
Scaling VR Video Conferencing
Mallesham Dasari1, Edward Lu1, Michael W. Farb1, Nuno Pereira2, Ivan Liang1, Anthony Rowe1

1Carnegie Mellon University
2ISEP/IPP and INESC TEC

Figure 1: VR video conferencing where many users can explore worlds and interact as live videos mapped onto a cube.

ABSTRACT

Virtual Reality (VR) telepresence platforms are being challenged
to support live performances, sporting events, and conferences with
thousands of users across seamless virtual worlds. Current systems
have struggled to meet these demands which has led to high-profile
performance events with groups of users isolated in parallel sessions.
The core difference in scaling VR environments compared to classic
2D video content delivery comes from the dynamic peer-to-peer
spatial dependence on communication. Users have many pair-wise
interactions that grow and shrink as they explore spaces.

In this paper, we discuss the challenges of VR scaling and present
an architecture that supports hundreds of users with spatial audio and
video in a single virtual environment. We leverage the property of
spatial locality with two key optimizations: (1) a Quality of Service
(QoS) scheme to prioritize audio and video traffic based on users’
locality, and (2) a resource manager that allocates client connections
across multiple servers based on user proximity within the virtual
world. Through real-world deployments and extensive evaluations
under real and simulated environments, we demonstrate the scala-
bility of our platform while showing improved QoS compared with
existing approaches.

1 INTRODUCTION

Industrial and enterprise automation, fueled by the pandemic, has
contributed to rapid growth in interactive and immersive telepresence
applications. Unlike conventional 2D video conferencing systems

that flattens user attention equally across a grid of videos, Collab-
orative Virtual Environments (CVEs) allow users to interact with
each other and the environment in 3D with spatial audio. Sec-
ondLife [4],AltspaceVR [41], Facebook Spaces [39], VRChat [43],
and Mozilla Hubs [23] are just a few examples of popular CVEs that
are being used for events ranging from live music performances to
virtual conferences. In many cases, these platforms not only work
on computers, but also integrate with VR headsets.

Unfortunately, scaling these 3D environments in terms of both
world-size and number of simultaneous users presents several new
challenges compared to 2D video content delivery. First, these
environments support many concurrent flows of both audio and video
as opposed to a small subset of “pinned” users or active speakers.
Some users may only be heard off in the distance, but they still need
to be transmitted across the network. Second, as these worlds scale
to larger and larger events, the size and total number of engaged
users (as opposed to passive listeners) is increasing. There have been
reports of live concert performances (SuperBowl LVI) where artists
were broadcast into many parallel environments each of which could
only support a few dozen attendees [40,42]. In the simplest case, the
increased user load simply saturates the capacity of traditional video
servers that are designed to send similar content to most users. Third,
connections between users are highly dynamic with conversation
groups forming, moving, and merging with the social dynamic of
users moving through the space. One might naturally assume peer-
to-peer architectures would be the ideal solution, but these struggle
to scale beyond a handful of users since they are unable to leverage
server-side aggregation and transcoding of streams. We ideally need
a solution that provides the efficiency of centralized video servers
but can also scale horizontally across multiple servers.

In this paper, we present a VR video conferencing telepresence

platform that enables highly scalable VR audio and video streaming
from within a web browser. Using a desktop computer or mobile
device, users can navigate through a 3D world using the keyboard
and mouse for navigation. Audio and video are captured from the
view device and presented to other users in close proximity within
the virtual environment. When enabled, video appears streamed as a
texture map onto a video cube that replaces their normal avatar as
shown in Figure 1. The platform is accessible using mixed reality
headsets through reality browsers that render the web content in an
immersive VR manner. In order to improve scale, we developed a
VR Streaming Quality-of-Service (QoS) system that performs Frus-
tum Video Culling and distance-based QoS link estimation based on
a user’s location within the virtual world (§3.2). Finally, we provide
a resource allocator that operates on the communication graph be-
tween users to load balance and optimize user to audio/video server
to maintain the correct communication linkages while minimizing
setup connection latency (§3.3). It is worth noting that we see VR
video streams as a stepping-stone to more advanced streaming-based
representations, such as real-time capture or codec avatar systems
that would benefit from these same techniques [25, 28].

We implemented our VR chat system using an open source
Jitsi [3] video conferencing backend connected to the ARENA XR
platform [36]. Our system is cross-platform compatible and works
with a wide variety of devices including desktops, laptops, VR
Headsets and tablets. We experimentally evaluate our system under
diverse environments including real-world deployments (dozens of
social and conference related events), trace-driven emulation, and
large-scale simulation with synthetic traces. Compared to a 2D
content delivery baseline over two the traces, our system requires
15× less upload bandwidth, 4× less download bandwidth, and re-
duces CPU load by 2× on the server-side. Moreover, for the same
bandwidth our system has 46% better quality video with 3× ren-
dering frames per second on the client-side. Finally, our system
scales to hundreds of video clients without any disruption in clients’
connection as they move around in VR space.

In summary, our key contributions are the following.

• We present a scalable VR video conferencing system for Telep-
resence, that allows a multi-user 3D video conferencing from
within a web browser.

• We introduce a series of techniques to optimize and scale our
system to hundreds of users. Specifically, we present a distance
based QoS, video frustum culling technique, and a resource
provisioning mechanism.

• We implemented our system and hosted several real-world ses-
sions such as poster session, student class presentation, group
meetings etc. We experimentally demonstrate the benefits of
our system by comparing with existing baselines1.

