surrounding the development of LLM-
powered assistants for physical tasks [8], our work represents an
initial effort in realizing such a platform using current-day tech-
nologies. We aim to bridge the gap by creating a platform that
integrates LLM capabilities with real-world interactions, laying
groundwork for intelligent assistance that understand physical en-
vironments. While not the main focus of our work, the ability to
rapidly prototype instruction following with just a few high-level
instructional prompts is a dramatic departure from prior, more be-
spoke methods.

3 SYSTEM DESIGN

Fig. 2 shows the three main software components (Reality Encoder,
LLM-backend, and Reality Decoder) that are partitioned between a
client headset and a nearby server. The client is an Android ap-
plication developed in Unity [26] running on a Magic Leap 2 [3],

Figure 3: Example of virtual AR annotations overlaid on physical
world, generated by XaiR as a response to a user question. Taken
from screen capture of ML2. Through the headset, the 3D content
is more vivid with segmented dimming turned on.

that can stream audio, color images, and depth data. The client lo-
cally constructs a 3D world model of the environment that is used
to project objects found in the images into 3D locations. The server
has significantly greater resources (we use a Linux workstation with
dual RTX 3090 Ti GPUs connected via NVLink) that perform tasks
like such as audio-to-text translation, MLLM inference on models
up to 13 billion parameters, and text post-processing. This divi-
sion of labor ensures that all 3D processing remains on the headset,
while MLLM-related text and image processing are delegated to the
powerful server.

3.1 The Reality Encoder
The Reality Encoder is responsible for converting audio to text and
capturing frames of interest that should be passed to the LLM-
backend. In our current implementation, data is transferred from
the headset to the Reality Encoder running on the server (to aid in
debugging), but this component can also be run on the client to re-
duce network overhead. We use OpenAI’s Whisper model [22] to
transcribe audio into text that is passed as user input to the MLLM.
Audio data is continually received, decoded, and queued on the
server for further post-processing. Identifying and filtering conver-
sational components is an extremely hard problem in its own right.
As a simple heuristic solution, we apply ambient noise adjustment
and use a window of 3 seconds when listening for a query (i.e., we
assume a query will not last for more than 3 seconds). In the cogni-
tive assistant application, we augment the transcribed text query to
include supplementary information like the current instruction set
being executed.

Image frames from the ML2 are marked with a unique identifier,
timestamp, and camera pose indicating where they were captured
before transmission to the server. The camera pose is determined
by ML2’s tracking algorithms, calculating its position relative to the
local origin of the tracking space. These frames are then added to
the user text queries for contextual information and forwarded to an
LLM beackend. The ML2 generates a 3D map periodically, stor-
ing it locally for later 3D content anchoring, using Magic Leap’s
XRMeshSubsystem in Unity. Since the user’s head pose and en-
vironment are constantly changing, the 3D map is periodically up-
dated at an approximate rate of 1Hz. This decision saves bandwidth
and keeps 3D processing localized, benefiting from ML2’s built-in
functionalities. Timestamped poses enable variable-time process-
ing, allowing locations labeled in the scene to be anchored back
into the 3D world map once processing is complete.

The ML2 streams audio through WebRTC [29] and sends cap-
tured 640x480 resolution images using HTTP POST requests. To
maintain optimal inference quality, images are compressed loss-
lessly using PNG. As a default, images are sent at a 1Hz interval,

Ego-Centric Frames of Task Task Summarization

10 sec of video/ image
frames collected

MLLM
GPT-4V or Video-LLaVA

Summary generated for
each 10 sec

Instruction Generation

List of
summaries of

task

Intended task
provided as

context

Instructions to
perform the task

LLM
GPT-4

Input Prompt: 'You are a helpful AI assistant to a human. For context, the
images are of the space around me, as taken from a head mounted
camera. This is a series of frames from a segment of a video where each
frame is one second apart. Can you tell me what is happening in this
segment of a video? Give me a two-sentence summary’

Input Prompt: 'I took a video of me making espresso. I gave an AI model
the video in several segments and asked it to describe what I was doing.
Here are the descriptions of each video segment it came up with. Based
on this, can you give me a concise and practical list of instructions to do
what I am doing in the video?’ + <task summary >

Response:
• In this segment of the video, the person appears to be refilling a

coffee bean grinder with fresh beans. They remove the lid, pour the
beans in, and then replace the lid on the grinder.