2 BACKGROUND AND RELATED WORK

Telepresence, as a sense of being present in a shared virtual environ-
ment, has been studied extensively in the past [10,16,20,26,30]. The
idea of telepresence has been around for almost four decades and
has been realized in a variety of forms ranging from traditional 2D
video conferencing, avatar based communication, 3D reconstruction
based immersive conferencing, etc.
2D video telepresence systems: The conventional 2D telepresence
systems (e.g., Skype, Facetime, Zoom) are shown to be successful
for various forms of online communication. These systems provide
mostly a single point view for all the participants in the session by

1We opensourced the source code for our system and several people in
the community have already started using it. We have masked the link to
code to preserve double blind submission. We will update the link to source
code here upon paper acceptance.

capturing the scene with one or more cameras. This form of commu-
nication is fundamentally different from our everyday, face-to-face,
in-person conversations, where different people have different view-
points, and each such view point is different from the other. Several
advances have been made to resolve these real-world experiences
within the 2D video conferencing systems. Notable such solutions
include synchronizing eye contact through optimized camera place-
ment [8, 29, 45, 48], telepresence robots with assisted control [6],
situated displays and avatars [18, 19, 31, 46]. More recent work in
this space include gaze-preserving multiview telepresenc [33], gaze
estimation and its improvement for telepresence [32, 34]. Despite
several attempts have been made to enable a true co-presence in
these applications, it is shown to be extremely difficult to preserve
the natural eye contact, situational awareness and gaze direction
from multiple viewpoints in 2D telepresence applications.
3D avatars: Recent solutions introduce virtual avatars [23,39,41,43]
that can be controlled by users’ body tracking and eye movements.
Most popular work in this space is Facebook codec avatars, that
are generated by neural networks that are trained on images from
specialized capture rigs with arrays of cameras [25]. Further line of
work in this space include spatial audio, gaze based facial animation
(i.e., animated 3D avatars [22]), personalized avatars, to improve the
realism of avatar based communication. Previous works also used a
spherical object to map the user’s video [24], which requires using a
360◦ camera.
3D scene capture and reconstruction: To provide novel multiple
views from each user, more recent solutions introduced 3D scene
capturing and reconstruction from depth sensors. With the avail-
ability of commodity depth sensors (e.g., Azure Kinect [1], Intel
Lidar [2]), there has been significant interest in enabling immersive
telepresence via 3D video delivery. This line of work deploys a
series of depth cameras and fuses the overlapping depth regions
for accurate surface reconstruction [12, 26, 27, 47] in enabling one-
one, one-many and many-many group conversations. Another type
of immersive 3D content is created from Photogrammetry type of
techniques by placing an array of cameras around participants [7].
However, enabling 3D telepresence applications using these tech-
nologies face several challenges in terms of cost, network bandwidth,
sensor capabilities and remains an open area of research. VR video
conferencing is another form of immersive 3D telepresence applica-
tion, where the shared virtual experiences are created by connecting
users in a static 360-degree environment with 2D video streams on
top of Web based VR frameworks [13–15, 37].
Video streaming optimizations: There has been extensive prior
work on improving the experience for regular video streaming with
efficient network resource provisioning. Much of the previous work
focuses on improving the adaptive bitrate algorithms by better pre-
dicting the available throughput [17, 44]. More recently, streaming
360-degree videos is becoming popular to enable immersive VR
applications. To overcome the bandwidth challenges, recent stud-
ies use viewport prediction to stream 360-degree videos, where the
video is partitioned spatially into tiles and only the tiles in the user’s
predicted viewport are streamed to the client [35, 38].

3 SYSTEM DESIGN

To capture the spatial properties of users in virtual environments, we
composite a video-based avatar by texture mapping live video on
one or more surfaces of a 3D geometry. An example video avatar in
our system is shown Figure 2. The 3D video avatar element allows
seeing other users from multiple angles while still capturing the
direction of their gaze. We have experimented with other forms
of projection schemes (e.g., 2D projection on a cylinder instead
of cube) and find that video cubes are more appealing. The key
innovation is that the user is visible from all sides, but the front side
of the object is highlighted to show the direction the user is facing.
All other sides are darkened making it possible to identify the user

Figure 2: Example of how video can be texture mapped on avatars
such that they are visible from multiple directions. Note that the
front-facing face is lighter compared to the sides, providing a cue
to where the user is facing. In the example, the user is inside a 3D
scanned model of a real venue.

User connectivity range

User 1

User 2

User 3 User 5User 4

User 6

User 7

User connectivity graph

User 1

User 2

User 3 User 5User 4

User 6

User 7

Figure 3: A connectivity graph can be constructed based on the
distance between users. The graph is constructed dynamically in
real-time as the users move around.

but makes it more difficult to read more subtle social cues (like lip
movement etc) from a distance. We believe that a video cube is
better to support a single camera facing the user, which does not
map well to a sphere as used in previous work [24].

Users move through the 3D environment with mouse movements,
keyboard arrow and WASD keys for physical keyboard devices, and
with touchscreen swipes, long press, and accelerometer rotations for
mobile devices and VR headsets. In this way, users can alter their
perspective to pan, rotate, tilt and travel through the environment.
By default, all movement height is set slightly above the ground
at roughly the same height a user ’sees’ while walking along the
ground.

3.1 System Model
Figure 3 shows a graph representation of a typical VR session where
each user has a radius that defines their connectivity within the 3D
environment. Graph edges are undirected and weighted based on dis-
tance (i.e. conversation between closer users is more important than
distant users). Figure 4 depicts our system design. A set of servers
(total S) are managed by a resource allocator that assigns client sub-
graphs to servers. Clients (total U clients) send control messages
to request AV streams of other users with desired QoS given their
pose and connectivity in the 3D environment. Audio volume and
quality are based on distance as described in Section 3.2. Similarly,

…

AV Streams

Control Messages (pubsub)

…

AV Streams

Control Messages (pubsub)

AV Streams
Control Messages (pubsub)

user pose, connectivity

user pose, connectivity

user pose, connectivity

Figure 4: End-to-end system design with three system components:
1) Distance-based QoS, 2) Frustrum culling, 3) Resource allocator.

video quality is based on distance with a maximum range, and also
subject to frustum culling at each client. Users who are far away are
not streaming their video to each other, thus not connecting in the
same session graph. We define a VR session/scene to have U users
in total with S servers available to handle audio/video streaming
sessions. Each server is capable of handling M client connections.
Conversations between any two users are only successful if the edge
connecting the two nodes exists on the same server. This implies
that for two users to communicate, they need to be connected to at
least one shared server. Finally, N denotes how many servers a user
can associate with. In practice, N is typically 1, and rarely will be
more than 3 as the overhead for clients to manage multiple server
connections is often quite high. A user might want to connect to
multiple servers in cases when they leave one conversation group
and enter another. In these cases, a user can set up two sessions in
parallel to avoid a loss in connection during a handover. This also
means they can be in multiple conversation groups simultaneously
that could be hosted on independent servers.

3.2 VR Streaming Quality-of-Service

In this section, we detail VR streaming Quality-of-Service (QoS)
features implemented to improve the scalability of the system: (i)
frustum video culling and (ii) a spatially-aware QoS mechanism.

3.2.1 Frustum Video Culling

To tackle the challenges of building a scalable VR video conferenc-
ing system, we developed filtering techniques that take advantage
of the 3D environment, where interactions have similarities to real-
world interactions. We do this in two ways: (1) users only need
to receive video from nearby users, within their field of view, and
(2) downgrade video from distant users while improving the video
quality of nearby users in the field of view.

View frustum is a fundamental computer graphics technique to
determine the region of space in the 3D environment that appears
in the user’s field of view, with extensive software and hardware
support in modern graphics pipelines. The view frustum has often
been used to reduce the complexity of rendering by avoiding out of
view computations [9,11]. We determine which users are in the field
of view of each user and dynamically manage their video streams,
reducing the audio/video Selective Forwarding Units (SFUs) load.
Figure 5a illustrates the idea implemented by our dynamic frustum
culling video streaming management, where the user (User 1) only
has another user (User 2) in its field of view and thus does not need
to receive video streams from other users outside the frustum (User
3). This technique is a major enabler of scalable VR telepresence.

View direction

View Frustum

Outside view
frustum

Inside view
frustum

User 1

User 2

User 3

(a) View Frustum-based video control

Video QoS
Range 1(high)

Video QoS
Range 2 (medium)

Video QoS
Range 3 (low)

User 1

User 2

User 4

User 3

(b) Distance-based QoS

Figure 5: Video QoS control mechanisms. Each user sends video control messages to (a) request video streams of users in their view and (b)
request video quality based on distance and available resolutions.

3.2.2 Distance-based Quality-of-Service

In traditional video conferencing solutions, interactions are ”flat,”
in the sense that all users interact as if they are all very close to
each other. In our VR telepresence environment, much like the real
world, users can form circles of interaction, where some are closer
than others. A user’s sound volume, video quality, and dimensions
can reflect this. Figure 5b illustrates our distance-based audio/video
quality management principle. User 1 is close to User 2, so the
video/audio quality between the two is high. User 4, however, is
distant from User 1, meaning that the audio/video quality with User
1 can be low, as they will be occupying a small portion of each
other’s field of view.

3.3 Resource Provisioning

A typical video server has a limited capacity in terms of how many
users it can service based on a combination of network and com-
putational resources. In standard video conferencing applications,
resource allocation is relatively straightforward since people enter
and leave a single conversation medium where each downstream link
feed is sized uniformly. In VR, the problem is challenging because
groups of users can have conversations that slowly bleed into and/or
merge with other groups of users dynamically. With large enough
virtual worlds, there is a need to allocate different conversation clus-
ters across multiple servers. A good allocation strategy should try
to cluster all users within range on the same set of servers while
minimizing the impact of connection disruptions and handover as
people move from one area to another. In this section, we describe
a technique for allocating groups of users to servers based on their
distance-based connectivity graph. We formulate the allocation task
as a minimal k-cut balanced graph partitioning problem with the
goal of minimizing the total cut edges not covered by a subgraph as
described in the next section.

The resource allocator will need to provide solutions under three
main conditions: (1) the baseline case where a single server is
sufficient, (2) the scenario when multiple servers are required to
handle all users, and (3) the overload cases where there are not
enough servers to handle the client requests.

3.3.1 Single Server

The simplest case for our resource allocator is when a single server
can handle all sessions. The server can host multiple different VR
environments, as long as all users can be assigned to a single server.
As an optimization, the allocator might distribute subgraphs across
servers to balance load and more easily accommodate new users, as
discussed in Section 3.3.4.

conix.io

s0

Case 2: ! > # , % ≥ !
"

N=1 N=2

M=4, U=6

s1 s0 s1

S=2S=2

Figure 6: Graph partitioning example for N = 1 and N = 2.

3.3.2 Multiple Servers
When the number of clients U exceeds the maximum capacity of
a single server S, the system needs to load balance clients across
multiple servers. Remember that users can only communicate if the
nodes and the edge between them is allocated to the same server.
This resource management problem can be modeled as a minimal k-
cut graph partitioning problem. The cost metric should try to balance
the number of nodes on each server while minimizing any cut edges
not covered by any subgraph (i.e. users that are near each other but
can’t communicate). Figure 6 illustrates an example where there are
6 total users that need to be allocated on 2 servers that each support
up to 4 users each. We see two possible graph partition solutions
depending on N, the total number of connections a single client can
make. Considering N = 1, the 6-user graph can be partitioned into
two disjoint subgraphs, each with 3 users. This will result in a single
user from each of the subgraphs that are not able to communicate
with the other, but are within range. If instead users are allowed
to connect to two servers (N = 2), another possible solution is to
create a subgraph with 4 users and another with 3 users, where one
of the users is in both subgraphs. This reduces users’ perceived
connectivity breakage at the cost of complexity to manage multiple
server connections. Note that, in the general case, where we do not
have a predetermined number of subgraphs, this problem is known
as NP-hard. Our resource allocator uses several heuristics (including
heuristics to predetermine the number of subgraphs) that simplify
the problem and approximate the optimal solution.

3.3.3 Overloaded Servers
In the case when there is no feasible mapping of users to servers that
covers all edges or there simply isn’t enough server capacity for all
users (M ∗S <U), some user connections will be dropped.The mini-
mal k-cut graph partitioning heuristic will naturally tend to select
strong (higher weight / more closely connected) subgraphs and be bi-
ased towards dropping the more distant links nodes with the weakest
edges.Alternative approaches to scaling video conferencing sessions

conix.io

Optimization 1: Proximity Mapping
M=5

Figure 7: Proximity-based server allocation. Second solution is less
ideal since the two clusters on the right are more likely to merge
based on proximity.

include decreasing overall QoS through coding and compression
or sharing multiplexed streams between servers in the back-end.
These approaches are less applicable in VR environments where
multiple audio/video channels can not easily be mixed on the server
since each user adjusts volumes differently based on their distance
from other speakers. In practice, each server can support full duplex
(everyone speaking) group sizes of over 50 users. It is reasonable
to assume larger clusters would not be fully connected and hence
could spread across multiple servers. It is also quite common to find
situations where a small number of users are speaking to a large
group. Audio for directed half-duplex broadcast can be optimized
since the total number of active streams can be reduced. For video,
distance-based QoS will naturally reduce bandwidth since there is
a limit to the number of close users (nearby enough to be actively
streaming high-rate video) that are within anyone’s active field of
view.