• The series of images depict a person grinding coffee beans in an
espresso grinder and then tamping the grounds into a portafilter…

Response:
1. Open the lid of the coffee bean hopper on the grinder to refill or

check the amount of beans remaining.
2. Start with an empty portafilter, fill it with ground coffee from the

grinder, and tamp the grounds in the portafilter…

Figure 4: Detailed breakdown of the instruction generation pipeline for the cognitive assistant using the XaiR system. The figure shows
example input prompts and an example output response from the MLLMs at each step.

while audio is constantly being streamed. We describe the band-
width requirements for XaiR in Sec. 5.3.3. By sending data in this
manner, the backend can be easily modular and interchangeable.

For our cognitive assistant demonstration application, we pro-
vide two image frames with each prompt so that we can give the
MLLMs context about what is currently happening and a snapshot
of what has previously happened in the user’s surroundings. While
we experimented with incorporating more than two frames into the
MLLMs, we observed that it significantly slows down the system
without any significant boost in accuracy of responses. We find that
values tend to require application-specific tuning with accuracy and
latency trade-offs explored in Sec. 5.2.

3.2 LLM-based Backend

After the reality encoder step, the generated prompt is sent to our
LLM-backend. Since the server has ample computational resources
compared to a headset, we provide an API that enables the execu-
tion of multiple MLLMs in parallel along with potential remote
cloud calls. In our baseline system, we concurrently use GPT-
4V [36] on OpenAI’s servers and Ferret [32]. Ferret is a specialized
MLLM, which can identify objects, discern relationships between
multiple regions in an image, and provide 2D bounding boxes of
object locations. Despite Ferret’s superior spatial understanding,
we rely on GPT-4V for reasoning, since Ferret lacks the advanced
reasoning capabilities of GPT-4V. The two models are queried at
the same time and our server combines the responses of both mod-
els, using GPT-4V’s response for textual feedback and Ferret’s re-
sponse for object locations which are used to anchor AR content.
Thus our inference time is limited by the slowest MLLM, which is
typically GPT-4V. This overhead can potentially be reduced with
faster models like GPT-4o.

3.3 The Reality Decoder

The Reality Decoder is responsible for packaging the output of the
LLM-backend into an intuitive visual interface. We use a simple
language for AR annotations provided by our prompting system
that can draw graphical primitives anchored at 3D locations. Our
prototype system has a small dictionary of arrows and text boxes,
but this could easily be extended to include more complex models
and eventually small scripted interactions.

One of the main challenges is converting 2D coordinates into
3D coordinates. For example, the 2D boxes generated by Ferret
need to be projected into 3D in order to anchor AR content into
the scene. The ML2 stores all the previous camera poses along
with their associated image IDs in a lookup table. Once the ML2
receives a response from the server with an image ID, it looks up the
associated camera pose. Using this pose, it raycasts into the stored
3D mesh to get the 3D coordinate of that object when the image was
captured. The text output is also displayed on the screen for the user
in AR. See Fig. 3 for a visualization. Because the headset internally
tracks each virtual 3D object within the local tracking space, we do
not have to continually process each image to update the object
locations. One limitation is that since the objects are not being
actively tracked after frames are captured, the anchors are rendered
at fixed locations and will only be updated after processing new
frames. This can cause significantly lag if objects are moving. One
could imagine adding a post-processing step on the client that does
continual tracking of certain objects that are known to be dynamic.

4 XAIR COGNITIVE ASSISTANT DEMONSTRATOR

We evaluate our system as a cognitive assistant [8], specifically
one that can walk non-expert users through step-by-step instruc-
tions and can leverage XR content to highlight important objects in
the physical world. Our cognitive assistant application is divided
into two main stages – instruction generation for a new task and
live feedback mode for guiding users through the task.

4.1 Instruction Generation from Egocentric Videos

Fig. 4 shows how our system can perform automatic instruction
generation from a single egocentric video. Wearing a headset, an
expert user can record themselves performing a task and use XaiR
to extract step-by-step text instructions. We leverage the ability of
MLLMs to interpret text and visual data to generate a log of the
expert’s actions from an egocentric video stream and speech. The
collected images provide additional visual context of how specific
objects and tools are used for a task, data which is not always known
by an off-the-shelf MLLM. We take frames from 10 second batches
of the image stream and use GPT-4V to summarize the actions be-
ing performed in those sections as text. We then collect all the
text and input it back into GPT-4V to generate holistic instructions

Response

User

Physical World

Time = t - 1

Current Instruction: Open the lid of the coffee
bean hopper on the grinder to refill or check the

amount of beans remaining.

Step 1: Open the lid of the
coffee bean hopper on the
grinder to refill or check the
amount of beans remaining.
[…]

Pre-Generated Instructions

Reality Encoder Reality DecoderLLM Backend

Prompt

User
Displayed AR

Content

Retrieve Relevant
Camera Pose

Time = t

MLLM
GPT-4V

MLLM
Ferret

False. The lid of the coffee
bean grinder is not open,
and the user seems to be

in the process of opening a
bad of coffee beans

The beans in the
bag[157,72, 428,331]

should be user to refill the
grinder [293,363,718,694].