The final and most practical approach to coping with overloaded
users is to hand them off to a broadcast channel that could be hosted
on an auxiliary server. This broadcast server takes all active sound
channels and mixes them into a single output channel so that users
can at least hear ongoing conversations even if they can’t transmit
their own sound and video. A single (or small subset) of active video
streams can also be broadcast. It is comparatively easy to scale one-
way voice streams out to thousands of users as a fallback support
option. This is ideal for the case of a speaker or band performing
to tens of thousands of users in the audience. It is possible to swap
users in and out based on participation in an event from an active
server to the broadcast fall-back server.

3.3.4 Allocator Optimization
The characteristics of our VR telepresence solution, such as the
spatial nature of the environment allow for some particular opti-
mizations which introduce additional constraints on the resource
allocator.
Spatially Pack Disjoint Sessions: Subgraphs naturally tend to
capture the spatial relationship between groups of users. For this
reason, it is more likely that a subgraph would need to merge with
another nearby subgraph as compared to one that is far away in
terms of virtual distance. To reduce the number of connections
that need to be migrated during these join/merge operations, nearby
subgraphs and users are allocated to the same server (as possible), in
anticipation of join/merge operations. Figure 7 portrays two possible
graph allocation solutions. The dotted lines depict that the subgraphs
are allocated to the same server. The second solution (lower in the
figure) is not based on the environment’s spatial properties and
will lead to more connection migrations in the likely event that the
subgraphs to the right merge.
Leveraging Link Quality: When the allocator has the freedom to
map users into several subgraphs (users maintain more than one

connection, N > 1) this choice can be biased based on the network
quality of various nodes. For example, it’s likely better to request
multiple connections from clients that have larger bandwidth net-
work connections. The resource allocator collects and uses quality
metrics to prioritize which users could participate in multiple ses-
sions.
Minimize Multiple Client Sessions: It is typically advantageous
to reduce the number of clients that are part of multiple subgraphs.
Users associated with more than one server introduce complexity in
join/teardown and require additional overhead to maintain multiple
client sessions.

4 IMPLEMENTATION

Here, we describe the implementation used to build our system, its
optimizations, and the framework used to test and measure those
optimizations for 3D videoconferencing.

4.1 System
3D System. Our lab has built a 3D web-based user-programmable
collaboration system. Our system can be operated from browsers in
desktops, laptops, VR/AR Headsets, AR/VR tablets, and command-
line. A client visitor to a 3D scene in our system will see other users
rendered in 3D on the same scene. User movement and pose are
relayed over a MQTT publish-subscribe message bus. Our entire
system is available to all as open source software.
Server Setup. We separated our test implementation into 2 servers
to more easily isolate and measure load on our Video Server running
Jitsi Videobridge in the first case. The second server is a web server
hosting client 3D JavaScript code, authentication, MQTT publish-
subscribe messaging, and database services. Each server has 20x
Intel Core i9-9820X CPU @ 3.30GHz with 64GB RAM available.
Automated Browsers. In our evaluation of these optimizations,
we use the Selenium WebDriver v4.2 browser automation software,
writing test scripts in Python. Our headless test browser is Google
Chrome v100.0, and each browser we automate is using a default
window size (w=800 x h=600). The source video streams we use
have a variety of sizes 480p, 720p, 1080p, but are capped at 480p
upload artificially for consistency of measurement. Video streams
are downloaded to each client at a consistent resolution of 480p for
the default case, but according to Table 1 for distance QoS.
Replaying Event Traces. When automating a browser client of our
system, we send Selenium some URL parameters to set the initial
position of each user. Further, we can use trace logs of past events,
and replicate in real-time the movement MQTT messages of users to
study how the performance of our bandwidth optimization schemes
would have behaved for that event.

4.2 Optimizations
Frustum Culling. Here we use the native measurement of our
system’s client frustum from the JavaScript Three.js library, and
for any remote client avatar who’s center-point does not appear in
the local client’s frustum, we disable the video stream for that user
(Figure 5a).
Distance Freeze. In this scheme we allow the user to configure the
maximum A/V distance to stream (default 20m). The video and
audio streams will be disabled for all remote client avatars beyond
this distance.
Distance QoS. To create an efficient and appropriate limit on video
resolution downloaded from remote clients to the local client we
compute the actual video height the user can view in pixels (Figure
5b). The actual remote client video height, Rh, expressed in pixels,
may be calculated by the following equation.

Rh =W h ∗Rhm
/2∗Dm ∗ tan(f ov∗0.5)

Where, W h is window height in pixels (600 pixels in our experi-
ment, the headless Chrome default), Rhm

is the remote avatar’s video

Distance QoS Resolution Constraint Matrix
Actual Video
Height (p)

Video Con-
straint (p)

Frame Rate
Constraint
(fps)

Camera Definition

0-45 180 5 —
45-90 180 15 —
90-180 180 30 Thumbnail
180-360 360 30 —
360-480 480 30 SD (standard definition)
480-720 720 30 HD (high definition)
720-1080 1080 30 Full HD/2K
1080-1440 1440 30 —
1440-1800 1800 30 —
1800+ 2160 30 Ultra HD/4K

Table 1: Stepped resolution constraints used for video bandwidth
allocation in distance-based QoS.

Test Scenarios Performance
System Distance (m) Upload (Mbps) Download (Mbps) CPU Load (%)
Default N/A 152 13.8 23.27

D
10 26.3 6.8 12.9
20 40.6 5.7 15.0
30 57.6 7.1 17.2

F N/A 29.6 7.39 13.7

D+F
10 17.2 4.6 11.6
20 18.6 5.2 12.5
30 21.6 5.6 12.7

Table 2: Performance of the four alternatives (Default, D, F, D+F)
for the example poster session at a NSF workshop with a video
freezing threshold of different viewing distances.

height in 3D meters (0.4m constant), Dm is the distance from the
client’s POV to each remote client’s 3d video in meters, and f ov is
the Field of View in radians (1.396 rad, 80◦ Euler constant).

We then create a stepped table of resolution limits (shown in
Table 1) for the maximum resolution constraint to allow our client
Jitsi Meet library to download for each remote client based on what
can be rendered given the distance and window resolution. Each
local client checks once per second whether any remote client has
changed to a new video constraint tier based on distance changes and
updates the allocation request to be higher or lower for that remote
client if such a change has occurred.

5 EVALUATION

We experimentally evaluate our system both in terms of end-to-end
streaming performance and scalability. We compare the perfor-
mance with a variety of baselines under different scenarios. Our
goal is to answer the following key questions: 1) how much net-
work bandwidth (both upload and download) can we save with our
optimizations? 2) what are the performance benefits in terms of
client-side quality of experience? 3) what is the limit in terms of
users when scaling to multiple servers?

5.1 Evaluation Methodology
Over the past 10 months, we have hosted a variety of sessions on our
VR conferencing platform, including poster sessions, team meetings,
student class presentations, etc. To experimentally evaluate and
quantify our system, we conduct two types of experiments: 1) a
trace-driven emulation, where we replay the user movement that is
collected in one of our sessions under different types of optimization
strategies, 2) a large-scale experiment with synthetically generated
trace with 100s of users to evaluate the scalability with multiple
servers. Next, we describe the methodology to evaluate our system.

Traces: We use two traces to evaluate our system. One is a multi-
university poster session held at a NSF workshop. The NSF trace
has about 20 users in total exploring the VR space for about one

(a) Number of users in the scene over time

(b) Average velocity of each user

Figure 8: Distribution of users in NSF poster session: a) number of
users entered in the scene over the time, b) the average velocity of
each user exploring the VR space.

hour. The second trace is generated synthetically to represent a
social mixture style session. We generate the synthetic trace using a
popular technique called Brownian motion [21], where the users are
free to walk around with random motion. We process the two traces
to have the users’ 6-DoF pose (translation and rotation). We use
the pose data from the traces to emulate user movement and adapt
the video quality by replaying the trace for each of the optimization
strategies. The user distribution for the NSF poster session is shown
in Figure 8. A total of 20 users join and leave slowly within a
duration of 75 minutes. The average velocity and maximum distance
traveled by the users throughout the session is 5cm/s and 150m
respectively. Note that the minimum average velocity is 3cm/s and
maximum average velocity is 23cm/s for a given user, and the overall
maximum velocity among all users is observed at 46cm/s. The users
are also given the freedom of moving around freely, and so we
observed a wide variety of motion patterns during the session. This
covers a range of motion patterns such as the speed and trajectory
for different users.
Experimental setup: We host our VR telepresence (Jitsi [3]) server
on a Linux machine as described in §4. For emulating the video
clients in the case of trace-driven experiments, we use Selenium [5]
to launch web clients programmatically. We launch the clients on
multiple AWS compute instances each with 192 vCPUs. We input
a fake video and audio to a Selenium driver to simulate a real-time
web camera feed and stream video to and from the server. In the
interest of time, the experiments are run for only 15 minutes of
duration for each trace. We have also experienced our platform on
a variety of devices ranging from Desktop, Laptops, Tablets, and
VR headsets (e.g., Oculus Quest 2)2. During the experiments, we
do not limit the network conditions to avoid any influence of poor
network performance. We evaluate all the alternatives with a variety
of resolutions, and present results of 480p resolution for brevity.

2Note that for Oculus headset, we receive video feeds from other clients,
but do not stream video from the headset because of the lack of front-facing
camera

(a) Upload Video Bitrate (b) Download Video Bitrate (c) Server CPU Utilization

Figure 9: Performance comparison of four alternatives (Default, D, F, D+F) for a poster session at a NSF workshop. The timeline also indicates
the number of users entered in the scene over the time (at 15th minute the session has 20 users in the scene).

(a) Upload Video Bitrate (b) Download Video Bitrate (c) Server CPU Utilization

Figure 10: Performance comparison of four alternatives (Default, D, F, D+F) for a synthetically generated trace with Brownian random motion
as an example of social mixture event. The timeline shows that the users are quickly added to the scene within 5 minutes of the session with a
total of 30 users from 5th minute onwards.

More details are given in our Implementation Section 4.
Metrics: We measure the performance using the following metrics:
1) upload bandwidth which is the total outgoing bitrate for the video
bridge, 2) download bandwidth which is the total incoming bitrate
for the video bridge, 3) server CPU utilization (busy state of all cores
together), 3) client-side connection quality as defined in Jitsi [3], 4)
rendering frames per second (FPS) on the client. Additionally, we
report the number of supported clients when we scale to multiple
servers.
Optimization strategies: We compare our system with the follow-
ing alternatives:

• Default: This is a default system scenario that has no opti-
mizations. In this case, the server streams all client videos to
everyone with a default constraint of 480p.

• Distance-based QoS (D): This system has only distance based
QoS. We experiment with different distances: {10, 20, 30}m
for freezing the video streams and report the results for each
case.

• Frustum Culling (F): This system has only frustum culling
enabled.

• D+F: This is our system with both frustum culling and distance
based QoS both enabled.

5.2 Performance Results
Upload and Download bandwidth: Figure 9a-b shows the upload
and download bandwidth at the video server bridge under an NSF
poster session trace. The plot shows the bandwidth needed as the
users are added to the VR scene (within a timeline of 15 minutes). As
shown our system with D and F both enabled, consumes significantly
less bandwidth compared to the default system. At the 15th minute,
there are 20 users in the scene, for which the upload and download
for the default system are 150 Mbps and 14 Mbps respectively. Our
system with D and F enabled together reduces this bandwidth by
22× and 3× for upload and download respectively.