Convert Coordinates to
World coordinates

Create AR Arrow
pointing to the

coordinates

Output Text
Response in

AR

Generated Prompt: "I am currently trying to
do the instruction: Open the lid of the
coffee bean hopper on the grinder to
refill or check the amount of beans
remaining. Have I done the instruction? I
am giving you frames showing the current
state of my environment from an ego-
centric view. Does it look like the instruction
may have been done? If there is any chance
it might be done, say true. Answer just True
or False. If false, tell me what I am missing.
Here is the complete list of instructions: " +
<Pre-Generated Instructions>

Response: “False. The lid of the coffee
bean grinder is not open, and the user
seems to be in the process of opening a
bag of coffee beans. Coords=
[[157,72, 428,331] , 293,363,718,694]]”

Open the lid of
the coffee grinder
to refill the beans

Figure 5: Walkthrough of the instruction following pipeline for the cognitive assistant. The process uses instructions that are generated in the
process details in Fig. 4. The figure shows in the intermediate prompts and MLLM responses that are generated

to perform the task for a non-expert user. This automates the in-
struction generation and user action logging process. Fig. 4 shows
examples of our actual input prompts with the various responses
generated by the system.

While MLLMs are quite capable of creating step-by-step instruc-
tions to do a task purely from textual input, using this video sum-
marization and action logging method ensures the instructions gen-
erated are specific to the way the expert did the task and to the tools
they used. For example, while GPT-4V can easily generate instruc-
tions to make a cup of coffee, the results are often very generalized
and non-specific to the particular tools a user may have. Using our
technique, the model will generate instructions that walk through
and utilize the correct tools. This is especially useful when work-
ing with specialized devices (like in factories), or when a particular
method of doing the task is important. It also simplifies instruction
generation, since an expert does not have to write down the steps
to do a task manually and risk missing details which the MLLM
can pick up on, and removes the requirement for the LLM to be
retrained in a particular task making our system very generalizable.

Mental
Demand

Physical
Demand

Temporal
Demand

Performance
Score

Effort
Score

Frustration
Score

0

2

4

6

8

10

NA
SA

 T
LX

 S
co

re
 b

y
Di

m
en

sio
n

MLLM-Backend
Human-Backend

Figure 6: NASA TLX values are shown broken down by each of
the individual dimensions. The figure compares the scores given
by users during user studies for the MLLM-backend and Human-
backend cognitive assistant.

4.2 Live Feedback when Performing a Task

When a non-expert user wants to perform the same task, XaiR can
walk the user through the task using the instructions generated in
the previous stage. In order to create the prompts for the MLLMs,
we use the latest two image frames as well as the current instruction.
The prompt asks the MLLM to provide the status of the current
instruction by using the image frames as context for what the user
has done. We also provide the entire instruction list as context in
each prompt so the MLLM has information about the completed
and upcoming tasks, improving understanding of the user state.

The ML2 overlays virtual arrows in the environment to highlight
essential objects required for the task. Our system also generates
text to display feedback needed to complete the task and what the
user might be doing incorrectly. A detailed example of this can be
seen in Fig. 5 with example prompts that are generated from the
combination of the Reality Encoder and pre-generated instructions.

Throughout the process, the user has the ability to ask follow
up questions which are also injected into the queries of GPT-4V
and Ferret. This allows the user to ask clarifying questions or get
additional information from the assistant.

5 EVALUATION

In the following sections, we evaluate XaiR’s effectiveness as a
instruction-guiding cognitive assistant.

5.1 Reasoning Capabilities Compared to Humans

We conducted a user study to evaluate the performance of GPT-
4V and Ferret against a human’s performance in cognitive assistant
tasks. We considered a human as the “ideal” model, setting them
as a benchmark. The comparison assessed the ability of MLLMs
to comprehend physical world data, interpret user actions from im-
ages, and offer task guidance relative to human capabilities.

To ensure equal information access between the human assis-
tant and the MLLMs during our study, we developed a web-based
dashboard, as shown in Figure Fig. 7. This dashboard displays five
images per second, captured from the user’s headset camera. The
human assistant types responses and draws bounding boxes on the
most recent image, similar to the functionality of the Ferret subsys-
tem. The human’s text responses includes feedback on current in-
structions and decisions about proceeding to the next task segment,

Basic Tasks Advanced Tasks

MLLM Human MLLM Human

Accuracy (%) 86.7 100 93.3 100

Queries per instruction 8.05 ±2.98 2.52 ±0.43 10.72 ±3.80 3.88 ±0.49

Time per instruction (sec) 38.37 ±3.16 27.88 ±1.51 37.68 ±3.10 27.85 ±2.34

Time to complete task (sec) 166.26 ±15.81 139.4 ±7.55 228.38 ±13.63 162.93 ±12.73

NASA TLX Raw Scores (out of 100) 28.11 ±3.08 16.67 ±2.06 33.00 ±4.41 17.78 ±2.62

Table 1: User Study results comparing the performance of the MLLM-backend with the human-backend for the cognitive assistant with
“basic” and “advanced” tasks. The values show an average over the 15 participants’ results. For the TLX scores, a lower average is a better.

Figure 7: Interface for the human-backend dashboard. It shows five previous frames in a sequence and includes a sketchpad to annotate the
location(s) for AR overlays. It also includes the user’s input prompt, a textbox to respond, and a checkbox to decide whether the current step
as been completed.

similar to the functionality of the GPT-4V subsystem. Both the hu-
man and the MLLMs were provided with the same data – identical
image sets and text prompts – to maintain a fair comparison. The
human reasoning agent was selected from among the authors and
remained the same across all the trials conducted to ensure consis-
tent typing and annotation speeds, in an attempt to eliminate the
specific human reasoning agent as a bottleneck across the studies.

Our study involved 15 participants between the ages 22 and 45
with a 46% female/male gender ratio. Each participant was tasked
to complete a total of four tasks: two “basic” and two “advanced”
tasks. The basic tasks required participants to assemble simple chil-
dren’s blocks into various configurations based on provided instruc-
tions. The advanced tasks involved setting up a humidifier and us-
ing a multimeter to measure the resistance of a through-hole re-
sistor. We randomly assigned one task from each category to be
guided by GPT-4V and Ferret MLLMs, while the other task was
guided by a human through a web dashboard. Participants were
not informed that there were different guiding agents until after the
study was completed. For each task, we recorded the completion
time, the number of queries made, and user experience using the
NASA Task Load Index (TLX). The results are in Tab. 1.

We see that 3 out of the 30 tasks performed with the MLLMs
were incomplete, meaning the MLLMs did not advance from a step
for more than 4 minutes even though the step had been completed,
or the MLLMs falsely advanced from a step even though the step

had not been completed. In these cases, we marked the task as in-
complete. This gives the MLLM-based cognitive assistant a 90%
overall accuracy whereas the human-based assistant had a 100%
accuracy. We saw that participants needed to make more queries
when interacting with the MLLMs when compared to the human
before the system considered the task completed. We see an aver-
age of 8.04 queries per instruction for basic tasks with the MLLM-
backend while the human-backend only needed 2.52 queries. The
MLLMs requires about 6-7 more queries for each instruction when
compared to the human, which shows that the MLLM responses
are not always accurate (p-value from T-test = 1.56x10−5 < 0.05).
We observe that if the system does not detect that the instruction
has been completed, the participants re-position the objects in front
of them, or try to view the objects from a different angle; the par-
ticipants naturally assumed that the assistant could not “see” the
completed step and thus moved objects around to account for that.

While the human-based cognitive assistant is faster at helping
the user complete the tasks, we see that the MLLMs take 19% more
time for the basic tasks and around 40% more time for the advanced
tasks, showing that the reasoning speeds of MLLMs today are not
that far off from those of humans. We observed that the MLLM-
based trials spent the majority of the time making multiple calls to
the MLLM, whereas the human took longer to look at the images,
identify and locate the relevant objects, and type a text response.
While we initially thought that the human time would be signif-

1 2 3 4 5
Number of Images Provided as Input

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
 o

f R
es

po
ns

e

Without text context
With text context

4

5

6

7

8

Re
sp

on
se

 T
im

e
(s

ec
)

Figure 8: Accuracy and speed of GPT-4V when different amounts
of input data are provided as context. Shows the trade off between
response accuracy and response time.

icantly faster, we were surprised to only see an average of 0.5-1
second difference per query (p-value from T-test = 0.0065 < 0.05).

To assess user experience, we used the NASA Task Load In-
dex (TLX) to measure user workloads with both types of cognitive
assistants. Tab. 1 shows a consistently higher average TLX scores
for the MLLM-based assistants compared to the human-based ones,
with lower scores indicating lower cognitive load. Further analysis
of individual components of the NASA TLX in Fig. 6 shows that
the MLLM-backed system exhibits a higher task load index than
the human-backed system. This suggests that the MLLM-based
cognitive assistant demands a higher mental workload from users.
Nonetheless, the performance metrics are nearly identical, indicat-
ing that both systems are capable of achieving the task goals, albeit
with different mental workloads required from the users.