Similar performance trends can be observed for the social-mixture
style synthetic trace as shown in Figure 10. In this scenario, the
users entered the scene quickly within two minutes of the session and
bandwidth stays constant for the rest of the session at 30. As before,

our system consumes much lower upload and download bandwidth
compared to the default system. The key performance difference
with the synthetic trace from an example NSF poster session is
that the distance based QoS is not playing a big role because the
users are much closer than in the NSF trace. Unless we specify the
distance threshold to very low (e.g., less than 2m), we did not see
much change in the performance difference. Under both traces, the
frustum culling has the most benefits, and combined with distance
based QoS, our system has significant benefits.
CPU load: The server-side CPU load is shown in Figures 9c and
10c for the NSF and Synthetic traces respectively. The CPU load is
computed as an average busy status of all the cores on the server (in
our system 20 cores). The CPU load goes up to 25% and 42% under
NSF and synthetic traces for the default system. In our system, the
CPU load is well under 10% for both traces when D and F are both
enabled.
Impact of distance threshold: The distance threshold used in our
distance based QoS optimization plays a critical role in resource con-
sumption on the server-side. For example, a low distance threshold
leads to lower bandwidth requirement and has less CPU load, but
prohibits the nearby clients from communicating with each other.
On the other hand, a larger threshold leads to high resource uti-
lization, but all the clients stream videos to all the other clients.
Table 2 shows the impact of the distance threshold (with {10, 20,
30}m) on upload and download bandwidth as well as the CPU for
20 clients at a NSF workshop example poster session. As shown, the
bandwidth and CPU utilization increases as we increase the distance
threshold value. The threshold can be adjusted to different values
for different applications to achieve optimal server-side performance
and client-side experience (e.g., a social mixture kind of application
should have high threshold value, whereas a poster session kind of
application can have it under 10m).

In summary, the above savings in both load the network and
compute resources allows our system to scale to significantly more
users on a single server compared to the default system with no
culling and distance based adaptation.
Client-side performance: For a good quality of experience for
clients, it is important to preserve high video quality as well as

Figure 11: Client-side connection quality under 60 video clients
with multiple simultaneous replays of NSF example poster session
and synthetic trace.

Figure 12: Client-side rendering FPS for 60 clients with multiple
simultaneous replays of NSF example poster session and synthetic
trace.

the temporal smoothness (i.e., frames displayed per second (FPS)).
We measure two types of metrics for this purpose: 1) connection
quality, which is solely influenced by the network and the server-side
load, 2) rendered FPS, which is mainly influenced by the amount
of rendering load on the client. For example, poor clients such as
tablets or headsets have a very low compute capacity and cannot
tolerate many clients in the browser to display at line speed (i.e.,
30FPS). As a stress test, we conduct this experiment by deliberately
replaying the traces multiple times simultaneously from different
AWS instances to create a load of 60 clients.

Figure 11 shows the connection quality under the two traces for
all four scenarios. The system by default drops down to 50% for
both traces whereas our system is not at all affected. The primary
reason for connection quality drop in case of the default system
is the heavy load on the server (both network and compute). In
our experiments, we observe a 70% CPU load when there are 60
clients on the server. Using D and F, our system significantly cuts
down the network and compute load on the server and improves
the video resolution as well as the streaming FPS, and hence the
overall connection quality. Similarly, Figure 12 shows the rendered
FPS when there are 60 clients in the scene. The rendered FPS goes
down below 10 FPS for the default system for both traces because
it is extremely compute intensive to render 60 video cubes in the
browser. Our system avoids this by not rendering out-of-sight as
well as farther away video clients.

5.3 Scaling to Multiple Servers
We evaluate scalability of our system in terms of the number of
supported clients with respect to multiple servers. As mentioned in
section 3.3, the server is limited to support only a few tens of clients
and once it reaches its maximum load in terms of CPU and network,
it has to either drop the client connections or all more connections
but reduce the quality of other connections. In this section, we

Figure 13: Scalability with the increase in number of servers.

evaluate the maximum number of supported clients provided they
all get the best connection quality.

In our experiments (with 480p video resolution), our server on
the default system (i.e., with no D+F optimizations) supports up
to 60 clients without affecting the quality of clients’ connection.
However, our system can support up to 100 clients on a single server
because of the reduced resource consumption with D+F. In theory,
we could extrapolate this number linearly with more servers and
estimate the scaling performance of our system. However when
the number of clients exceeds the capacity of a single server, the
single session should be scaled to multiple servers with some over-
lapping users streaming to multiple servers to serve all users in their
locality. The design choices here either accommodate parallel con-
nections on multiple servers for overlapping clients with a certain
bandwidth overhead or miss the connections among overlapping
clients for bandwidth efficiency. In the following, we compare the
two approaches. We evaluate the scaling performance of resource
provisioning in our system by comparing with a baseline solution:
Uniform grid based geographic boundaries as used by many cloud
gaming solutions today, where the VR space/scene is divided into
grids statically and each grid is served by a separate server. While
this design is relatively simple compared to our resource scaling
mechanism, it hinders the clients that overlap in the neighboring
grids from communication and the clients often miss connections.

Figure 13 shows the scalability of our system compared to the
above uniform fixed grid approach under a synthetic trace when
scaling from 100 to 1000 clients. The uniform grid approach has
better scaling ability with the increase in the number of servers,
however, shows a significant increase in miss connections as we
increase the number of grids and clients. On the other hand, single
session/server can only support 60 clients. Our system bridges the
gap between the two by introducing the redundancy of connections
from multiple servers for overlapping clients in the cliques. Because
of the redundancy, our system can scale to 886 clients while the
uniform grid approach can go up to 1000 clients, however, the key
advantage with our approach is that there are no missed connections
and all the clients are served. The uniform grid approach has up to
11% miss connections for overlapping clients.

6 CONCLUSION AND FUTURE WORK

We have presented a VR video conferencing telepresence system
that scales to hundreds of users in a single virtual environment
with spatial audio and video. We introduced two optimizations to
reduce the resource consumption on the server— distance based
QoS technique and frustum video culling. In addition, we presented
resource provisioning mechanism to scale our system to many clients
while providing high quality of experience i.e., connection quality as
well as the rendering frames per second. Through the experimental
evaluation and several real-world deployments, we demonstrated
that our system reduces upload and download bandwidth, and CPU
load significantly on the server-side. We also open sourced our
platform code for the community to further explore this line of work.

Our current VR conferencing is realized by compositing a video-
based avatar with texture mapping to video cubes. While this allows
us to view the users from multiple viewpoints, it still lacks the true
immersive 6-DoF content where the users can see through occlusions.
We are currently working on extending our system to capture scene
using depth sensors and reconstruct 3D scene via point clouds and
meshes. In the future, we envision our system to support fully
immersive 3D video conferencing using other forms of volumetric
capture such as depth sensors.

ACKNOWLEDGEMENT

This work was supported in part by the CONIX Research Center,
one of six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA.

REFERENCES

[1] Azure Kinect DK. https://azure.microsoft.com/en-us/serv
ices/kinect-dk/. Online. Accessed: May 2022.

[2] Intel RealSense LiDAR Camera L515. https://www.intelreals
ense.com/lidar-camera-l515/. Online. Accessed: May 2022.

[3] Jitsi Videobridge. https://github.com/jitsi/jitsi-videobr
idge. Online. Accessed: May 2022.

[4] Second Life. https://secondlife.com/. Online. Accessed: May
2021.

[5] WebDriver. https://www.selenium.dev/documentation/web
driver/. Online. Accessed: May 2022.

[6] S. Alers, D. Bloembergen, M. Bügler, D. Hennes, and K. Tuyls. Mitro:
an augmented mobile telepresence robot with assisted control. In
AAMAS, pp. 1475–1476, 2012.

[7] M. Broxton, J. Flynn, R. Overbeck, D. Erickson, P. Hedman, M. Duvall,
J. Dourgarian, J. Busch, M. Whalen, and P. Debevec. Immersive light
field video with a layered mesh representation. ACM Transactions on
Graphics (TOG), 39(4):86–1, 2020.

[8] M. Chen. Leveraging the asymmetric sensitivity of eye contact for
videoconference. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pp. 49–56, 2002.

[9] J. H. Clark. Hierarchical geometric models for visible surface algo-
rithms. Commun. ACM, 19(10):547–554, Oct. 1976. doi: 10.1145/
360349.360354

[10] J. V. Draper, D. B. Kaber, and J. M. Usher. Telepresence. Human
factors, 40(3):354–375, 1998.

[11] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface generation
by a priori tree structures. In Computer Graphics, pp. 124–133, 1980.

[12] M. Gross, S. Würmlin, M. Naef, E. Lamboray, C. Spagno, A. Kunz,
E. Koller-Meier, T. Svoboda, L. Van Gool, S. Lang, et al. blue-c: a
spatially immersive display and 3d video portal for telepresence. ACM
Transactions on Graphics (TOG), 22(3):819–827, 2003.

[13] S. Gunkel, M. Prins, H. Stokking, and O. Niamut. WebVR meets
WebRTC: Towards 360-degree social VR experiences. IEEE, 2017.

[14] S. N. Gunkel, M. Prins, H. Stokking, and O. Niamut. Social vr platform:
Building 360-degree shared vr spaces. In Adjunct Publication of the
2017 ACM International Conference on Interactive Experiences for TV
and Online Video, pp. 83–84, 2017.

[15] S. N. Gunkel, H. M. Stokking, M. J. Prins, N. van der Stap, F. B. t. Haar,
and O. A. Niamut. Virtual reality conferencing: Multi-user immersive
vr experiences on the web. In Proceedings of the 9th ACM Multimedia
Systems Conference, pp. 498–501, 2018.

[16] R. Held. Telepresence. The Journal of the Acoustical Society of
America, 92(4):2458–2458, 1992.

[17] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service. SIGCOMM, 44(4):187–198, 2015.

[18] A. Jones, M. Lang, G. Fyffe, X. Yu, J. Busch, I. McDowall, M. Bo-
las, and P. Debevec. Achieving eye contact in a one-to-many 3d
video teleconferencing system. ACM Transactions on Graphics (TOG),
28(3):1–8, 2009.

[19] N. P. Jouppi. First steps towards mutually-immersive mobile telep-
resence. In Proceedings of the 2002 ACM conference on Computer
supported cooperative work, pp. 354–363, 2002.

[20] R. Kachach, S. Morcuende, D. Gonzalez-Morin, P. Perez-Garcia,
E. Gonzalez-Sosa, F. Pereira, and A. Villegas. The owl: Immersive
telepresence communication for hybrid conferences. In SMAR-Adjunct,
pp. 451–452. IEEE, 2021.

[21] I. Karatzas and S. E. Shreve. Brownian motion. In Brownian motion
and stochastic calculus, pp. 47–127. Springer, 1998.

[22] A. Kreskowski, S. Beck, and B. Froehlich. Output-sensitive avatar
representations for immersive telepresence. IEEE Transactions on
Visualization and Computer Graphics, pp. 1–1, 2020. doi: 10.1109/
TVCG.2020.3037360

[23] D. A. Le, B. Maclntyre, and J. Outlaw. Enhancing the experience
of virtual conferences in social virtual environments. In 2020 IEEE
Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW), pp. 485–494, 2020. doi: 10.1109/VRW50115.2020.
00101

[24] Z. Li, T. Teo, L. Chan, G. Lee, M. Adcock, M. Billinghurst, and
H. Koike. Omniglobevr: A collaborative 360-degree communication
system for vr. In Proceedings of the 2020 ACM Designing Interactive
Systems Conference, DIS ’20, p. 615–625. Association for Comput-
ing Machinery, New York, NY, USA, 2020. doi: 10.1145/3357236.
3395429

[25] S. Ma, T. Simon, J. Saragih, D. Wang, Y. Li, F. De La Torre, and
Y. Sheikh. Pixel codec avatars. In CVPR, pp. 64–73, 2021.

[26] A. Maimone and H. Fuchs. Encumbrance-free telepresence system
with real-time 3d capture and display using commodity depth cameras.
In 2011 10th IEEE International Symposium on Mixed and Augmented
Reality, pp. 137–146. IEEE, 2011.

[27] W. Matusik and H. Pfister. 3d tv: a scalable system for real-time
acquisition, transmission, and autostereoscopic display of dynamic
scenes. ACM Transactions on Graphics (TOG), 23(3):814–824, 2004.