5.2 Comparing the Value of the Data Input to the System

The purpose of the Reality Encoder is to gather essential data to al-
low MLLMs to better understand the user’s environment. To deter-
mine how much context we needed to provide GPT-4V to achieve
the most optimal performance (in terms of accuracy and speed), we
experiment with providing GPT-4V with varying levels of context,
including different numbers of images and textual information. In
this experiment, the number of image frames provided ranged from
one to five, with each frame captured one second apart during the
task. Additionally, we vary the amount of textual context provided.
For instance, we provide textual context indicating that the user is
trying to making coffee for half of the trials, while in the other half,
no textual context is given. The effects of these variations on the ac-
curacy of task prediction is shown in Fig. 8. We observed that as the
number of image frames provided to the MLLM increases, the re-
sponse time increases. To balance maintaining a low system latency
while achieving a satisfactory level of accuracy, we concluded that
using two image frames accompanied by textual context for the Re-
ality Encoder as detailed in Sec. 3.1 was the most optimal amount
of context for our use case.

5.3 System Performance

5.3.1 Accuracy of AR overlays

During the Reality Decoder step Sec. 3.3, Ferret returns the 2D im-
age space coordinates of where we should place an virtual overlay
raycasted into 3D. In order to measure the accuracy of Ferret, we
ask a verbal question to the cognitive assistant about the user’s sur-
roundings about the objects in the space, like “where is the pen?,”
and then visually evaluate the resulting overlays. For our evalua-
tion, we ask three different questions of varying levels of difficulty
and repeat each questions 30 times and record the visually deter-
mined success rate. Tab. 2 shows the resulting accuracy of AR over-
lays for each of the questions. We see that as the complexity of the

Question

Answering Question Requires: AR
Over-
lay
Accu-
racy

Identify
Object
from
Image?

Identify
Object
from De-
scription?

Find
Ob-
ject?

Q1: Where is the
pen?

No No Yes 93.3%

Q2: What can I use
to write on the white
board?

No Yes Yes 83.3%

Q3: Where should I
put this [pen]?

Yes Yes Yes 76.7%

Table 2: Accuracy of AR overlays for questions that involve differ-
ent types of comprehension – identifying what an object is, finding
an object in the scene from the description, and identifying the ob-
ject given a description.

question increases (in other words, as the question goes from sim-
ply finding a known object in the scene to understanding what the
purpose of the object is and knowing where to put it), the accuracy
of responses reduces.

5.3.2 Accuracy of Instruction Generation
As described in Sec. 4.1, our cognitive assistant can summarize and
understand the user’s actions from the egocentric video of an expert
user performing a particular task. To test the effectiveness and ac-
curacy of the MLLM in generating correct and clear instructions,
we have the user perform five every day tasks and generate instruc-
tions from them. The tasks are of varying levels of complexity –
setting up a humidifier, making coffee an espresso machine, mak-
ing a sandwich, setting up a dinner table, and soldering a wire.

We use GPT-as-a-judge [37] to compare the generated instruc-
tions to ground truth instructions generated by the authors. Our pro-
cedure is as follows: we take egocentric videos, extract images, and
generate instructions using GPT-4V as described in Sec. 4.1. Then
we give GPT-4 both the generated instructions and ground truth in-
structions and ask it how many of the generated instructions match
the ground truth, how many instructions are wrong, and how many
additional instructions that are unspecified yet not wrong. Due to
the nondeterministic nature of instruction generating, we repeat this
procedure 10 times and average the returned values to get the num-
ber of correct, wrong, and additional instructions.

We ran the same experiment with Video-LLaVA [16] as the in-
struction generation agent instead of GPT-4V, as Video-LLaVA can
interpret videos directly rather than a collection of images. We use
the same egocentric videos we used for generating the instructions
with GPT-4V and repeat the procedure described above. The re-
sults for instruction generation with the models are shown in Fig. 9.
We notice that the accuracy values are in the 50-60% range for the
GPT-4V, given that the wrong instructions are below 20% for the
majority of times, the overall generated instructions are quite real-
istic. We noticed that LLaVA performs worse than GPT-4V in gen-
erating correct instructions, mostly because it has been trained on
much less data. GPT-4V is rumored to have around 1 trillion param-
eters while LLaVA has only 3 billion, making GPT-4V the obvious
choice for better accuracy and response quality. Thus, even though
Video-LLaVA is open-source and faster, we decided to use GPT-
4V as our MLLM for inference on image frames for our cognitive
assistant system.

5.3.3 System Benchmarks
XaiR streams audio and image frames over the network from the
client to the server every second. The server streams text back to

0

20

40

60

Instruction Generating with GPT-4V

Set Up
Humidifier

Make
Coffee

Make
Sandwich

Set Up
Dinner Table

Soldering

Tasks

0

20

40

60

%
 o

f G
en

er
at

ed
 In

st
ru

ct
io

ns Instruction Generating with LLaVA

Correct Additional Wrong

Figure 9: Analysis of instructions generated from egocentric videos
of different tasks performed by a user using GPT-4V and LLaVA.

the client. Given that the text and audio has a negligible data size
compared to images, we measure the approximate bandwidth con-
sumed primarily based on the image frame streaming needs. Each
frame is a 640x480 PNG compressed image. The average band-
width consumed during our study is approximately 2.32 Mbps.

System Components Time Taken (s)
End to End System 4.241
MLLM Backend 4.173

GPT-4V 4.169
Ferret 2.883

Reality Encoder and Decoder 0.067
Image Streaming 0.005
RayCasting 0.001

Table 3: Average latency of various key system components.

To measure the end-to-end latency of the system, we measure the
average time from when the images are captured on the headset to
when the AR objects are generated. This takes roughly 4.241 sec
on average. See Tab. 3 for a detailed breakdown of the timing.

6 DISCUSSION AND LIMITATIONS

One limitation of the XaiR platform is its ability to create accurate
and complex augmented reality (AR) overlays. We employ Ferret
to generate 2D bounding boxes for objects. However, Ferret, with
its 13 billion parameters and training on only 1.1 million spatial
grounding data points, lacks the robustness of larger models like
GPT-4V, which is rumored to have around 1 trillion parameters.
Consequently, Ferret’s accuracy and capability to detect complex
objects are less reliable. Moreover, Ferret is limited to detecting
objects that are visibly present in the scene; it cannot perform more
intricate spatial detections necessary for following instructions in
tasks. For instance, while it can identify and provide coordinates
for a pen and a book based on the instruction to “move the pen to
the right of the book,” it cannot determine the coordinates for “the
right of the book.” Hence, our AR overlays are currently restricted
to simply highlighting relevant objects but not demonstrating how
to perform tasks with more complex animations, as we often lack
precise spatial locations for such animations. In the future, MLLMs
improve in spatial understanding, we anticipate significant advance-
ments in AR content generation for systems similar to XaiR.

Additionally, the Magic Leap 2 headset, while capable of gen-
erating a 3D mesh of the environment, faces limitations that affect

the projection of our 2D coordinates into the 3D world. The process
of reconstructing this mesh from the cameras and depth sensors is
notably slow (the fastest update rate is approximately 1Hz). As a
result, AR overlays produced within the first 30-40 seconds of pro-
gram operation often exhibit poor depth values due to the incom-
plete mesh reconstruction. Furthermore, while the mesh generation
is more effective for large objects, the limitations of depth cameras
mean that smaller, more detailed objects tend to result in a noisier
and incorrect mesh. Consequently, AR overlays for smaller objects
can sometimes be inaccurate, due to issues with the mesh and/or
errors from Ferret’s object detection.

A known issue with large language models (LLMs), due to their
extensive number of parameters, is their slow response time, often
taking several seconds for inference. This delay introduces signif-
icant latency to systems, particularly noticeable in conversational
assistants where users might wait 4-6 seconds for a full completed
response. This lag is especially problematic in tasks that involve
following instructions, as the user must wait several seconds after
completing an action before the LLM even processes images of the
completed task. Consequently, the system’s speed is inherently lim-
ited by the speed of the LLMs it employs which we imagine will
decrease over time.

There has been a recent surge in industry efforts like those from
Google [7] and OpenAI [6] to integrate physical world data into
MLLMs to help users better understand the spaces around them.
Their work mainly focuses on improving how a MLLM can an-
swer questions about the user’s surroundings using only audio/text
and color images. Our reality encoder/decoder architecture for
scene understanding generalizes this workflow to include mesh
data/world information (and possibly other sensor modalities in the
future). We provide an open-source architecture with scaffolding
that allows developers to experiment with MLLMs in the context of
XR applications. Additionally, as researchers and engineers im-
prove MLLMs and machine learning models, these new models
can easily be integrated into our system in parallel to enhance per-
formance and response quality. With our reality encoder and de-
coder system, we provide both the ability to understand as well as
ground responses in the physical world, without having to modify
the MLLMs, making it easy to test new models for their ability re-
spond to physical world data. We also believe that our MLLMs vs
human user-study methodology could serve as an important tool for
evaluating future systems and creating offline benchmarks.