[28] D. Mehta, O. Sotnychenko, F. Mueller, W. Xu, M. Elgharib, P. Fua,
H.-P. Seidel, H. Rhodin, G. Pons-Moll, and C. Theobalt. Xnect: Real-
time multi-person 3d motion capture with a single rgb camera. Acm
Transactions On Graphics (TOG), 39(4):82–1, 2020.

[29] D. Nguyen and J. Canny. Multiview: spatially faithful group video
conferencing. In Proceedings of the SIGCHI conference on human
factors in computing systems, pp. 799–808, 2005.

[30] T. Ogawa, K. Kiyokawa, and H. Takemura. A hybrid image-based and
model-based telepresence system using two-pass video projection onto
a 3d scene model. In ISMAR, pp. 202–203. IEEE, 2005.

[31] O. Oyekoya, W. Steptoe, and A. Steed. Sphereavatar: A situated display
to represent a remote collaborator. In Proceedings of the SIGCHI
conference on human factors in computing systems, pp. 2551–2560,
2012.

[32] Y. Pan and K. Mitchell. Improving vip viewer gaze estimation and en-
gagement using adaptive dynamic anamorphosis. International Journal
of Human-Computer Studies, 147:102563, 2021.

[33] Y. Pan and A. Steed. A gaze-preserving situated multiview telepresence
system. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 2173–2176, 2014.

[34] Y. Pan and A. Steed. Effects of 3d perspective on head gaze estimation
with a multiview autostereoscopic display. International Journal of
Human-Computer Studies, 86:138–148, 2016.

[35] S. Park, A. Bhattacharya, Z. Yang, M. Dasari, S. R. Das, and D. Sama-
ras. Advancing user quality of experience in 360-degree video stream-
ing. In 2019 IFIP Networking Conference, pp. 1–9, May 2019. doi: 10.
23919/IFIPNetworking.2019.8816847

[36] N. Pereira, A. Rowe, M. W. Farb, I. Liang, E. Lu, and E. Riebling.
Arena: The augmented reality edge networking architecture. In 2021
IEEE International Symposium on Mixed and Augmented Reality (IS-
MAR), pp. 479–488. IEEE, 2021.

[37] M. J. Prins, S. N. Gunkel, H. M. Stokking, and O. A. Niamut. To-
gethervr: A framework for photorealistic shared media experiences in
360-degree vr. SMPTE Motion Imaging Journal, 127(7):39–44, 2018.

[38] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices. In
MobiCom, pp. 99–114. ACM, 2018.

[39] Facebook Inc. Facebook Spaces. https://www.facebook.com/s
paces. Online. Accessed: May 2021.

[40] Hamish Hector. Meta’s Foo Fighters Super Bowl VR concert failed

https://azure.microsoft.com/en-us/services/kinect-dk/
https://azure.microsoft.com/en-us/services/kinect-dk/
https://www.intelrealsense.com/lidar-camera-l515/
https://www.intelrealsense.com/lidar-camera-l515/
https://github.com/jitsi/jitsi-videobridge
https://github.com/jitsi/jitsi-videobridge
https://secondlife.com/
https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/documentation/webdriver/
https://www.facebook.com/spaces
https://www.facebook.com/spaces

in the most basic ways. https://www.techradar.com/news/met
as-foo-fighters-super-bowl-vr-concert-failed-in-the

-most-basic-ways. Online. Accessed: May 2021.
[41] Microsoft Inc. AltspaceVR. https://altvr.com/. Online. Ac-

cessed: May 2021.
[42] Scott Hayden. Foo Fighters to Play Concert in VR for Free After the

Super Bowl. https://www.roadtovr.com/foo-fighters-que
st-2-concert-super-bowl/. Online. Accessed: May 2021.

[43] VRChat Inc. VRChat. https://hello.vrchat.com/. Online.
Accessed: May 2021.

[44] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. Bola: Near-optimal
bitrate adaptation for online videos. In INFOCOM, pp. 1–9. IEEE,
2016.

[45] W. Steptoe, R. Wolff, A. Murgia, E. Guimaraes, J. Rae, P. Sharkey,
D. Roberts, and A. Steed. Eye-tracking for avatar eye-gaze and in-

teractional analysis in immersive collaborative virtual environments.
In Proceedings of the 2008 ACM conference on Computer supported
cooperative work, pp. 197–200, 2008.

[46] T. Tanikawa, Y. Suzuki, K. Hirota, and M. Hirose. Real world video
avatar: real-time and real-size transmission and presentation of hu-
man figure. In Proceedings of the 2005 international conference on
Augmented tele-existence, pp. 112–118, 2005.

[47] H. Towles, W.-C. Chen, R. Yang, S.-U. Kum, H. F. N. Kelshikar,
J. Mulligan, K. Daniilidis, H. Fuchs, C. C. Hill, N. K. J. Mulligan, et al.
3d tele-collaboration over internet2. In In: International Workshop on
Immersive Telepresence, Juan Les Pins. Citeseer, 2002.

[48] R. Vertegaal, I. Weevers, C. Sohn, and C. Cheung. Gaze-2: conveying
eye contact in group video conferencing using eye-controlled camera
direction. In Proceedings of the SIGCHI conference on Human factors
in computing systems, pp. 521–528, 2003.

https://www.techradar.com/news/metas-foo-fighters-super-bowl-vr-concert-failed-in-the-most-basic-ways
https://www.techradar.com/news/metas-foo-fighters-super-bowl-vr-concert-failed-in-the-most-basic-ways
https://www.techradar.com/news/metas-foo-fighters-super-bowl-vr-concert-failed-in-the-most-basic-ways
https://altvr.com/
https://www.roadtovr.com/foo-fighters-quest-2-concert-super-bowl/
https://www.roadtovr.com/foo-fighters-quest-2-concert-super-bowl/
https://hello.vrchat.com/

	Introduction
	Background and Related Work
	System Design
	System Model
	VR Streaming Quality-of-Service
	Frustum Video Culling
	Distance-based Quality-of-Service

	Resource Provisioning
	Single Server
	Multiple Servers
	Overloaded Servers
	Allocator Optimization

	Implementation
	System
	Optimizations

	Evaluation
	Evaluation Methodology
	Performance Results
	Scaling to Multiple Servers

	Conclusion and Future Work