7 CONCLUSION

In conclusion, this paper introduces XaiR, a research platform
that integrates MLLMs with XR, showing promise for enhancing
machine understanding of physical environments. XaiR uniquely
facilitates the concurrent use of multiple MLLMs within physi-
cal contexts by employing a computational split, where resource-
intensive MLLM operations are processed on a server, and pro-
cesses requiring the world model are managed directly on the XR
headset. We demonstrated the system through a cognitive assistant
application and conducted a user study to evaluate the differences in
MLLM and human operators in terms of task completion rate and
time. The results indicated that while MLLMs may not match hu-
man levels of understanding and responding to the physical world,
they often process tasks faster than human operators. We believe
that this framework could be used to generate datasets that could
inevitably be used to train and evaluate future model progress.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foun-
dation under Grant No. CNS-1956095, CNS-2148367, the NSF
Graduate Research Fellowship under DGE-2140739, and Bosch
Research. Any opinion, findings, and conclusions or recommenda-
tions expressed in this material are the author’s and not the NSF.

REFERENCES

[1] Meta ray-ban glasses multimodal ai. https://about.fb.
com/news/2023/09/new-ray-ban-meta-smart-glasses/. Ac-
cessed: Jan 2, 2024. 1, 2, 3

[2] Github copilot. https://github.com/features/copilot/,
2023. Online. Accessed: May 2024. 3

[3] Magic leap. https://www.magicleap.com/en-us/, 2023. Online.
Accessed: May 2024. 3

[4] Jul 2024. 3
[5] Llama 3. https://ai.meta.com/blog/meta-llama-3/, 2024.

Online. Accessed: July 2024. 2
[6] Openai gpt-4o. https://openai.com/index/hello-gpt-4o,

2024. Online. Accessed: July 2024. 3, 8
[7] Project astra google deepmind. https://deepmind.google/
technologies/gemini/project-astra/, 2024. Online. Ac-
cessed: July 2024. 1, 3, 8

[8] L. Cheng. Introducing copilot in microsoft dynamics 365 guides, Nov
2023. 3, 4

[9] S. Chidambaram, H. Huang, F. He, X. Qian, A. M. Villanueva, T. S.
Redick, W. Stuerzlinger, and K. Ramani. Processar: An augmented
reality-based tool to create in-situ procedural 2d/3d ar instructions. In
Proceedings of the 2021 ACM Designing Interactive Systems Confer-
ence, DIS ’21, p. 234–249. Association for Computing Machinery,
New York, NY, USA, 2021. doi: 10.1145/3461778.3462126 3

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding, 2019.
2

[11] J. A. V. Fernandez, J. J. Lee, S. A. S. Vacca, A. Magana, B. Benes,
and V. Popescu. Hands-free vr, 2024. 2

[12] S. G. Hart and L. E. Staveland. Development of nasa-tlx (task load
index): Results of empirical and theoretical research. Human mental
workload, 1(3):139–183, 1988. 2

[13] C.-Y. Hsieh, C.-L. Li, C.-K. Yeh, H. Nakhost, Y. Fujii, A. Ratner,
R. Krishna, C.-Y. Lee, and T. Pfister. Distilling step-by-step! out-
performing larger language models with less training data and smaller
model sizes, 2023. 2

[14] V. Jain, L. Mei, and M. Verhelst. Analyzing the energy-latency-area-
accuracy trade-off across contemporary neural networks. In 2021
IEEE 3rd International Conference on Artificial Intelligence Circuits
and Systems (AICAS), pp. 1–4, 2021. doi: 10.1109/AICAS51828.
2021.9458553 2

[15] C. Li, C. Wong, S. Zhang, N. Usuyama, H. Liu, J. Yang, T. Naumann,
H. Poon, and J. Gao. Llava-med: Training a large language-and-
vision assistant for biomedicine in one day. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, eds., Advances
in Neural Information Processing Systems, vol. 36, pp. 28541–28564.
Curran Associates, Inc., 2023. 3

[16] B. Lin, Y. Ye, B. Zhu, J. Cui, M. Ning, P. Jin, and L. Yuan. Video-llava:
Learning united visual representation by alignment before projection,
2023. 1, 7

[17] H. Liu, C. Li, Y. Li, B. Li, Y. Zhang, S. Shen, and Y. J. Lee. Llava-
next: Improved reasoning, ocr, and world knowledge, January 2024.
1

[18] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning, 2023. 2
[19] V. V. R. M. K. Muvva, K. Samal, J. M. Bradley, and M. Wolf. A

closed loop perception subsystem for small unmanned aerial systems.
In AIAA SCITECH 2023 Forum, p. 2673, 2023. 3

[20] D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, and B. Myers.
Using an llm to help with code understanding. In Proceedings of
the IEEE/ACM 46th International Conference on Software Engineer-
ing, ICSE ’24. Association for Computing Machinery, New York, NY,
USA, 2024. doi: 10.1145/3597503.3639187 3

[21] OpenAI, J. Achiam, S. Adler, S. Agarwal, L. Ahmad, and et al. Gpt-4
technical report, 2024. 2

[22] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever. Robust speech recognition via large-scale weak super-
vision, 2022. 3

[23] A. Stanescu, P. Mohr, M. Kozinski, S. Mori, D. Schmalstieg, and
D. Kalkofen. State-aware configuration detection for augmented real-

ity step-by-step tutorials. In 2023 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), pp. 157–166, 2023. doi: 10.
1109/ISMAR59233.2023.00030 3

[24] K. Tainaka, Y. Fujimoto, M. Kanbara, H. Kato, A. Moteki, K. Kuraki,
K. Osamura, T. Yoshitake, and T. Fukuoka. Guideline and tool for
designing an assembly task support system using augmented reality.
In 2020 IEEE International Symposium on Mixed and Augmented Re-
ality (ISMAR), pp. 486–497, 2020. doi: 10.1109/ISMAR50242.2020.
00077 3

[25] G. Team, R. Anil, and S. B. et al. Gemini: A family of highly capable
multimodal models, 2024. 1

[26] Unity Technologies. Unity, 2005. Online. Accessed: May 2024. 3
[27] M. D. Vu, H. Wang, Z. Li, J. Chen, S. Zhao, Z. Xing, and C. Chen.

Gptvoicetasker: Llm-powered virtual assistant for smartphone, 2024.
3

[28] W. Wang, Z. Chen, X. Chen, J. Wu, X. Zhu, G. Zeng, P. Luo, T. Lu,
J. Zhou, Y. Qiao, and J. Dai. Visionllm: Large language model is also
an open-ended decoder for vision-centric tasks. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, eds., Ad-
vances in Neural Information Processing Systems, vol. 36, pp. 61501–
61513. Curran Associates, Inc., 2023. 2

[29] WebRTC Working Group. Webrtc, 2011. Online. Accessed: April
2023. 3

[30] J. Wu, W. Gan, Z. Chen, S. Wan, and P. S. Yu. Multimodal large
language models: A survey. In 2023 IEEE International Confer-
ence on Big Data (BigData), pp. 2247–2256, 2023. doi: 10.1109/
BigData59044.2023.10386743 2

[31] H. Xu, L. Han, Q. Yang, M. Li, and M. Srivastava. Penetrative ai:
Making llms comprehend the physical world, 2024. 3

[32] H. You, H. Zhang, Z. Gan, X. Du, B. Zhang, Z. Wang, L. Cao, S.-F.
Chang, and Y. Yang. Ferret: Refer and ground anything anywhere at
any granularity, 2023. 1, 4

[33] J. Zauner, M. Haller, A. Brandl, and W. Hartman. Authoring of a
mixed reality assembly instructor for hierarchical structures. In The
Second IEEE and ACM International Symposium on Mixed and Aug-
mented Reality, 2003. Proceedings., pp. 237–246, 2003. doi: 10.1109/
ISMAR.2003.1240707 3

[34] H. Zhang, X. Li, and L. Bing. Video-llama: An instruction-tuned
audio-visual language model for video understanding, 2023. 1

[35] P. Zhang, G. Zeng, T. Wang, and W. Lu. Tinyllama: An open-source
small language model, 2024. 2

[36] X. Zhang, Y. Lu, W. Wang, A. Yan, J. Yan, L. Qin, H. Wang, X. Yan,
W. Y. Wang, and L. R. Petzold. Gpt-4v(ision) as a generalist evaluator
for vision-language tasks, 2023. 1, 4

[37] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang,
Z. Lin, Z. Li, D. Li, E. P. Xing, H. Zhang, J. E. Gonzalez, and I. Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023. 7

https://about.fb.com/news/2023/09/new-ray-ban-meta-smart-glasses/
https://about.fb.com/news/2023/09/new-ray-ban-meta-smart-glasses/
https://github.com/features/copilot/
https://www.magicleap.com/en-us/
https://ai.meta.com/blog/meta-llama-3/
https://openai.com/index/hello-gpt-4o
https://deepmind.google/technologies/gemini/project-astra/
https://deepmind.google/technologies/gemini/project-astra/

	Introduction
	Related Work
	XR Large Language Models
	Instruction Following and Cognitive Assistants

	System Design
	The Reality Encoder
	LLM-based Backend
	The Reality Decoder

	XaiR Cognitive Assistant Demonstrator
	Instruction Generation from Egocentric Videos
	Live Feedback when Performing a Task

	Evaluation
	Reasoning Capabilities Compared to Humans
	Comparing the Value of the Data Input to the System
	System Performance
	Accuracy of AR overlays
	Accuracy of Instruction Generation
	System Benchmarks

	Discussion and Limitations
	Conclusion

